Circular Orderings of Matroids

JAN VAN DEN HEUVEL

joint work with Stéphan Thomassé

Department of Mathematics

London School of Economics and Political Science

Matroids – the basics

- lacktriangleright matroid \mathcal{M} with ground set E and independent subsets \mathcal{I}
 - empty set is independent
 - subsets of independent sets are again independent
 - "exchange property"

best example for today

- start with a connected graph G
 - **E**: edge set of *G*
 - z : subsets of edges without a cycle

Matroids – the basics

- **rank** r(A): size of largest independent subset of A
 - A dependent $\Leftrightarrow r(A) < |A|$
- **base**: maximal independent set
 - all bases have the same size rank of matroid r = r(E)
- **circuit**: minimal dependent set

for the graphical matroid

- **base**: spanning tree
- \blacksquare rank = |V(G)| 1
- **circuit**: cycle

The main property we need

- **take** A independent and $x \in E \setminus A$
- \blacksquare consider A + x

then either

 \blacksquare A + x is still independent

or

- \blacksquare A + x is dependent, and then
 - there is a unique circuit $C \subseteq A + x$
 - for all $c \in C$: (A + x) c is independent

Linear ordering of two bases

 \blacksquare take two disjoint bases B and B'

then

- we can order the elements of B as b_1, b_2, \ldots, b_r and the elements of B' as b'_1, b'_2, \ldots, b'_r
- so that in the total sequence $b_1, b_2, \ldots, b_r, b'_1, b'_2, \ldots, b'_r$: each r consecutive elements are independent

$$B$$
 B' $b_1 b_2 \cdots b_r b'_1 b'_2 \cdots b'_r$

Circular ordering of two bases

- **there exists**: a sequence $b_1, b_2, \ldots, b_r, b'_1, b'_2, \ldots, b'_r$ in which each r consecutive elements are independent
- question (Gabov, 1976)
 can we form a circular ordering with the same property?

Circular ordering of bases

- there exists: a sequence $b_1, b_2, \ldots, b_r, b'_1, b'_2, \ldots, b'_r$ in which each r consecutive elements are independent
- question (Gabov, 1976)
 can we form a circular ordering with the same property?
 - yes for two spanning trees in a graph
 - open for matroids in general
- linear ordering can easily be extended to more bases
- what about a circular ordering for more than two bases?
 - open for all cases

An easier (?) conjecture

Conjecture

given: k disjoint bases $B^{(1)}, B^{(2)}, \dots, B^{(k)}$ with $B^{(i)} = \{b_1^{(i)}, b_2^{(i)}, \dots, b_r^{(i)}\},$

■ then: there is a circular ordering of all $k \cdot r$ elements

so that: each r consecutive elements are independent

An easier (?) conjecture – cont

we can assume $E = B^{(1)} \cup B^{(2)} \cup \cdots \cup B^{(k)}$ (remove all elements not in one of the bases)

Conjecture again

a matroid with E the disjoint union of k of its bases has a "good" circular ordering

- conjectured by Wiedemann, 1984 (for union of two bases)
 - yes for graph formed by two disjoint spanning trees
 - open for all other cases

Towards a more general conjecture

- does every matroid have a "good" circular ordering?
- **no**, things go wrong if there is a subset $A \subseteq E$ so that $\frac{|A|}{r(A)} > \frac{|E|}{r}$

then: for each circular ordering of E

- there are r consecutive elements that contain more than r(A) elements from A
- those r consecutive elements contain a dependent subset
- and hence those r consecutive elements are dependent themselves

The general conjecture

Conjecture (Kajitani et al, 1988)

- \blacksquare given: matroid \mathcal{M} with ground set E and rank r
- then: there is a circular ordering of E so that each r consecutive elements are independent

$$\Leftrightarrow$$

for all
$$A \subseteq E$$
: $\frac{|A|}{r(A)} \le \frac{|E|}{r}$

Theorem

 \blacksquare this is true if |E| and r are co-prime

The general conjecture – revisited

for all
$$A \subseteq E$$
: $\frac{|A|}{r(A)} \le \frac{|E|}{r}$
 \Leftrightarrow ? there is a "good" circular ordering

- a "good" circular ordering is equivalent to
 - there exists a circular ordering of |E| bases such that
 - two consecutive bases differ in one element
 - each element appears in a list of consecutive bases
 - each element appears in *r* bases

Theorem

we can guarantee this for any two of the three properties

A different kind of circular ordering

- **S** $_{\alpha}$: circle with circumference α ($\alpha \in S$, $\alpha > 0$) think: interval $[0, \alpha)$ with a circular ordering
- we want to map the elements E of \mathcal{M} to S_{α} so that:
 - for every unit interval [a, a+1) of S_{α} : the elements mapped into that interval are independent

 \blacksquare circular arboricity of \mathcal{M} , $\Upsilon_{\mathcal{C}}(\mathcal{M})$:

minimum α for which this is possible

A bound on the circular arboricity

- \blacksquare we must have for every subset $A \subseteq E$:
 - \blacksquare an independent set has at most r(A) elements from A
 - so every unit interval of S_{α} can have

at most r(A) elements from A

- so we need $\alpha \geq \frac{|A|}{r(A)}$
- and hence $\Upsilon_{C}(\mathcal{M}) \geq \max_{A \subseteq E} \frac{|A|}{r(A)}$

Conjecture (Gonçalves):
$$\Upsilon_{C}(\mathcal{M}) = \max_{A \subseteq E} \frac{|A|}{r(A)}$$

It's a Theorem!!

Integral arboricity

Theorem (Nash-Williams, 1964; Edmonds, 1964)

• if:
$$K \ge \left[\max_{A \subseteq E} \frac{|A|}{r(A)}\right]$$
, for some $K \in \mathbb{N}$

then: E can be partitioned

into K disjoint independent sets

■ this means:
$$\Upsilon_{C}(\mathcal{M}) \leq \left[\max_{A\subseteq E} \frac{|A|}{r(A)}\right]$$

also provides polynomial time algorithm to find $\max_{A \subseteq E} \frac{|A|}{r(A)}$

Fractional arboricity

- circular arboricity can be considered as some kind of "fractional" arboricity
- a more natural fractional arboricity concept is the solution to the following LP-problem:
 - \mathbf{x}_{J} : real-valued variable for an independent set \mathbf{J}
 - $\blacksquare \quad \text{minimise}: \quad \sum_{J \in \mathcal{I}} x_J$

such that: $\forall e \in E$: $\sum_{J \ni e} x_J \ge 1$ $\forall J$: $x_J \ge 0$

folklore: this minimum is equal to $\max_{A\subseteq E} \frac{|A|}{r(A)}$

Quick proof of the fractional arboricity

- form M^Q: replace each element by Q parallel elements
- Edmonds:

 $\mathcal{M}^{\mathbb{Q}}$ can be covered with P disjoint independent sets

- so P independent sets covering each element Q times
- = set $x_J = 1/Q$ for these independent sets

Points and intervals on a circle

$$\blacksquare \quad \forall \, \alpha \geq \max_{A \subseteq E} \frac{|A|}{r(A)} \quad \Rightarrow \quad$$

- there is a mapping $\varphi : E \longrightarrow S_{\alpha}$
- so that for every unit interval [a, a+1) of S_{α} : the elements mapped into that interval are independent

equivalent conclusion:

- there is a mapping $\varphi^* : E \longrightarrow S_{\alpha}$
- so that for every element $x \in S_{\alpha}$:

the elements e whose unit intervals

$$[\varphi^*(e), \varphi^*(e) + 1)$$
 contain x are independent

A weighted variant

- \blacksquare suppose we are given non-negative weights $\omega(e)$
- we want to map the elements E to intervals $[\varphi^*(e), \varphi^*(e) + \omega(e))$ on S_{α} so that:
 - for every point $x \in S_{\alpha}$: the elements whose intervals contain x are independent
- weighted circular arboricity of \mathcal{M} , $\Upsilon_{\mathcal{C}}(\mathcal{M}, \omega)$:

 minimum α for which this is possible
- obvious lower bound again: $\Upsilon_C(\mathcal{M},\omega) \geq \max_{A\subseteq E} \frac{\sum\limits_{a\in A}\omega(a)}{r(A)}$

Weighted arboricity

Theorem

■ any matroid \mathcal{M} and non-negative weight $\omega : E \longrightarrow \mathbb{R}^+$:

$$\Upsilon_{C}(\mathcal{M},\omega) = \max_{A\subseteq E} \frac{\sum\limits_{a\in A}\omega(a)}{r(A)}$$

all other results so far follow by taking appropriate weights

A little about the proof of the weighted case

- to prove: $\alpha \geq \max_{A \subseteq E} \left[\sum_{a \in A} \omega(a) / r(A) \right] \Rightarrow$
 - there is a mapping $\varphi^* : E \longrightarrow S_{\alpha}$
 - so that for every point $x \in S_{\alpha}$: the elements e whose intervals $[\varphi^*(e), \varphi^*(e) + \omega(e))$ contain x are independent
- start of proof
 - lacktriangle we can assume lpha and weights are integers
 - can be seen as a problem about $\omega(e)$ consecutive positions on the "discrete" cycle \mathbf{Z}_{α}
 - use induction on $\sum_{e \in E} \omega(e)$