Distance-Two Colouring of Graphs

JAN VAN DEN HEUVEL

joint work with

FRÉDÉRIC HAVET, COLIN McDIARMID & BRUCE REED and with OMID AMINI & LOUIS ESPERET

Department of Mathematics London School of Economics and Political Science

The basics of graph colouring

- vertex-colouring with k colours adjacent vertices must receive different colours
- **chromatic number** $\chi(G)$ minimum k so that a vertex-colouring exists

- list-colouring: as vertex-colouring, but each vertex v has its own list L(v) of colours
- choice number ch(G):

minimum k so that if $|L(v)| \ge k$, then a proper list vertex-colouring exists

Another way to look at vertex-colouring

vertex-colouring:

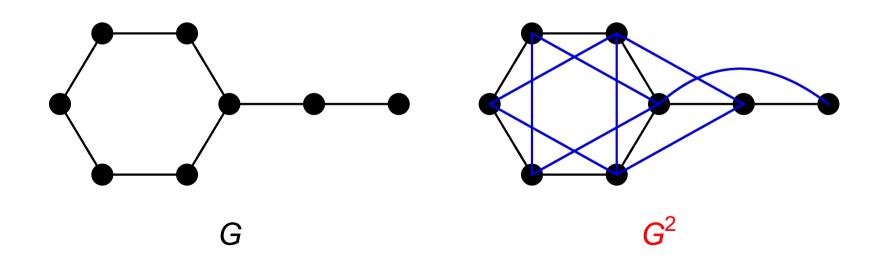
vertices at distance one must receive different colours

suppose we require vertices at larger distances to receive different colours as well

for today we only look at distance two

The square of a graph

- distance-two colouring can be modelled using the square G² of a graph:
 - same vertex set as G
 - edges between vertices with distance at most 2 in G
 (= are adjacent or have a common neighbour)



Colouring the square of a graph

Easy facts

and

$$lacksquare$$
 $\Delta(G^2) \leq \Delta(G)^2$, so $\chi(G^2) \leq \Delta(G)^2 + 1$

(\(\Delta : \text{maximum degree of the graph } \)

about the upper bound:

there are at most 4 graphs with

$$\chi(G^2) = \Delta(G)^2 + 1$$

and infinitely many graphs with

$$\chi(G^2) = \Delta(G)^2 - \Delta(G) + 1$$

The square of planar graphs

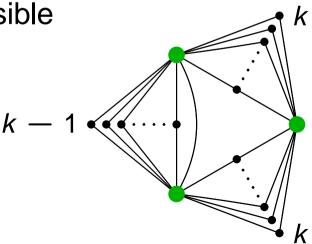
Conjecture (Wegner, 1977)

■ G planar

$$\Rightarrow \chi(G^2) \leq \begin{cases} 7, & \text{if } \Delta = 3 \\ \Delta + 5, & \text{if } 4 \leq \Delta \leq 7 \\ \lfloor 3\Delta/2 \rfloor + 1, & \text{if } \Delta \geq 8 \end{cases}$$

bounds would be best possible

case
$$\Delta = 2 k > 8$$
:



What was known for large Δ

$$G$$
 planar \Longrightarrow

$$\chi(G^2) \le 2\Delta + 25$$
 (vdH & McGuinness, 2003)

$$\chi(G^2) \leq 9/5 \Delta + 1 \text{ (for } \Delta \geq 47 \text{)}$$
(Borodin, Broersma, Glebov & vdH, 2001)

$$\chi(G^2) \le 5/3 \Delta + 24 \text{ (for } \Delta \ge 241 \text{)}$$
(Molloy & Salavatipour, 2005)

First new results

Theorem

■ G planar $\implies \chi(G^2) \le (3/2 + o(1)) \Delta \quad (\Delta \to \infty)$

we actually prove the list-colouring version and for much larger classes of graphs:

Theorem

 \blacksquare graph G $K_{3,k}$ -minor free for some fixed k

$$\implies ch(G^2) \leq (3/2 + o(1)) \Delta$$

Even more general results?

Property

graph G H-minor free for some fixed graph H

$$\implies ch(G^2) \leq C_H \Delta$$
, for some constant C_H

Question

 \blacksquare given H, what is the best C_H for large \triangle ?

e.g.

- for $H = K_{3,k}$ we know $C_{K_{3,k}} = 3/2$
- for $H = K_5$ we have $2 \le C_{K_5} \le 9$
- for $H = K_{4,4}$ we have $C_{K_{4,4}} \ge 7/3$

The clique number

Corollary

 \blacksquare graph G $K_{3,k}$ -minor free for some fixed k

$$\implies \omega(G^2) \leq (3/2 + o(1)) \Delta$$

can be partially improved to

Theorem

G embeddable on a fixed surface S

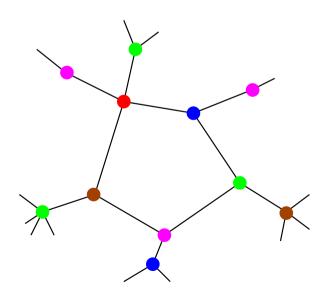
$$\implies \omega(G^2) \leq 3/2\Delta + O(1)$$

Theorem (Cohen & vdH, 2009+)

■ G planar and $\Delta(G) \ge 41 \implies \omega(G^2) \le |3/2\Delta| + 1$

A related (?) problem

- plane graph: planar graph with a given embedding
- **cyclic colouring** of a plane graph:
 - vertex-colouring so that
 - vertices incident to the same face get a different colour



A related (?) problem

- plane graph: planar graph with a given embedding
- **cyclic colouring** of a plane graph:
 - vertex-colouring so that
 - vertices incident to the same face get a different colour
- **cyclic chromatic number** $\chi^*(G)$: minimum number of colours needed for a cyclic colouring
- $\triangle^*(G)$: size of largest face of G

Easy

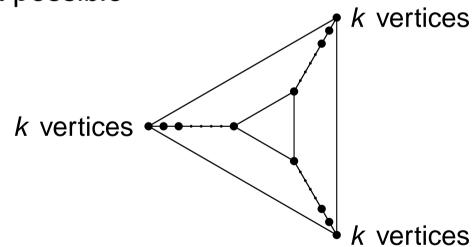
lacksquare G plane graph $\Longrightarrow \chi^*(G) \geq \Delta^*(G)$

Conjecture for the related(?) problem

Conjecture (Borodin, 1984)

■ G plane graph $\implies \chi^*(G) \leq 3/2 \Delta^*(G)$

bound would be best possible



case $\Delta^* = 2 k$:

Bounds on the cyclic chromatic number

G plane graph \Longrightarrow

- (Ore & Plummer, 1969)
- $\chi^*(G) \leq 9/5 \Delta^*(G)$ (Borodin, Sanders & Zhao, 1999)

(Sanders & Zhao, 2001)

Theorem

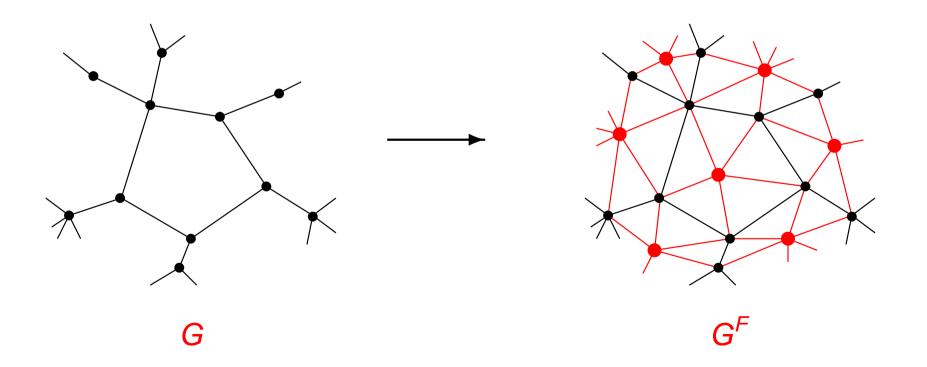
G plane graph

$$\implies \chi^*(G) \leq (3/2 + o(1)) \Delta^* \quad (\Delta^* \to \infty)$$

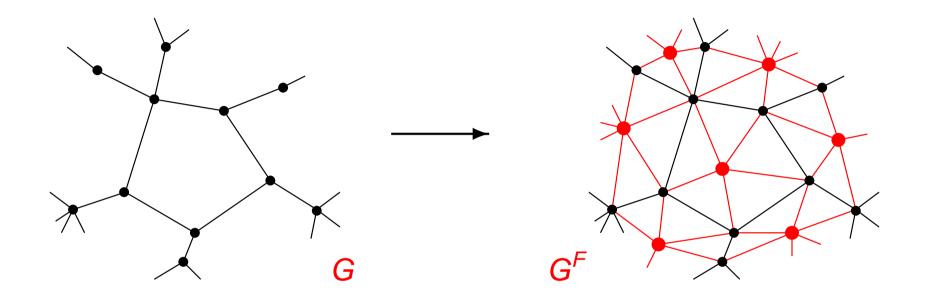
(in fact, we again prove the list-colouring version)

From cyclic colouring to "distance-two" colouring

- \blacksquare given a plane graph G, form new graph G^F by
 - adding a vertex in each face
 - adding edges from new vertex to all vertices of the face



From cyclic colouring to "square" colouring



- \blacksquare colouring the square of G^F gives cyclic colouring of G
 - but also colours the faces (not asked for, but o.k.)
 - and degrees of old vertices may be more than $\Delta^*(G)$ (serious problem)

Both in one go

idea: do not treat all vertices equal:

- some vertices need to be coloured
- some vertices determine distance two
- vertices can be of both types
 - as are all vertices when colouring the square
- or the types can be disjoint
 - as for "faces" and "vertices" for cyclic colouring
- or anything in between

Formalising our clever little idea

- **given**: graph G, subsets $A, B \subseteq V(G)$
- \blacksquare (A, B)-colouring of G: colouring of vertices in B so that
 - adjacent vertices get different colours
 - vertices with a common neighbour in A
 get different colours
- list (A, B)-colouring of G:
 - similar, but each vertex in B has its own list
- $\chi(G; A, B) / ch(G; A, B) :$ minimum number of colours needed / minimum size of each list needed

The first baby steps

- $\chi^*(G) = \chi(G^F; \text{"faces"}, \text{"vertices"})$

- relevant "degree": $d_B(v)$ = number of neighbours in B
- "maximum degree":

$$\Delta(G; A, B) = \text{maximum of } d_B(v) \text{ over all } v \in A$$

Easy

$$\Delta(G; A, B) \leq \chi(G; A, B)$$

$$\leq \Delta(G) + \Delta(G; A, B) \cdot (\Delta(G; A, B) - 1) + 1$$

The obvious(?) conjecture & results

Conjecture

■ G planar, $A, B \subseteq V(G)$, $\Delta(G; A, B)$ large enough

$$\implies \chi(G; A, B) \leq 3/2 \Delta(G; A, B) + 1$$

Theorem

■ G embeddable on a fixed surface S, $A, B \subseteq V(G)$

$$\implies ch(G; A, B) \leq (3/2 + o(1)) \Delta(G; A, B)$$

Corollary

(asymptotic list version of Wegner's and Borodin's Conjecture)

- G planar $\implies ch(G^2) \le (3/2 + o(1)) \Delta(G)$
- G plane graph $\implies ch^*(G) \leq (3/2 + o(1)) \Delta^*(G)$

Sketch of the proof of square of planar graph

uses induction on the number of vertices

- **2-neighbour**: vertex at distance one or two
- $d^2(v)$: number of 2-neighbours of v= number of neighbours of v in G^2
- we would like to remove a vertex v with $d^2(v) \leq 3/2 \Delta$
 - but that can change distances in G V
- contraction to a neighbour u will solve the distance problem
 - but may increase maximum degree if $d(u) + d(v) > \Delta$
- easy induction possible if there is an edge uv with $d(u) + d(v) \le \Delta$ and $d^2(v) \le 3/2 \Delta$

When easy induction is not possible

S, small vertices: degree at most some constant C

B, big vertices: degree more than C

H, huge vertices: degree at least $\frac{1}{2}\Delta$

- small vertices have a least two big neighbours (otherwise for those v: $d^2(v) \le 3/2 \Delta$)
- a planar graph has fewer than 3 | V | edges and fewer than 2 | V | edges if it is bipartite so:
 - \blacksquare all but O(|V|/C) vertices are small
 - fewer than 2 |B| vertices in $V \setminus B$

have more than two neighbours in B

When easy induction is not possible

S, **small** vertices: degree at most some constant **C**

B, big vertices: degree more than C

H, huge vertices: degree at least $\frac{1}{2}\Delta$

SO:

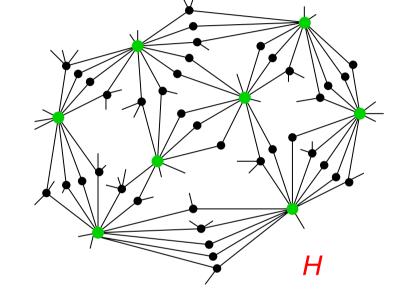
- "most" vertices are small
- and these have exactly two big neighbours

(in fact two huge neighbours)

The structure so far

■ there is a subgraph *H* of *G* looking like:

- green vertices X
 have degree at least ½ △
- black vertices Y have degree at most C



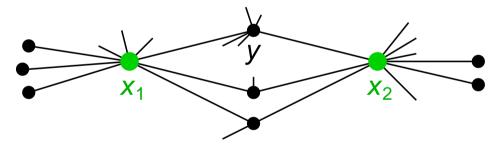
all other neighbours of Y-vertices are also small

inside *H* there is a subgraph *H* which satisfies additionally:

- only "few" edges from X to rest of G
- H satisfies "some edge density condition"

The other induction step

- remove the vertices from Y in H (using contraction)
- colour the smaller graph (can be done by induction)
- in the original graph G:
 what to do with the uncoloured Y-vertices?



- 2-neighbours of y already coloured (i.e., outside Y):
 - at most $(d_G(x_1) d_H(x_1)) + (d_G(x_2) d_H(x_2))$

2-neighbours outside Y via x_1 , x_2

■ at most C² other 2-neighbours outside Y

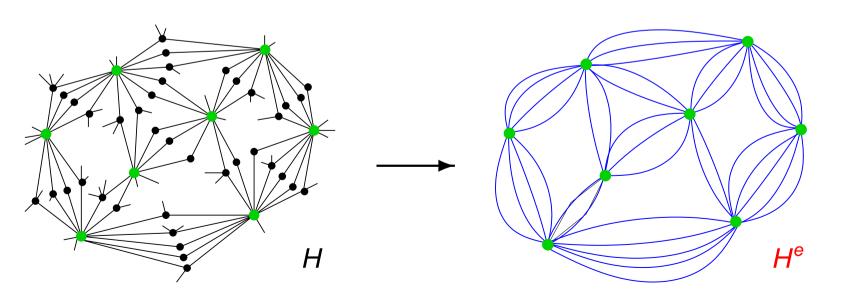
Transferring to edge-colouring

so a vertex y from Y has at least

$$(3/2+\varepsilon)\Delta - (d_G(x_1)-d_H(x_1)) - (d_G(x_2)-d_H(x_2)) - C^2$$
 colours still available

colouring Y is "almost" like

list-colouring edges of the multigraph He:



Edge-colouring multigraphs

- $\chi'(G)$: chromatic index of multigraph G
- ch'(G): list chromatic index of multigraph G
- $\chi'_f(G)$: fractional chromatic index of multigraph G

Theorem (Kahn, 1996, 2000)

■ G multigraph, with △ large enough

$$\implies$$
 $ch'(G) \approx \chi'(G) \approx \chi'_f(G)$

in fact, Kahn's proofs provide something much more general

Kahn's result

Theorem (Kahn, 2000)

for $0 < \delta < 1$, $\alpha > 0$ there exists $\Delta_{\delta,\alpha}$ so that if $\Delta \geq \Delta_{\delta,\alpha}$:

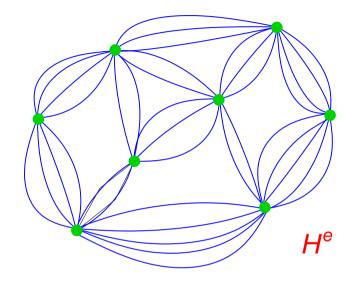
- G a multigraph with maximum degree △
- \blacksquare each edge e has a list L(e) of colours so that
 - for all edges e: $|L(e)| \ge \alpha \Delta$
 - for all vertices v: $\sum_{e \ni v} |L(e)|^{-1} \le 1 \cdot (1 \delta)$
 - for all $K \subseteq G$ with $|V(K)| \ge 3$ odd:

$$\sum_{e \in E(K)} |L(e)|^{-1} \le \frac{1}{2} (|V(K)| - 1) \cdot (1 - \delta)$$

then there exists a proper colouring of the edges of G so that each edge gets colours from its own list

Kahn's approach for our case

we have a multigraph H^e:



so that each edge $e = x_1x_2$ has a list L(e) of at least

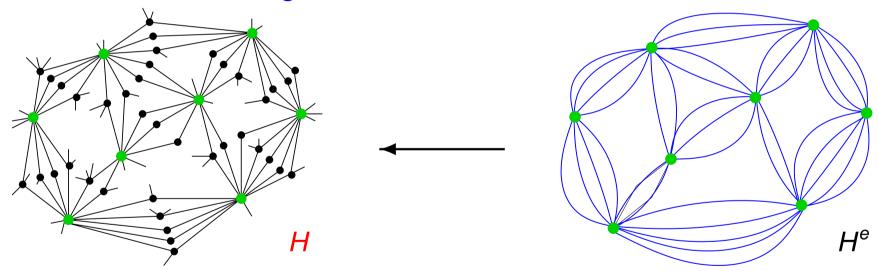
$$(3/2 + \varepsilon) \Delta - (d_G(x_1) - d_H(x_1)) - (d_G(x_2) - d_H(x_2)) - C^2$$
 colours

and H^e satisfies "some edge density condition"

Extending Kahn's approach

these conditions guarantee that Kahn's conditions are satisfied for H^e

 \longrightarrow we can edge-colour H^e



- we can colour the Y-vertices in H
 choosing from the left-over colours for each
- also: we can deal with the "almost" list-edge colouring

Some open problems

prove the next step:

G planar
$$\implies \chi(G^2) \le 3/2 \Delta + O(1)$$

- for G planar, $\Delta \leq 3$ we know:
 - $\chi(G^2) \leq 7$

(Thomassen, 2007)

(Cranston & Kim, 2006)

• what is the right upper bound for $ch(G^2)$ in this case?

■ Wegner's Conjecture for $4 \le \Delta \le 7$:

G planar
$$\implies \chi(G^2) \leq \Delta + 5$$
?

Conjectures, conjectures, ...

List-Square-Colouring Conjecture (Kostochka & Woodall, 2001)

this would imply:

List-Total-Colouring Conjecture

(Borodin, Kostochka & Woodall, 1997)

related (?) to:

List-Edge-Colouring Conjecture (several authors, \approx 1975)