A General Approach to Distance-Two Colouring of Graphs

JAN VAN DEN HEUVEL

based on joint work with OMID AMINI & LOUIS ESPERET and FRÉDÉRIC HAVET, COLIN McDIARMID & BRUCE REED

Department of Mathematics London School of Economics and Political Science

The basics of graph colouring

- **graph** G = (V, E): finite, simple, undirected
- vertex-colouring with k colours:
 adjacent vertices receive different colours
- **chromatic number** $\chi(G)$: minimum k so that a vertex-colouring exists
- list vertex-colouring: as vertex-colouring, but each vertex v has its own list L(v) of colours
- **choice number** ch(G): minimum k so that if $|L(v)| \ge k$, then a proper list vertex-colouring exists

Easy and not-so-easy facts

- **vertex degree** $d_G(v)$: number of vertices adjacent to v
- **maximum degree** $\Delta(G)$, or just Δ

Easy fact

 $1 \le \chi(G) \le ch(G) \le \Delta(G) + 1$ (and all inequalities can be arbitrarily far off)

Far from easy facts (Appel & Haken, 1977; Thomassen, 1994)

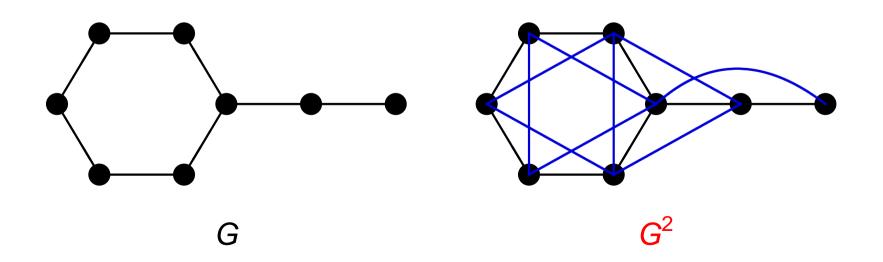
■ G planar $\implies \chi(G) \le 4$, $ch(G) \le 5$

Another way to look at vertex-colouring

- vertex-colouring:
 vertices at distance one must receive different colours
- suppose we require vertices at larger distances to receive different colours as well
- for today we only look at distance two
- yet another way to look at this:
 - vertex-colouring:
 vertices in all P₂
 must get two colours
 - colouring at distance two:
 vertices in all P_3 must get three colours

The square of a graph

- distance-two colouring can be modelled using the square G² of a graph:
 - same vertex set as G
 - edges between vertices with distance at most 2 in G
 (= are adjacent or have a common neighbour)



Colouring the square of a graph

Easy facts

and

lacksquare $\Delta(G^2) \leq \Delta(G)^2$, so $\chi(G^2) \leq \Delta(G)^2 + 1$

Question

- is the upper bound relevant?
- there are at most 4 graphs with $\chi(G^2) = \Delta(G)^2 + 1$
- and infinitely many graphs with

$$\chi(G^2) = \Delta(G)^2 - \Delta(G) + 1$$

The square of planar graphs

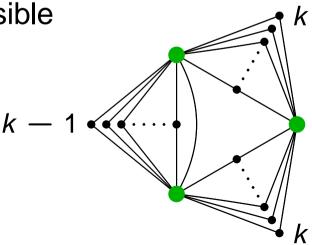
Conjecture (Wegner, 1977)

■ G planar

$$\Rightarrow \chi(G^2) \leq \begin{cases} 7, & \text{if } \Delta = 3\\ \Delta + 5, & \text{if } 4 \leq \Delta \leq 7\\ \lfloor \frac{3}{2} \Delta \rfloor + 1, & \text{if } \Delta \geq 8 \end{cases}$$

bounds would be best possible

case
$$\Delta = 2 k > 8$$
:



What is known for large Δ

G planar \Longrightarrow

$$\chi(G^2) \le 2\Delta + 25$$
 (vdH & McGuinness, 2003)

$$\chi(G^2) \leq \left\lceil \frac{9}{5} \Delta \right\rceil + 1 \text{ (for } \Delta \geq 47 \text{)}$$
(Borodin, Broersma, Glebov & vdH, 2001)

$$\chi(G^2) \leq \left\lceil \frac{5}{3} \Delta \right\rceil + 24 \text{ (for } \Delta \geq 241 \text{)}$$
(Molloy & Salavatipour, 2005)

First new results

Theorem

■ G planar $\implies \chi(G^2) \le \left(\frac{3}{2} + o(1)\right) \Delta \qquad (\Delta \to \infty)$

we actually prove the list-colouring version:

- for all $\varepsilon > 0$ there exists a Δ_{ε} so that if $\Delta \geq \Delta_{\varepsilon}$:
 - G a planar graph with maximum degree △
 - all lists L(v) satisfy $|L(v)| \ge (\frac{3}{2} + \varepsilon) \Delta$
- \longrightarrow there exists a proper colouring of G^2 , so that
 - \blacksquare each vertex v gets a colour from its own list L(v)
- the proof does not give an algorithm

Beyond planar?

- \blacksquare a graph H is a minor of a graph G:
 - H can be obtained from G by sequence of
 - vertex removals
 - edge removals
 - edge contractions
- otherwise: G is H-minor free

Well-known (Kuratowski, Wagner)

■ G planar \iff G is K_5 -minor free and $K_{3,3}$ -minor free

Beyond planar!

Theorem

 \blacksquare graph G $K_{3,k}$ -minor free for some fixed k

$$\implies ch(G^2) \leq (\frac{3}{2} + o(1)) \Delta$$

Question

what is the best upper bound for $ch(G^2)$ if G is H-minor free for some fixed graph H? (in the talk I conjectured that always $ch(G^2) \leq \frac{3}{2} \Delta + c_H$, but

that is false)

Property

graph G H-minor free for some fixed graph H

$$\implies ch(G^2) \leq C_H \Delta$$
 for some fixed constant C_H

The clique number

- **clique number** $\omega(G)$: maximum size of a clique in G
- lacksquare obvious that $\omega(G) \leq \chi(G)$

Corollary

 \blacksquare graph G $K_{3,k}$ -minor free for some fixed k

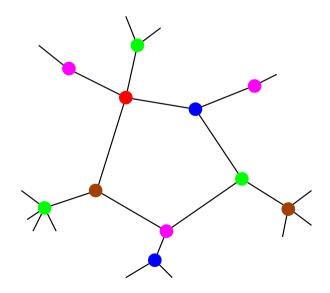
$$\implies \omega(G^2) \leq \left(\frac{3}{2} + o(1)\right) \Delta$$

Theorem

■ G planar $\Longrightarrow \omega(G^2) \leq \frac{3}{2}\Delta + O(1)$

A related (?) problem

- plane graph: planar graph with a given embedding
- **cyclic colouring** of a plane graph:
 - vertex-colouring so that
 - vertices incident to the same face get a different colour



A related (?) problem

- plane graph: planar graph with a given embedding
- **cyclic colouring** of a plane graph:
 - vertex-colouring so that
 - vertices incident to the same face get a different colour
- **cyclic chromatic number** $\chi^*(G)$: minimum number of colours needed for a cyclic colouring
- $\triangle^*(G)$: size of largest face of G

Easy fact

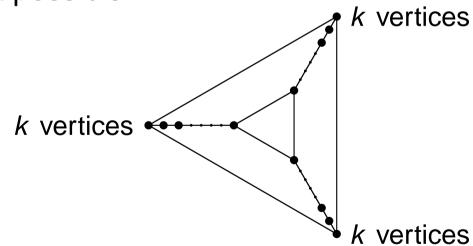
 \blacksquare G plane graph $\implies \chi^*(G) \ge \Delta^*(G)$

Conjecture for the related(?) problem

Conjecture (Borodin, 1984)

■ G plane graph $\implies \chi^*(G) \leq \frac{3}{2} \Delta^*(G)$

bound would be best possible



case $\Delta^* = 2k$:

Bounds on the cyclic chromatic number

G plane graph \Longrightarrow

(Ore & Plummer, 1969)

(Borodin, Sanders & Zhao, 1999)

(Sanders & Zhao, 2001)

Theorem

G plane graph

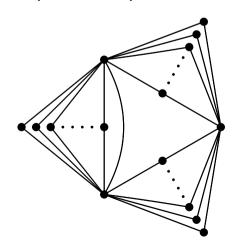
$$\implies \chi^*(G) \leq \left(\frac{3}{2} + o(1)\right) \Delta^* \quad (\Delta^* \to \infty)$$

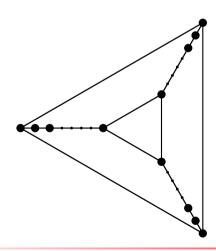
(in fact, we again proved the list-colouring version)

Are the problems the same?

colouring square of planar graphs vs cyclic colouring of plane graphs

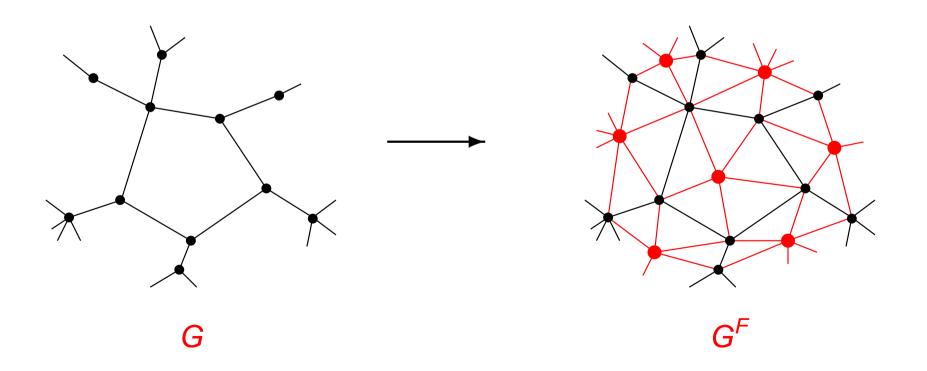
- similar conjectured upper bounds: $\frac{3}{2}\Delta + 1$ vs $\frac{3}{2}\Delta^*$
- similar known bounds, like: $\frac{5}{3}\Delta + 24$ vs $\frac{5}{3}\Delta^*$
- similar ("dual") extremal graphs:



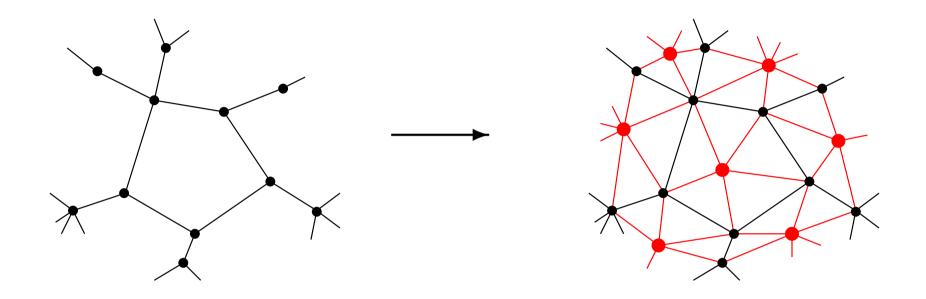


From cyclic colouring to "square" colouring

- \blacksquare given a plane graph G, form new graph G^F by
 - adding a vertex in each face
 - adding edges from new vertex to all vertices of the face



From cyclic colouring to "square" colouring



- colouring the square of the new graph will give cyclic colouring of original graph
 - but also colours the faces (not asked for, but o.k.)
 - and degrees of old vertices may be more than $\Delta^*(G)$ (serious problem)

So close, yet not the same

how to combine the two concepts?

idea: do not treat all vertices equal:

- some vertices need to be coloured
- some vertices determine distance two
- vertices can be of both types
 - as are all vertices when colouring the square
- or the types can be disjoint
 - as for "faces" and "vertices" for cyclic colouring
- or anything in between

Formalising our clever little idea

- **given**: graph G, subsets $A, B \subseteq V(G)$
- \blacksquare (A, B)-colouring of G: colouring of vertices in B so that
 - adjacent vertices get different colours
 - vertices with a common neighbour in A
 get different colours
- list (A, B)-colouring of G:
 - similar, but each vertex in B has its own list
- $\chi(G; A, B) / ch(G; A, B)$:
 minimum number of colours needed /
 minimum size of each list needed

The first baby steps

- $\chi^*(G) = \chi(G^F; \text{"faces"}, \text{"vertices"})$

- relevant "degree": $d_B(v)$ = number of neighbours in B
- "maximum degree":

$$\Delta(G; A, B) = \text{maximum of } d_B(v) \text{ over all } v \in A$$

Easy fact

$$\Delta(G; A, B) \leq \chi(G; A, B) \leq ch(G; A, B)$$

$$\leq \Delta(G) + \Delta(G; A, B) \cdot (\Delta(G; A, B) - 1) + 1$$

The obvious(?) conjecture & results

Conjecture

■ G planar, $A, B \subseteq V(G)$, $\Delta(G; A, B)$ large enough

$$\implies$$
 $ch(G; A, B) \leq \frac{3}{2} \Delta(G; A, B) + 1$

Theorem

 \blacksquare G planar, $A, B \subseteq V(G)$

$$\implies ch(G; A, B) \leq (\frac{3}{2} + o(1)) \Delta(G; A, B)$$

Corollary

(asymptotic list version of Wegner's and Borodin's Conjecture)

- G planar $\implies ch(G^2) \le (\frac{3}{2} + o(1)) \Delta(G)$
- G plane graph $\implies ch^*(G) \leq (\frac{3}{2} + o(1)) \Delta^*(G)$

Sketch of the proof of square of planar graph

uses induction on the number of vertices

- 2-neighbour: vertex at distance one or two
- $d^2(v)$: number of 2-neighbours of v= number of neighbours of v in G^2
- we would like to remove a vertex v with $d^2(v) \leq \frac{3}{2} \Delta$
 - but that can change distances in G V
- contraction to a neighbour u will solve the distance problem
 - but may increase maximum degree if $d(u) + d(v) > \Delta$
- easy induction possible if there is an edge uv with $d(u) + d(v) \le \Delta$ and $d^2(v) \le \frac{3}{2} \Delta$

When easy induction is not possible

- **S**, **small** vertices: degree at most some constant **C**
- B, big vertices: degree more than C
- **H**, huge vertices: degree at least $\frac{1}{2}\Delta$
 - small vertices have a least two big neighbours
- a planar graph has fewer than 3|V| edges and fewer than 2|V| edges if it is bipartite
 - $\blacksquare \implies \text{ all but } O(|V|/C) \text{ vertices are small}$
 - $\blacksquare \implies \text{ fewer than } 2 |B| \text{ vertices in } V \setminus B$

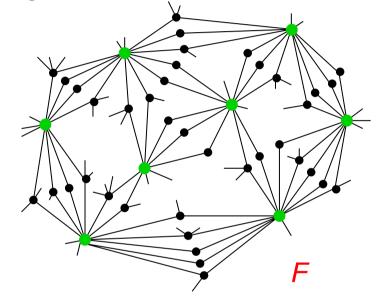
have more than two neighbours in B

- **so**: "most" vertices are small
- and these have exactly two big neighbours in fact huge

The structure so far

there is a subgraph F of G looking like:

- green vertices Xhave degree at least $\frac{1}{2}\Delta$
- black vertices Y have degree at most C



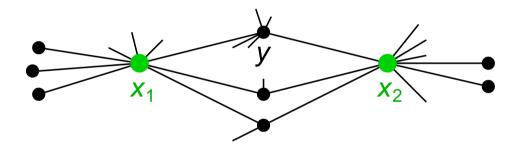
all other neighbours of Y-vertices are also small

we can guarantee additionally:

- only "few" edges from X to rest of G
- F satisfies "some edge density condition"

The other induction step

- remove the vertices from Y (using contraction)
- colour the smaller graph (which is possible by induction)
- what to do with the uncoloured Y-vertices?



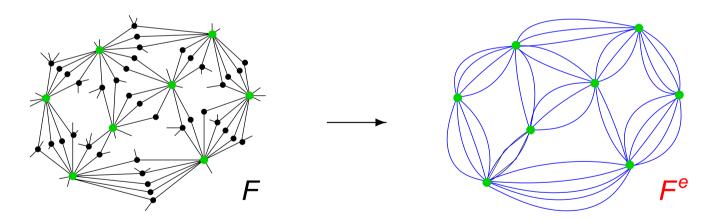
- y has
 - a "lot" of 2-neighbours in Y via x₁, x₂
 - at most C² other 2-neighbours in Y
 - at most $(d_G(x_1) d_F(x_1)) + (d_G(x_2) d_F(x_2))$ 2-neighbours outside Y via x_1 , x_2
 - at most C² other 2-neighbours outside Y

Transferring to edge-colouring

so a vertex y from Y has at least

$$\left(\frac{3}{2} + \varepsilon\right) \Delta - \left(d_G(x_1) - d_F(x_1)\right) - \left(d_G(x_2) - d_F(x_2)\right) - C^2$$
colours still available

 \blacksquare colouring Y is like colouring edges of the multigraph F^e :



but ... there may be up to \mathbb{C}^2 extra connections from an edge in \mathbb{F}^e to other edges in \mathbb{F}^e

Edge-colouring multigraphs

- $\chi'(G)$: chromatic index of multigraph G
- ch'(G): list chromatic index of multigraph G
- $\chi_F'(G)$: fractional chromatic index of multigraph G

Theorem (Kahn, 1996, 2000)

■ G multigraph, with △ large enough

$$\implies$$
 $ch'(G) \approx \chi'(G) \approx \chi'_F(G)$

in fact, Kahn's proofs provide something much more general

Kahn's result

Theorem (Kahn, 2000)

for $0 < \delta < 1$, $\alpha > 0$ there exists $\Delta_{\delta,\alpha}$ so that if $\Delta \geq \Delta_{\delta,\alpha}$:

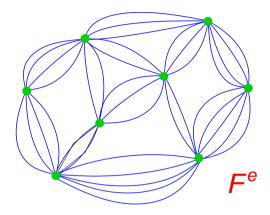
- G a multigraph with maximum degree △
- \blacksquare each edge e has a list L(e) of colours so that
 - for all edges e: $|L(e)| \ge \alpha \Delta$
 - for all vertices v: $\sum_{e \ni v} |L(e)|^{-1} \le 1 \cdot (1 \delta)$
 - for all $K \subseteq G$ with $|V(K)| \ge 3$ odd:

$$\sum_{e \in E(K)} |L(e)|^{-1} \le \frac{1}{2} (|V(K)| - 1) \cdot (1 - \delta)$$

■ then there exists a proper colouring of the edges of *G*so that each edge gets colours from its own list

Kahn's approach for our case

we have a multigraph F^e:



so that each edge $e = x_1x_2$ has a list L(e) of at least

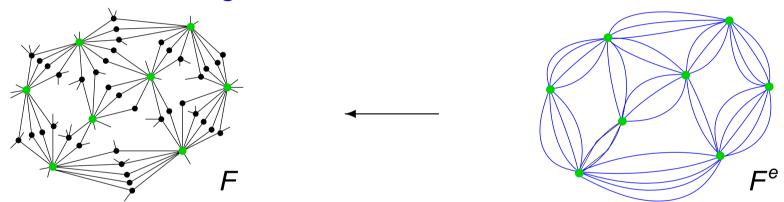
$$(\frac{3}{2} + \varepsilon) \Delta - (d_G(x_1) - d_F(x_1)) - (d_G(x_2) - d_F(x_2)) - C^2$$
colours

and F^e satisfies "some edge density condition"

Extending Kahn's approach

these conditions guarantee that Kahn's conditions are satisfied for F^e

■ ⇒ we can edge-colour F^e



- we can colour the Y-vertices in F
 choosing from the left-over colours for each
- also: we found a way to deal with the up to C^2 extra connections from an edge in F^e to other edges in F^e

Some open problems

prove the next step:

G planar
$$\implies \chi(G^2) \leq \frac{3}{2}\Delta + O(1)$$

what can be said about (A, B)-colourings if the sets A and/or B have some structure?

Theorem

■ G planar, $A, B \subseteq V(G)$ vertices in A have mutual distance at least three

$$\implies$$
 $ch(G; A, B) < \Delta(G; A, B) + 5$

The problem for small Δ

for G planar, $\Delta \leq 3$ we know:

- $\chi(G^2) \le 7$ (Thomassen, 2007) $ch(G^2) < 8$ (Cranston & Kim, 2006)
- what is the right upper bound for $ch(G^2)$ in this case?

■ Wegner's Conjecture for G planar, $4 \le \Delta \le 7$:

$$\chi(G^2) \leq \Delta + 5$$

almost nothing is known in this case

Colouring the square and edge-colouring

- is there some deep relation between edge-colouring multigraphs and colouring the square of graphs?
- our proof uses edge-colouring to answer questions on colouring the square
- Theorem (Shannon, 1949) for any multigraph $G \implies \chi'(G) \leq \frac{3}{2} \Delta$
- Conjecture 2 (Kostochka & Woodall, 2001) for any graph $G \implies ch(G^2) = \chi(G^2)$

Two very general, and very similar, conjectures

Conjecture 1 (Vizing, 1975)

for any multigraph $G \implies ch'(G) = \chi'(G)$

Conjecture 2 (Kostochka & Woodall, 2001)

- Conjecture 1 is known for bipartite graphs (Galvin, 1995)
- Conjecture 2 is known for outerplanar graphs with $\Delta \geq 6$
 - but only since we know both $\chi(G^2)$ and $ch(G^2)$ (Wang & Lih; Hetherington & Woodall, 2008)
- can we prove Conjecture 2 for some other classes of graphs?