Degrees of Perfectness

JAN VAN DEN HEUVEL

Prague, 28 July 2009

Department of Mathematics

London School of Economics and Political Science

Some good terminology

set system (S, \mathcal{F}) : a finite set S with a collection \mathcal{F} of subsets of S

- a set system is "good" if:
 - F is closed under taking subsets, and
 - F covers all of S

(for all $s \in S$ there is an $F \in \mathcal{F}$ with $x \in F$)

Two important examples

- \blacksquare $G = (V_G, E_G)$ be a graph
 - take S_G the collection of all stable sets (sets containing no adjacent pairs of vertices)
 - then (V_G, S_G) is a good set system
- \lor be a vector space, and \lor a subset of $\lor \setminus \{0\}$
 - lacktriangledown take $m{\mathcal{I}}_{m{U}}$ the collection of all linearly independent subsets of $m{U}$
 - then (U, \mathcal{I}_U) is a good set system

Coverings

 \blacksquare a covering of (S, \mathcal{F}) :

a collection of sets from \mathcal{F} whose union is \mathcal{S}

covering number Cov(S, \mathcal{F}):

the minimum number of elements in a covering

- for a graph G: $Cov(V_G, S_G)$ is the minimum number of stable sets needed to cover all vertices
 - so $Cov(V_G, S_G)$ is just the **chromatic number**

Let's make it look more complicated

the covering number is also the solution of the IP problem:

minimise
$$\sum_{F \in \mathcal{F}} x_F$$

subject to $\sum_{F \ni s} x_F \ge 1$, for all $s \in S$
 $x_F \in \{0, 1, 2, \dots\}$, for all $F \in \mathcal{F}$

The fractional version

removing the integrality condition:

minimise
$$\sum_{F \in \mathcal{F}} x_F$$

subject to $\sum_{F \ni s} x_F \ge 1$, for all $s \in S$
 $x_F > 0$, for all $F \in \mathcal{F}$

- \blacksquare gives the fractional covering number $Cov_f(S, \mathcal{F})$
 - lacktriangleq and we obviously have: $Cov_f(S, \mathcal{F}) \leq Cov(S, \mathcal{F})$

Rule 1 of Linear Programming: dualise

the dual LP problem of the fractional covering number is:

maximise
$$\sum_{s \in S} y_s$$
 subject to $\sum_{s \in F} y_s \le 1$, for all $F \in \mathcal{F}$ $y_s > 0$, for all $s \in S$

- this gives the fractional packing number $Pack_f(S, \mathcal{F})$
 - and by LP-duality: $\operatorname{Pack}_f(S, \mathcal{F}) = \operatorname{Cov}_f(S, \mathcal{F})$

The packing number

- \blacksquare the integral version is the packing number Pack(S, \mathcal{F}):
 - the maximum size |T| of a subset $T \subseteq S$ so that $|T \cap F| \le 1$, for all $F \in \mathcal{F}$
 - i.e.: the maximum size |T| of a subset $T \subseteq S$ so that no two elements of T appear together in a set from \mathcal{F}
- for a graph G: Pack (V_G, S_G) is the maximum size of a set of vertices with no two elements in a stable set
 - \blacksquare so Pack(V_G , S_G) is just the clique number

The status so far

for any good set system (S, \mathcal{F}) we have

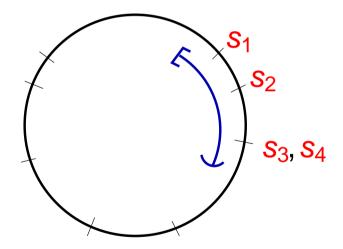
$$\operatorname{Pack}(S, \mathcal{F}) \leq \operatorname{Pack}_f(S, \mathcal{F}) = \operatorname{Cov}_f(S, \mathcal{F}) \leq \operatorname{Cov}(S, \mathcal{F})$$

we will add one more parameter:

the circular covering number $\mathsf{Cov}_c(\mathsf{S}, \mathcal{F})$

The circular covering number

- map the elements of S to a circle so that:
 - for every unit interval [x, x + 1) along the circle elements mapped into that interval form a set from \mathcal{F}

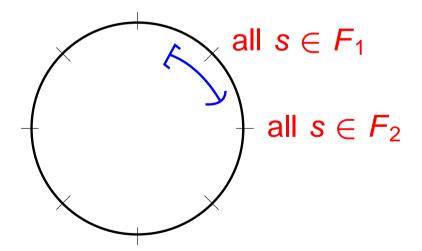


lacktriangledown circular covering number $\mathsf{Cov}_c(\mathcal{S}, \mathcal{F})$:

minimum circumference of a circle for which this is possible

The right place for the circular covering number - I

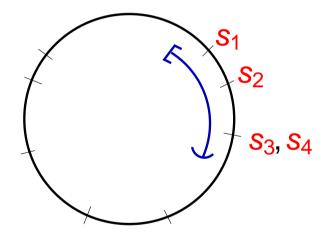
- for a good set system: $Cov_c(S, \mathcal{F}) \leq Cov(S, \mathcal{F})$
 - take a disjoint cover F_1, \ldots, F_k of (S, \mathcal{F})
 - put the elements of each F_i together at unit distance around a circle with circumference k:



gives a circular cover with circumference k

The right place for the circular covering number - II

- for a good set system: $Cov_f(S, \mathcal{F}) \leq Cov_c(S, \mathcal{F})$
 - take a circular cover along a circle



- "move" the unit interval with "unit speed" round the circle
- for a set F that appears in the interval at some point:
 denote by x_F the "length of time" it appears

The right place for the circular covering number - II

- lacktriangle for a good set system: $\operatorname{Cov}_f(\mathcal{S},\mathcal{F}) \leq \operatorname{Cov}_c(\mathcal{S},\mathcal{F})$
 - take a circular cover along some circle
 - for a set F that appears in the interval at some point:
 denote by x_F the "length of time" it appears
 - then for all $s \in S$: $\sum_{F \ni s} x_F = 1$
 - and $\sum_{F \in \mathcal{F}} x_F = \text{circumference}$
 - this gives a fractional cover with value the circumference

Inequalities, inequalities, and more inequalities

so now we know:

$$\operatorname{Pack} \leq \operatorname{Pack}_f = \operatorname{Cov}_f \leq \operatorname{Cov}_c \leq \operatorname{Cov}$$

- can we say for which good set systems we have equality for one of the inequalities?
 - probably too hard ("too local")
- what about those that satisfy an equality

"through and through"?

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

Through and through = induced

 (S, \mathcal{F}) a good set system and $T \subseteq S$, then define:

$$\mathcal{F}_T = \{ F \cap T \mid F \in \mathcal{F} \} = \{ F \in \mathcal{F} \mid F \subseteq T \}$$

- \blacksquare then (T, \mathcal{F}_T) is again a good set system
 - called an induced set system
- for a graph G with $U \subseteq V_G$:

 $(S_G)_U$ are the stable sets of the subgraph induced by U

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

Degrees of perfectness

- \blacksquare a good set system is (A = B)-perfect:
 - the system and all its induced systems satisfy A = B
- note that we have six degrees of perfectness
- by definition, perfect graphs are exactly those graphs G for which (V_G, S_G) is (Pack = Cov)-perfect
 - that makes them perfect for all inequalities!

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

What about the other set systems?

we know non-perfect graphs very well:

Strong Perfect Graph Theorem (Chudnovsky et al., 2006)

- - G contains an induced copy:
 - of an odd cycle C_{2k+1} , $k \geq 2$, or
 - of the complement $\overline{C_{2k+1}}$ of an odd cycle, $k \geq 2$

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

What about other "graphical" set systems?

- for an odd cycle C_{2k+1} , $k \ge 2$, it is easy to check:
 - Pack $(V_{C_{2k+1}}, S_{C_{2k+1}}) = 2$
 - $lacksquare {\sf Cov}_f(V_{C_{2k+1}}, \mathcal{S}_{C_{2k+1}}) = {\sf Cov}_c(V_{C_{2k+1}}, \mathcal{S}_{C_{2k+1}}) = 2 + rac{1}{k}$
 - $lacksquare Cov(V_{C_{2k+1}}, \mathcal{S}_{C_{2k+1}}) = 3$

similar things happen for

the complement $\overline{C_{2k+1}}$ of an odd cycle, $k \geq 2$

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

Perfect graphs are very perfect

SO:

- \blacksquare a good set system of the form (V_G, S_G) is
 - (Pack = Cov_f)-perfect, or
 - (Pack = Cov_c)-perfect, or
 - (Pack = Cov)-perfect, or
 - $(Cov_f = Cov)$ -perfect, or
 - $(Cov_c = Cov)$ -perfect

$$\iff$$
 G is perfect

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

And what about non-graphical set systems?

- \blacksquare suppose (S, \mathcal{F}) is a good set system such that
- then form the graph G with $V_G = S$ by setting

$$s_1s_2 \in E_G \iff \{s_1, s_2\} \notin \mathcal{F}$$

 \blacksquare easy to check: $(S, \mathcal{F}) = (V_G, S_G)$

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

And what about non-graphical set systems?

- (S, \mathcal{F}) is a non-graphical good set system \iff there is a subset $T \subseteq S$ with $|T| = k \ge 3$ so that:
 - \blacksquare $T \notin \mathcal{F}$
 - but every proper subset of T is in F
- for such a T, the induced set system (T, \mathcal{F}_T) satisfies:
 - Pack $(T, \mathcal{F}_T) = 1$
 - $\quad \mathsf{Cov}_f(T, \mathcal{F}_T) = \mathsf{Cov}_c(T, \mathcal{F}_T) = 1 + \frac{1}{k-1}$
 - $Cov(T, \mathcal{F}_T) = 2$

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

Perfect graphs are really, really perfect!

SO:

- \blacksquare a good good set system (S, \mathcal{F}) is
 - (Pack = Cov_f)-perfect, or
 - (Pack = Cov_c)-perfect, or
 - (Pack = Cov)-perfect, or
 - $(Cov_f = Cov)$ -perfect, or
 - $(Cov_c = Cov)$ -perfect

$$\iff$$
 $(S, \mathcal{F}) = (V_G, S_G)$ for some perfect graph G

$$\mathsf{Pack} \, \leq \, rac{\mathsf{Cov}_f}{\mathsf{Pack}_f} \, \leq \, \mathsf{Cov}_c \, \leq \, \mathsf{Cov}_c$$

All that is left to do . . .

what good set systems (S, \mathcal{F}) are $(Cov_f = Cov_c)$ -perfect?

- well ...
 - stable sets of perfect graphs
 - stable sets of odd cycles or complements of odd cycles
 - loopless matroids (vdH & Thomassé)
 - and a lot more

What the **** is a loopless matroid?

- \blacksquare a set system (S, \mathcal{F}) is a **loopless matroid** if
 - (S, \mathcal{F}) is good
 - for each $F_1, F_2 \in \mathcal{F}$ with $|F_1| > |F_2|$: there is an $s \in F_1 \setminus F_2$ so that $F_2 \cup \{s\} \in \mathcal{F}$

example

- \lor V a vector space, U a subset of $\lor \setminus \{0\}$
 - then (U, \mathcal{I}_U) is a loopless matroid
 - lacksquare so: $\operatorname{Cov}_f(U, \mathcal{I}_U) = \operatorname{Cov}_c(U, \mathcal{I}_U)$

$$Cov_f \leq Cov_c$$

The "remaining" case

- \blacksquare good set systems that are $(Cov_f = Cov_c)$ -perfect:
 - stable sets of perfect graphs
 - stable sets of odd cycles or complements of odd cycles
 - loopless matroids
 - disjoint unions of the above
 - and probably a lot more . . .

by the way:

 \blacksquare a stable set system (V_G, S_G) is a loopless matroid

 \iff G is the disjoint union of cliques

 $Cov_f \leq Cov_c$

The "remaining" case

questions:

- \blacksquare can we characterise $(Cov_f = Cov_c)$ -perfect set systems?
- or at least the graphs G for which (V_G, \mathcal{S}_G) is $(\mathsf{Cov}_f = \mathsf{Cov}_c)$ -perfect?

what "natural" class of set systems

contains both matroids and stable sets of perfect graphs?