Degrees of Perfection

Jan van den Heuvel

LSE, 20 November 2009
Some good terminology

- set system \((S, \mathcal{F})\) : a finite set \(S\) with a collection \(\mathcal{F}\) of subsets of \(S\)

- a set system is "good" if :
 - \(\mathcal{F}\) is closed under taking subsets, and
 - \(\mathcal{F}\) covers all of \(S\)

 \((\text{for all } s \in S \text{ there is an } F \in \mathcal{F} \text{ with } s \in F)\)
Two important examples

- $G = (V_G, E_G)$ a graph
 - take S_G the collection of all stable sets
 (sets containing no adjacent pairs of vertices)
 - then (V_G, S_G) is a good set system

- V a vector space, and U a subset of $V \setminus \{0\}$
 - take I_U the collection of all linearly independent subsets of U
 - then (U, I_U) is a good set system
Coverings

- a covering of \((S, \mathcal{F})\):

a collection of sets from \(\mathcal{F}\) whose union is \(S\)

- covering number \(\text{Cov}(S, \mathcal{F})\):

 the minimum number of elements in a covering

- for a graph \(G\): \(\text{Cov}(V_G, \mathcal{S}_G)\) is the minimum number of

 stable sets needed to cover all vertices

- so \(\text{Cov}(V_G, \mathcal{S}_G)\) is just the chromatic number
the covering number is also the solution of the IP problem:

\[
\begin{align*}
\text{minimise} & \quad \sum_{F \in \mathcal{F}} x_F \\
\text{subject to} & \quad \sum_{F \ni s} x_F \geq 1, \quad \text{for all } s \in S \\
& \quad x_F \in \{0, 1, 2, \ldots\}, \quad \text{for all } F \in \mathcal{F}
\end{align*}
\]
The fractional version

- removing the integrality condition:

\[
\text{minimise} \quad \sum_{F \in \mathcal{F}} x_F \\
\text{subject to} \quad \sum_{F \ni s} x_F \geq 1, \quad \text{for all } s \in S \\
x_F \geq 0, \quad \text{for all } F \in \mathcal{F}
\]

- gives the fractional covering number \(\text{F-Cov}(S, \mathcal{F}) \)

- and we obviously have: \(\text{F-Cov}(S, \mathcal{F}) \leq \text{Cov}(S, \mathcal{F}) \)
Rule 1 of Linear Programming: dualise

- The dual LP problem of the fractional covering number is:

 maximise \[\sum_{s \in S} y_s \]

 subject to \[\sum_{s \in F} y_s \leq 1, \quad \text{for all } F \in \mathcal{F} \]

 \[y_s \geq 0, \quad \text{for all } s \in S \]

- This gives the fractional packing number \(\text{F-Pack}(S, \mathcal{F}) \)

- And by LP-duality: \(\text{F-Pack}(S, \mathcal{F}) = \text{F-Cov}(S, \mathcal{F}) \)
The packing number

- the integral version is the packing number \(\text{Pack}(S, \mathcal{F}) \) :
 - the maximum size \(|T| \) of a subset \(T \subseteq S \) so that
 \[
 |T \cap F| \leq 1, \text{ for all } F \in \mathcal{F}
 \]
 - i.e.: the maximum size \(|T| \) of a subset \(T \subseteq S \) so that
 no two elements of \(T \) appear together in a set from \(\mathcal{F} \)

- for a graph \(G \) : \(\text{Pack}(V_G, \mathcal{S}_G) \) is the maximum size of
 a set of vertices with no two elements in a stable set

- so \(\text{Pack}(V_G, \mathcal{S}_G) \) is just the clique number
The status so far

- for any good set system \((S, \mathcal{F})\) we have

\[
\text{Pack}(S, \mathcal{F}) \leq \text{F-Pack}(S, \mathcal{F}) = \text{F-Cov}(S, \mathcal{F}) \leq \text{Cov}(S, \mathcal{F})
\]

- we will add one more parameter:

the **circular covering number** \(\text{C-Cov}(S, \mathcal{F})\)
The circular covering number

- map the elements of \(S \) to a circle so that:
 - for every unit interval \([x, x + 1)\) along the circle
 elements mapped into that interval form a set from \(\mathcal{F} \)

- circular covering number \(\text{C-Cov}(S, \mathcal{F}) : \)
 minimum circumference of a circle for which this is possible
The right place for the circular covering number - I

- for a good set system: \(C-Cov(S, \mathcal{F}) \leq Cov(S, \mathcal{F}) \)

- take a disjoint cover \(F_1, \ldots, F_k \) of \((S, \mathcal{F}) \)

- put the elements of each \(F_i \) together at unit distance around a circle with circumference \(k \):

 - all \(s \in F_1 \)
 - all \(s \in F_2 \)

- gives a circular cover with circumference \(k \)
The right place for the circular covering number - II

- for a good set system: \(F\text{-Cov}(S, \mathcal{F}) \leq C\text{-Cov}(S, \mathcal{F}) \)

- take a circular cover along a circle

- "move" the unit interval with "unit speed" round the circle

- for a set \(F \) that appears in the interval at some point:
 denote by \(x_F \) the "length of time" it appears
The right place for the circular covering number - II

- for a good set system: $F\text{-Cov}(S, \mathcal{F}) \leq C\text{-Cov}(S, \mathcal{F})$
 - take a circular cover along some circle
 - for a set F that appears in the interval at some point:
 denote by x_F the “length of time” it appears
 - then for all $s \in S$:
 $\sum_{F \ni s} x_F = 1$
 - and $\sum_{F \in \mathcal{F}} x_F = \text{circumference}$
 - this gives a fractional cover with value the circumference
Inequalities, inequalities, and more inequalities

- so now we know:

\[
\text{Pack} \leq F\text{-Pack} = F\text{-Cov} \leq C\text{-Cov} \leq \text{Cov}
\]

- can we say for which good set systems we have equality for one of the inequalities?

 - probably too hard ("too local")

- what about those that satisfy an equality "through and through"?
Through and through = induced

- (S, \mathcal{F}) a good set system and $T \subseteq S$, then define:

$$\mathcal{F}_T = \{ F \cap T \mid F \in \mathcal{F} \} = \{ F \in \mathcal{F} \mid F \subseteq T \}$$

- then (T, \mathcal{F}_T) is again a good set system
 - called an induced set system

- for a graph G with $U \subseteq V_G$:

$$(\mathcal{S}_G)_U$$ are the stable sets of the subgraph induced by U
a good set system is $(A = B)$-perfect:

- the system and all its induced systems satisfy $A = B$

note that we have six degrees of perfection

by definition, perfect graphs are exactly those graphs G

for which (V_G, S_G) is $(\text{Pack} = \text{Cov})$-perfect

- that makes them perfect for all inequalities!

$\text{Pack} \leq \text{F-Cov} \leq \text{C-Cov} \leq \text{Cov}$
What about the other set systems?

- we know non-perfect graphs very well:

Strong Perfect Graph Theorem
(Chudnovsky et al., 2006)

- \(G \) **not** a perfect graph \(\iff \)

 \(G \) contains an **induced** copy:

 - of an odd cycle \(C_{2k+1}, k \geq 2 \), or
 - of the complement \(\overline{C_{2k+1}} \) of an odd cycle, \(k \geq 2 \)

Pack \(\leq \) F-Cov \(\leq \) C-Cov \(\leq \) Cov
What about other “graphical” set systems?

- for an odd cycle C_{2k+1}, $k \geq 2$, it is easy to check:
 - $\text{Pack}(V_{C_{2k+1}}, S_{C_{2k+1}}) = 2$
 - $\text{F-Cov}(V_{C_{2k+1}}, S_{C_{2k+1}}) = \text{C-Cov}(V_{C_{2k+1}}, S_{C_{2k+1}}) = 2 + \frac{1}{k}$
 - $\text{Cov}(V_{C_{2k+1}}, S_{C_{2k+1}}) = 3$

- similar things happen for the complement $\overline{C_{2k+1}}$ of an odd cycle, $k \geq 2$

$\text{Pack} \leq \text{F-Cov} \leq \text{C-Cov} \leq \text{Cov}$
Perfect graphs are very perfect

so:

- a good set system of the form \((V_G, S_G)\) is
 - \((\text{Pack} = \text{F-Cov})\)-perfect, or
 - \((\text{Pack} = \text{C-Cov})\)-perfect, or
 - \((\text{Pack} = \text{Cov})\)-perfect, or
 - \((\text{F-Cov} = \text{Cov})\)-perfect, or
 - \((\text{C-Cov} = \text{Cov})\)-perfect

\[\iff \quad G \text{ is perfect}\]

\[\text{Pack} \leq \text{F-Cov} \leq \text{C-Cov} \leq \text{Cov}\]
And what about non-graphical set systems?

- Suppose \((S, \mathcal{F})\) is a good set system such that all minimal sets not in \(\mathcal{F}\) have size 2 (smaller than 2 is not possible, as \(\mathcal{F}\) covers \(S\)).

- Then form the graph \(G\) with \(V_G = S\) by setting \(s_1 s_2 \in E_G \iff \{s_1, s_2\} \notin \mathcal{F}\).

- Easy to check: \((S, \mathcal{F}) = (V_G, S_G)\).

Pack \(\leq\) F-Cov \(\leq\) C-Cov \(\leq\) Cov
And what about non-graphical set systems?

- \((S, \mathcal{F})\) is a non-graphical good set system \(\iff\) there is a subset \(T \subseteq S\) with \(|T| = k \geq 3\) so that:
 - \(T \notin \mathcal{F}\)
 - but every proper subset of \(T\) is in \(\mathcal{F}\)

- for such a \(T\), the induced set system \((T, \mathcal{F}_T)\) satisfies:
 - \(\text{Pack}(T, \mathcal{F}_T) = 1\)
 - \(\text{F-Cov}(T, \mathcal{F}_T) = \text{C-Cov}(T, \mathcal{F}_T) = 1 + \frac{1}{k - 1}\)
 - \(\text{Cov}(T, \mathcal{F}_T) = 2\)

\(\text{Pack} \leq \text{F-Cov} \leq \text{C-Cov} \leq \text{Cov}\)
Perfect graphs are really, really perfect!

so:

- a good set system \((S, \mathcal{F})\) is
 - (Pack = F-Cov) -perfect, or
 - (Pack = C-Cov) -perfect, or
 - (Pack = Cov) -perfect, or
 - (F-Cov = Cov) -perfect, or
 - (C-Cov = Cov) -perfect

\[\iff (S, \mathcal{F}) = (V_G, S_G) \text{ for some perfect graph } G\]

Pack \(\leq\) F-Cov \(\leq\) C-Cov \(\leq\) Cov
All that is left to do . . .

- what good set systems \((S, \mathcal{F})\) are \((F-\text{Cov} = C-\text{Cov})\)-perfect?

- well . . .
 - stable sets of perfect graphs
 - stable sets of odd cycles or complements of odd cycles
 - loopless matroids (vdH & Thomassé)
 - and a lot more

\[F-\text{Cov} \leq C-\text{Cov} \]
What the **** is a loopless matroid?

- A set system \((S, \mathcal{F})\) is a **loopless matroid** if
 - \((S, \mathcal{F})\) is good
 - For each \(F_1, F_2 \in \mathcal{F}\) with \(|F_1| > |F_2|\):
 - There is an \(s \in F_1 \setminus F_2\) so that \(F_2 \cup \{s\} \in \mathcal{F}\)

Example

- \(V\) a vector space, \(U\) a subset of \(V \setminus \{0\}\)
- Then \((U, \mathcal{I}_U)\) is a loopless matroid
- So: \(F-\text{Cov}(U, \mathcal{I}_U) = C-\text{Cov}(U, \mathcal{I}_U)\)
 \[F-\text{Cov} \leq C-\text{Cov}\]
The “remaining” case

- good set systems that are \((F\text{-Cov} = C\text{-Cov})\)-perfect:
 - stable sets of perfect graphs
 - stable sets of odd cycles or complements of odd cycles
 - loopless matroids
 - disjoint unions of the above
 - and probably a lot more . . .

\(F\text{-Cov} \leq C\text{-Cov}\)
What’s the difference?

- stable set systems and loopless matroids are very different animals:

 - a set system \((S, \mathcal{F})\) is both a stable set system and a loopless matroid

\[\iff \]

\[(S, \mathcal{F}) = (V_G, S_G) \] with \(G\) a disjoint union of cliques

\[\text{F-Cov} \leq \text{C-Cov} \]
The “remaining” case

questions:

- can we characterise \((F\text{-Cov} = C\text{-Cov})\)-perfect set systems?

- or at least the graphs \(G\) for which \((V_G, S_G)\) is \((F\text{-Cov} = C\text{-Cov})\)-perfect?

- what “natural” class of set systems contains both matroids and stable sets of perfect graphs?

\[F\text{-Cov} \leq C\text{-Cov} \]
And another open problem

- the Strong Perfect Graph Theorem “easily” gives:
 a good set system of the form \((V_G, S_G)\) is
 - (Pack = F-Cov) - perfect, (Pack = C-Cov) - perfect,
 (Pack = Cov) - perfect, (F-Cov = Cov) - perfect, or
 (C-Cov = Cov) - perfect

\[\iff \quad G \text{ is perfect} \]

- all but one cases were known before the SPGT

- find a proof without using the SPGT that
 non-perfect graphs are not (C-Cov = Cov) - perfect