List Colouring Squares of Planar Graphs

JAN VAN DEN HEUVEL

joint work with FRÉDÉRIC HAVET COLIN MCDIARMID BRUCE REED

Department of Mathematics

London School of Economics and Political Science

The start of it all

chromatic number $\chi(G)$:

minimum number of colours needed for a vertex-colouring

vertex-colouring:

vertices at distance one must receive different colours

suppose we require vertices at larger distances to receive different colours as well

describe using vertex-colouring of powers of graphs

- G^{p} , *p*-th power of *G*:
 - same vertex set as G
 - edges between vertices with distance at most p in G

The square of planar graphs

What is known for large Δ

The new results

Theorem

G planar $\implies \chi(G^2) \leq \frac{3}{2}\Delta + o(\Delta) \quad (\Delta \to \infty)$

or, more precisely, a "list version with extras":

- for all $\varepsilon > 0$ there exists a Δ_{ε} so that if $\Delta \ge \Delta_{\varepsilon}$:
 - G a planar graph with maximum degree Δ
 - each vertex v has a list L(v)

of at least $(\frac{3}{2} + \varepsilon) \Delta$ colours from **Z**

- then there exists a proper colouring of G^2 , such that
 - each vertex gets a colour from its own list
 - neighbours in G get colours at least $\Delta^{1/4}$ apart

Basis of the proof : induction on the number of vertices

- 2-neighbour: vertex at distance one or two
- **d**²(v): number of 2-neighbours of v
 - = number of neighbours of v in G^2
- we would like to remove a vertex v with $d^2(v) \le \frac{3}{2} \Delta$
 - but that can change distances in G v
- contraction to a neighbour *u* will solve the distance problem
 but may increase maximum degree if d(u) + d(v) > ∆
- easy induction possible if there is an edge uvwith $d(u) + d(v) \le \Delta$ and $d^2(v) \le \frac{3}{2}\Delta$

When easy induction is not possible

- **S**, **small** vertices : degree at most $\Delta^{1/4}$
- **B**, **big** vertices : degree more than $\Delta^{1/4}$
- **H**, huge vertices : degree at least $\frac{1}{2}\Delta$
 - small vertices have a least two big neighbours
- a planar graph on *n* vertices has fewer than 3 *n* edges and fewer than 2 *n* edges if it is bipartite
 - \implies all but $O(|V|/\Delta^{1/4})$ vertices are small
 - \implies fewer than 2|B| vertices in $V \setminus B$

have more than two neighbours in B

- "most" vertices are small
- and these have exactly two big neighbours in fact huge

The structure so far

there is a subgraph F of G looking like:

- green vertices X
 have degree at least $\frac{1}{2}\Delta$
- black vertices Y have degree at most $\Delta^{1/4}$
- all other neighbours of Y-vertices are also small

we can guarantee additionally:

- only "few" edges from X to rest of G
- F satisfies "some edge density condition"

The other induction step

- remove the vertices from Y (using contraction)
- colour the smaller graph (which is possible by induction)
- what to do with the uncoloured Y-vertices?

y has

- a "lot" of 2-neighbours in Y via x_1 , x_2
- at most $O(\Delta^{1/4} \cdot \Delta^{1/4})$ other 2-neighbours in Y
- at most $(d_G(x_1) d_F(x_1)) + (d_G(x_2) d_F(x_2))$ 2-neighbours outside Y via x_1, x_2

• at most $O(\Delta^{1/4} \cdot \Delta^{1/4})$ other 2-neighbours outside Y

Transferring to edge-colouring

Edge-colouring multigraphs

- $\chi'(G)$: chromatic index of multigraph G
- $\chi'_{L}(G)$: list chromatic index of multigraph G
- $\chi'_{F}(G)$: fractional chromatic index of multigraph G

Theorem (Kahn, 1996, 2000)

• G multigraph $\implies \chi'_L(G) \approx \chi'(G) \approx \chi'_F(G)$ (where " \approx " means "= $(1 + o(1)) \times$ ")

in fact, Kahn's proofs provide something much more general

Kahn's result

Theorem (Kahn, 2000)

for $0 < \delta < 1$, C > 0 there exists $\Delta_{\delta,C}$ so that if $\Delta \ge \Delta_{\delta,C}$:

- **G** a multigraph with maximum degree Δ
- each edge e has a list L(e) of colours so that
 - for all vertices v: $\sum_{e \geq v} |L(e)|^{-1} \leq 1 \cdot (1 \delta)$
 - for all $K \subseteq G$ with $|V(K)| \ge 3$ odd:

 $\sum_{e \in E(K)} |L(e)|^{-1} \le \frac{1}{2} (|V(K)| - 1) \cdot (1 - \delta)$

then there exists a proper colouring of the edges of G so that each edge gets colours from its own list

we have a multigraph F^e:

so that each edge $e = x_1 x_2$ has a list L(e) of at least $\left(\frac{3}{2} + \varepsilon\right) \Delta - \left(d_G(x_1) - d_F(x_1)\right) - \left(d_G(x_2) - d_F(x_2)\right) - O(\Delta^{1/2})$ colours

and F^e satisfies "some edge density condition"

Extending Kahn's approach

- these conditions guarantee that Kahn's conditions are satisfied for F^e
- $\blacksquare \implies \text{we can edge-colour } F^e$

- $\implies \text{ we can colour the } Y \text{-vertices in } F \\ \text{ choosing from the left-over colours for each}$
- but ... there may be up to $O(\Delta^{1/2})$ extra connections from an edge in F^e to other edges in F^e
- redo Kahn's proof to take this "noise" into account

The next steps

next to prove :

G planar
$$\implies \chi(G^2) \leq \frac{3}{2}\Delta + O(1)$$

structural analysis of planar graphs for this can be done

but would need a stronger version of Kahn's result :

G multigraph $\implies \chi'_L(G) \leq \chi'_F(G) + O(1)$

Conjecture

(Vizing, 1975) and (Goldberg, 1973; Andersen, 1977; Seymour, 1979)

• G multigraph \implies $\chi'_L(G) = \chi'(G)$ and $\chi'(G) \le \chi'_F(G) + 1$