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The start of it all

chromatic number χ(G) :

minimum number of colours needed for a vertex-colouring

vertex-colouring :

vertices at distance one must receive different colours

suppose we require vertices at larger distances

to receive different colours as well

describe using vertex-colouring of powers of graphs

Gp, p -th power of G :

same vertex set as G

edges between vertices with distance at most p in G
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Bounds on the chromatic number of powers

∆ : maximum degree of G

Easy facts

any G =⇒ χ(Gp) ≤ ∆p + O(∆p−1)

G contains a regular ∆-tree ( all internal vertices have

degree ∆ ) of height ⌊p/2⌋

=⇒ χ(Gp) ≥ ∆⌊p/2⌋ + O(∆⌊p/2⌋−1)

Theorem ( Agnarsson & Halldórsson, 2003 )

G planar =⇒ χ(Gp) ≤ O(∆⌊p/2⌋)
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The square of planar graphs

Conjecture ( Wegner, 1977 )

G planar =⇒

χ(G2) ≤















7, if ∆ = 3

∆ + 5, if 4 ≤ ∆ ≤ 7
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bounds would be best possible
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case ∆ = 2 k ≥ 8 :
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What is known for large ∆∆∆

G planar =⇒

χ(G2) ≤ 8 ∆ − 22 ( Jonas, PhD, 1993 )

χ(G2) ≤ 3 ∆ + 5 ( Wong, MSc, 1996 )

χ(G2) ≤ 2 ∆ + 25 ( vdH & McGuinness, 2003 )

χ(G2) ≤ ⌈9
5 ∆⌉ + 1 ( for ∆ ≥ 47 )

( Borodin, Broersma, Glebov & vdH, 2001 )

χ(G2) ≤ ⌈5
3 ∆⌉ + 24 ( for ∆ ≥ 241 )

( Molloy & Salavatipour, 2005 )
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The new results

Theorem

G planar =⇒ χ(G2) ≤ 3
2 ∆ + o(∆) (∆ → ∞)

or, more precisely, a “list version with extras” :

for all ε > 0 there exists a ∆ε so that if ∆ ≥ ∆ε :

G a planar graph with maximum degree ∆

each vertex v has a list L(v)

of at least (3
2 + ε) ∆ colours from Z

then there exists a proper colouring of G2, such that

each vertex gets a colour from its own list

neighbours in G get colours at least ∆1/4 apart
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Basis of the proof : induction on the number of vertices

2-neighbour : vertex at distance one or two

d2(v) : number of 2-neighbours of v

= number of neighbours of v in G2

we would like to remove a vertex v with d2(v) ≤ 3
2 ∆

but that can change distances in G − v

contraction to a neighbour u will solve the distance problem

but may increase maximum degree if d(u) + d(v) > ∆

easy induction possible if there is an edge uv

with d(u) + d(v) ≤ ∆ and d2(v) ≤ 3
2 ∆
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When easy induction is not possible

S, small vertices : degree at most ∆1/4

B, big vertices : degree more than ∆1/4

H, huge vertices : degree at least 1
2 ∆

small vertices have a least two big neighbours

a planar graph on n vertices has fewer than 3 n edges

and fewer than 2 n edges if it is bipartite

=⇒ all but O(|V |/∆1/4) vertices are small

=⇒ fewer than 2 |B| vertices in V \ B

have more than two neighbours in B

“most” vertices are small

and these have exactly two big neighbours — in fact huge
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The structure so far

there is a subgraph F of G looking like :

green vertices X
have degree at least 1

2 ∆

black vertices Y
have degree at most ∆1/4 F

all other neighbours of Y -vertices are also small

we can guarantee additionally :

only “few” edges from X to rest of G

F satisfies “some edge density condition”
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The other induction step

remove the vertices from Y ( using contraction )

colour the smaller graph ( which is possible by induction )

what to do with the uncoloured Y -vertices ?

y
x1 x2

y has

a “lot” of 2-neighbours in Y via x1, x2

at most O(∆1/4 · ∆1/4) other 2-neighbours in Y

at most (dG(x1) − dF(x1)) + (dG(x2) − dF(x2))

2-neighbours outside Y via x1, x2

at most O(∆1/4 · ∆1/4) other 2-neighbours outside Y
List Colouring Squares of Planar Graphs – EuroComb, Sevilla, 12 September 2007



Transferring to edge-colouring

so a vertex y from Y has at least

(3
2 +ε) ∆−(dG(x1)−dF(x1))−(dG(x2)−dF(x2))−O(∆1/2)

colours still available

colouring Y is like colouring edges of the multigraph F e :

-

F F e

but . . . there may be up to O(∆1/2) extra connections

from an edge in F e to other edges in F e
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Edge-colouring multigraphs

χ′(G) : chromatic index of multigraph G

χ′
L(G) : list chromatic index of multigraph G

χ′
F (G) : fractional chromatic index of multigraph G

Theorem ( Kahn, 1996, 2000 )

G multigraph =⇒ χ′
L(G) ≈ χ′(G) ≈ χ′

F(G)

( where “ ≈ ” means “ = (1 + o(1))× ” )

in fact, Kahn’s proofs provide something much more general
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Kahn’s result

Theorem ( Kahn, 2000 )

for 0 < δ < 1, C > 0 there exists ∆δ,C so that if ∆ ≥ ∆δ,C :

G a multigraph with maximum degree ∆

each edge e has a list L(e) of colours so that

for all vertices v :
∑

e∋v
|L(e)|−1 ≤ 1 · (1 − δ)

for all K ⊆ G with |V(K )| ≥ 3 odd :
∑

e∈E(K)

|L(e)|−1 ≤ 1
2 (|V(K )| − 1) · (1 − δ)

then there exists a proper colouring of the edges of G

so that each edge gets colours from its own list
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Kahn’s approach for our case

we have a multigraph F e :

F e

so that each edge e = x1x2 has a list L(e) of at least

(3
2 +ε) ∆−(dG(x1)−dF(x1))−(dG(x2)−dF(x2))−O(∆1/2)

colours

and F e satisfies “some edge density condition”
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Extending Kahn’s approach

these conditions guarantee that Kahn’s conditions are

satisfied for F e

=⇒ we can edge-colour F e

�

F F e

=⇒ we can colour the Y -vertices in F

choosing from the left-over colours for each

but . . . there may be up to O(∆1/2) extra connections

from an edge in F e to other edges in F e

redo Kahn’s proof to take this “noise” into account
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The next steps

next to prove :

G planar =⇒ χ(G2) ≤ 3
2 ∆ + O(1)

structural analysis of planar graphs for this can be done

but would need a stronger version of Kahn’s result :

G multigraph =⇒ χ′
L(G) ≤ χ′

F(G) + O(1)

Conjecture
( Vizing, 1975 ) and ( Goldberg, 1973; Andersen, 1977; Seymour, 1979 )

G multigraph =⇒

χ′
L(G) = χ′(G) and χ′(G) ≤ χ′

F(G) + 1
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