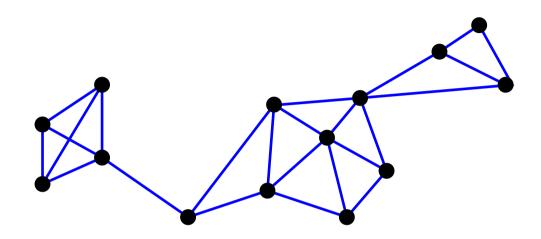
The External Network Problem and the Source Location Problem

JAN VAN DEN HEUVEL joint work with MATTHEW JOHNSON

Simple model of communication networks



- communication goes over paths along links
- communication should be possible between

all/some pairs of nodes

- links or nodes can fail
 - network should be able to survive after a few failures

General problem

Given:

- existing network
- with certain communication requirements
- and a minimum required measure of reliability

Task:

- if necessary, change the network
- to guarantee required reliability

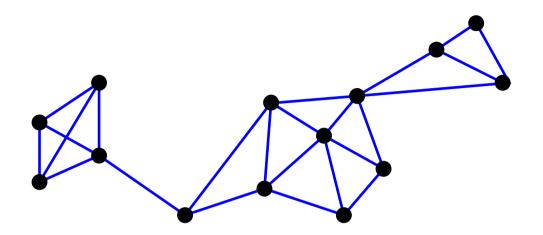
Constraints:

- only certain type of changes allowed
- must be done minimising "cost"

Elements to consider

- type of communication required
- undirected / directed links (edges / arcs)
- node and/or link failure and measure of reliability:
 - vertex connectivity and/or edge/arc connectivity
- how is cost determined
 - today: all changes equal cost: minimise number
- what type of changes can be made to the network
- cost of computing optimal/approximate solutions

Well-studied problem: edge/arc augmentation



- how many edges need to be added to make this graph, say, 3-edge-connected?
- and what if we would like to make it 4-vertex-connected?

New problem: External Connectivity

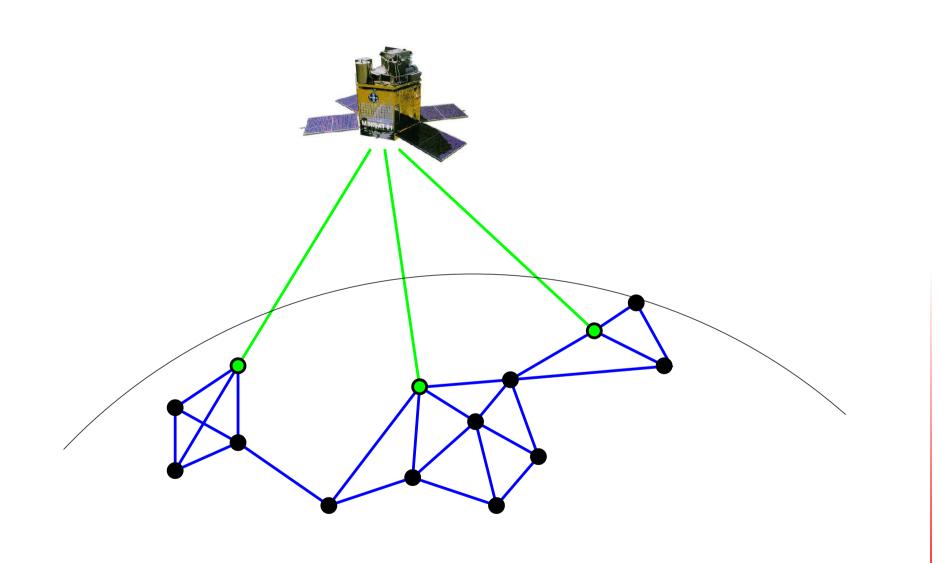
- suppose it is not possible to add edges or arcs
 - adding links may be too expensive
 - many wireless networks can only form links if nodes are within a certain distance

instead:

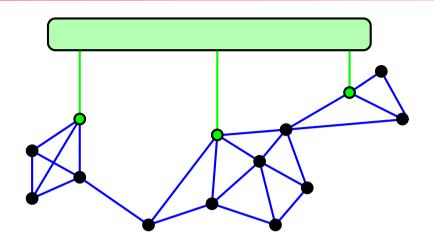
- an external network can be used
- cost is involved for

each node that connects to the external network

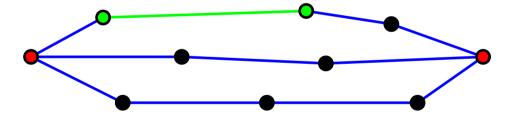
Example: wireless network with satellite



Using the external network – assumptions



paths can use external links



external links can work as arc in both directions

- external network never fails and has sufficient capacity
- fixed cost per node that connects to the external network

Related problem: Source Location (Ito et al.)

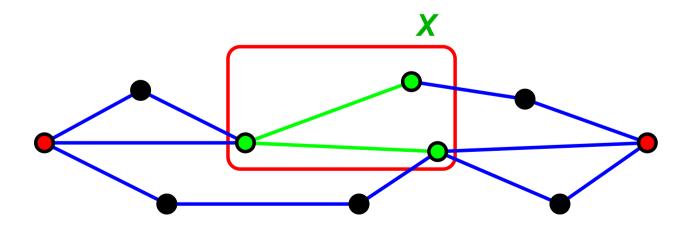
- certain set of nodes must be chosen: the Sources
- all other nodes must be able to communicate with at least one source with a certain guaranteed reliability
 - i.e., minimum required number of vertex/edge/arc disjoint paths to at least one source
- fixed cost per node to make it a source

Undirected network & edge-connectivity - UE

External Network problem

Given: undirected graph G = (V, E) and positive integer k

Task: find set $X \subseteq V$ of minimum order so that between any pair of vertices there are k edge-disjoint paths where vertices in X are considered pairwise connected

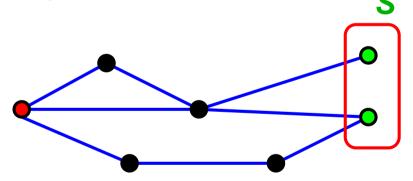


UE – Undirected network & edge-connectivity

Source Location problem

Given: undirected graph G = (V, E) and positive integer k

Task: find set $S \subseteq V$ of minimum order so that there are k edge-disjoint paths between any vertex and S



for this case the External Network problem and the Source Location problem are equivalent

UE – Solving the Source Location problem

- for $T \subseteq V$:
 - **d**(T): number of edges between T and $V \setminus T$
 - T is k-deficient: d(T) < k
- every k-deficient set should contain at least one source

Theorem (Ito et al.)

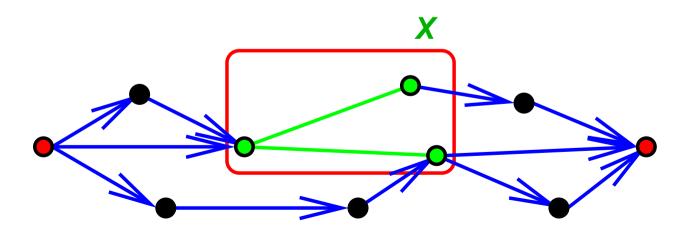
- min { order of set of sources for G }= max { number of disjoint k-deficient sets in G }
- plus: polynomial algorithm to find minimum set of sources
- also solves External Network problem for this instance

Directed network & arc-connectivity - DA

External Network

Given: directed graph G = (V, E) and positive integer k

Task: find set $X \subseteq V$ of minimum order so that between any pair of vertices there are k arc-disjoint directed paths where vertices in X are considered pairwise connected

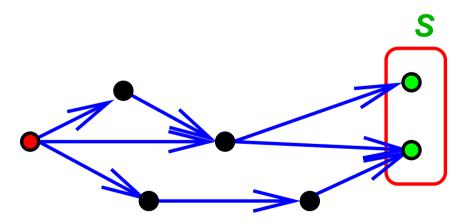


DA – Directed network & arc-connectivity

Source Location

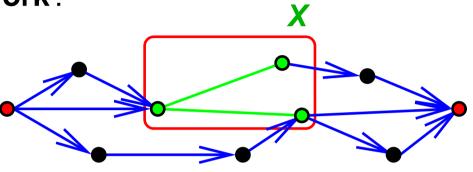
Given: directed graph G = (V, E) and positive integer k

Task: find set $S \subseteq V$ of minimum order so that there are k arc-disjoint directed paths from any vertex to S

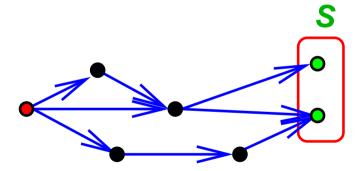


DA – Comparing the two problems

External Network:



Source Location:



this version of External Network and Source Location are not equivalent

DA – A stronger Source Location problem

- for equivalence we would need Source Location to be:
 - k arc-disjoint paths from any vertex to S and
 - k arc-disjoint paths from S to any vertex

Generalised Source Location

Given: directed graph G = (V, E), positive integers k and m

Task: find set $S \subseteq V$ of minimum order so that there are

k arc-disjoint directed paths from any vertex to S

and m arc-disjoint directed paths from S to any vertex

case k = m is equivalent to External Network problem

DA - Solving the one-sided Source Location problem

- for $T \subset V$:
 - $d^+(T)$: number of arcs from T to $V \setminus T$
 - T is k-out-deficient: $d^+(T) < k$
- every k-out-deficient set should contain at least one source

Theorem (Ito et al.)

- min { order of set of sources for D }
 = max { number of disjoint k-out-deficient sets in D }
- but: proof gives no efficient (polynomial in |V|) algorithm!

UE – Sketch of proof for undirected case

Task: find minimum set $S \subseteq V$ so that there are k edge-disjoint paths between any vertex and S

equivalent to: S needs to cover every k-deficient set

critical set: minimal (for set inclusion) *k*-deficient set

- hence equivalent to: S needs to cover every critical set
- fairly easy to prove: all critical sets are disjoint
- immediately gives: min { order of set of sources for G }
 - = max { number of disjoint k-deficient sets in G }

DA - Different for the directed case

Task: find minimum set $S \subseteq V$ so that there are k directed arc-disjoint paths from any vertex to S

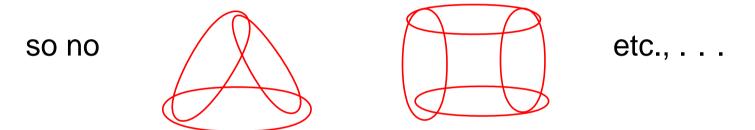
equivalent to: S needs to cover every k-out-deficient set

out-critical set: minimal (for set inclusion) k-out-deficient set

- so equivalent to: S needs to cover every out-critical set
- but . . .
 - out-critical sets need not be disjoint!
 - in fact, there can be exponentially many out-critical sets

DA – Structure of out-critical sets

- the collection of out-critical sets satisfies:
 - overlapping out-critical sets can't form cycles
 in which only consecutive pairs overlap



 C_1, \ldots, C_t a collection of out-critical sets, then:

$$\left[\, orall \, i,j \, : \, C_i \cap C_j \,
eq \, arnothing \,
ight] \implies \bigcap_i \, C_i \,
eq \, arnothing$$
 (Helly property)

such a set system is called a Subtree Hypergraph

DA – Structure of out-critical sets

the Subtree Hypergraph structure allows to prove

but, since the number of out-critical sets can be exponentially large, no efficient algorithm can explore the full structure of the out-critical sets

DA – Result on Source Location

Theorem (vdH & Johnson)

- there exists a polynomial algorithm (in |V|)
 to find a minimum order source set in a directed graph
- proof exploits:
 - the Subtree Hypergraph structure of the out-critical sets
 - \blacksquare it is easy to check if a set $S \subseteq V$ is a set of sources
- at about the same time: similar result found by <u>Bárász</u>, <u>Becker & Frank</u> using a completely different algorithm

A more general setting

```
Given: finite set V collection \mathcal C of subsets of V

Task: find set X\subseteq V of minimum order so that X intersects every subset in \mathcal C (i.e., X is a transversal of \mathcal C)
```

NP-hard in general (dominating set in graphs is an example)

Our result in the more general setting

Theorem (vdH & Johnson) given:

- finite set V and a collection C of subsets of V
 - \blacksquare so that (V, C) is a Subtree Hypergraph
- an **oracle** that for any subset $T \subseteq V$ decides if T is a transversal of C or not

then:

a minimum size transversal of C can be found using at most $O(|V|^3)$ calls to the oracle

DA - More results

Theorems (vdH & Johnson; Bárász, Becker & Frank)

- similar results (min-max relation and polynomial algorithm)
 for
 - External Network problem
 - Generalised Source Location problem

```
( k paths to S, m paths from S)
```

UE & DA – Another equivalent problem

equivalent are:

- External Network problem for some k
- Generalised Source Location problem with k = m
- Given: graph (or directed graph) and positive integer k

Task: add new edges/arcs

so that resulting graph is k-edge/arc-connected

and with the minimum number of vertices

incident with the new edges/arcs

UE & DA – Augmentation and External Network

both: add new edges/arcs

to achieve required edge/arc-connectivity

Edge/Arc Augmentation problem :

task: minimise number of edges/arcs

External Network problem :

task: minimise number of vertices incident

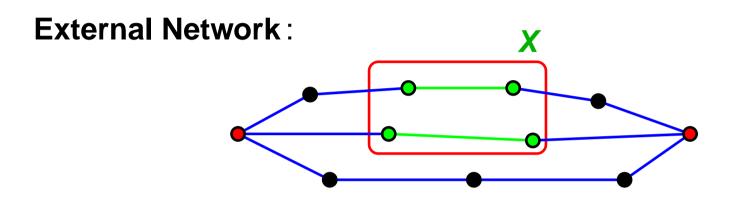
with new edges/arcs

Theorem

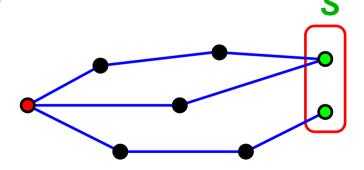
- there exist a set of required edges/arcs minimising both
- such a set can be found in polynomial time

Undirected network & vertex-connectivity - UV

required: k internally vertex-disjoint paths



Source Location:



equivalent?

UV – Undirected network & vertex-connectivity

Theorem (Ito et al.)

minimum Source Location is NP-complete for all $k \geq 3$

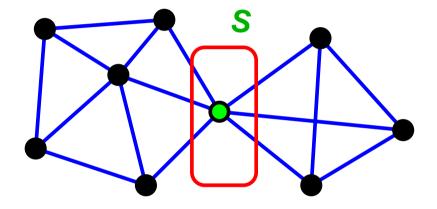
Theorem (vdH & Johnson)

■ minimum External Network problem can be done in polynomial time for $k \le 3$

why the difference?

UV - The double role of sources

 \blacksquare an allowed Source Location solution for k=3:



- this set is useless for the External Network problem for k = 3
- in this setting, finding a small source set is more like finding a "clever" transversal of small cut sets

UV – Another result

for vertex-connectivity, what about larger k?

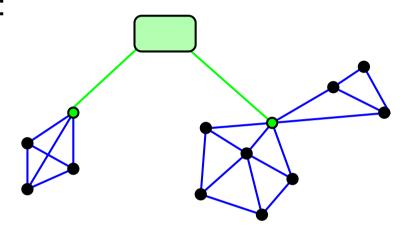
Theorem (vdH & Johnson)

■ External Network problem can be done in polynomial time for fixed k
if G is already (k – 1)-connected

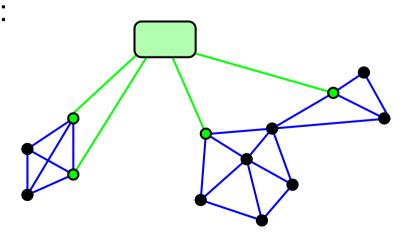
UV – Problems with this result

you can't just go from k-2 to k-1 to k

• optimal for k = 1:



• optimal for k = 2:



Open problems

- is the External Network problem,
 with vertex-connectivity, polynomial for all k?
- what can be done for directed graphs and vertex-connectivity?

Note: this are hard cases for edge/arc augmentation as well

- what if we have non-uniform connectivity requirements?
- or non-uniform costs?