Graph Colouring with Distances

JAN VAN DEN HEUVEL

Queen Mary, London, 19 May 2010
The basics of graph colouring

- **vertex-colouring** with \(k \) colours:
 adjacent vertices must receive different colours

- **chromatic number** \(\chi(G) \):
 minimum \(k \) so that a vertex-colouring exists

- **list-colouring**:
 as vertex-colouring,
 but each vertex \(v \) has its own list \(L(v) \) of colours

- **choice number** \(\text{ch}(G) \):
 minimum \(k \) so that if all \(|L(v)| \geq k \),
 then a proper list vertex-colouring exists
Another way to look at vertex-colouring

- vertex-colouring:
 vertices at distance one must receive different colours

- now suppose we want vertices at larger distances (say, up to distance D) to receive different colours as well

- can be modelled using the D-th power G^D of a graph:
 - same vertex set as G
 - edges between vertices with distance at most D in G
Powers of a graph

G

G^2

G^3
A first conjecture/problem

- powers of graphs seem to have more structure than graphs in general

List-Square-Colouring Conjecture (Kostochka & Woodall, 2001)

- for any graph G: $\text{ch}(G^2) = \chi(G^2)$

- if true, then $\text{ch}(G^D) = \chi(G^D)$ for all even D
 (since $G^{2d} = (G^d)^2$)

- what about $\text{ch}(G^D) = \chi(G^D)$ for odd D?
Colouring powers of a graph

easy fact

\[\Delta(G^D) \leq \sum_{i=0}^{D-1} \Delta(G) (\Delta(G) - 1)^i = O(\Delta(G)^D) \]

(\(\Delta = \Delta(G) \) : maximum degree of \(G \))

so:

\[\chi(G^D) \leq O(\Delta(G)^D) \]

but for very few graphs you would expect to need that many colours
The square of planar graphs

Conjecture (Wegner, 1977)

- G planar

\[\chi(G^2) \leq \begin{cases}
7, & \text{if } \Delta = 3 \\
\Delta + 5, & \text{if } 4 \leq \Delta \leq 7 \\
\left\lfloor \frac{3}{2} \Delta \right\rfloor + 1, & \text{if } \Delta \geq 8
\end{cases} \]

- bounds would be best possible

case $\Delta = 2k \geq 8$:
Towards Wegner’s Conjecture

\[G \text{ planar} \implies \]

- \[\chi(G^2) \leq 8 \Delta - 22 \]
 (Jonas, PhD, 1993)

- \[\chi(G^2) \leq 3 \Delta + 5 \]
 (Wong, MSc, 1996)

- \[\chi(G^2) \leq 2 \Delta + 25 \]
 (vdH & McGuinness, 2003)

- \[\chi(G^2) \leq \frac{9}{5} \Delta + 1 \]
 (for \(\Delta \geq 47 \))
 (Borodin, Broersma, Glebov & vdH, 2001)

- \[\chi(G^2) \leq \frac{5}{3} \Delta + 24 \]
 (for \(\Delta \geq 241 \))
 (Molloy & Salavatipour, 2005)
Towards Wegner’s Conjecture

Theorem \((Havet, vdH, McDiarmid & Reed, 2008+)\)

- \(G\) planar \(\implies\) \(\chi(G^2) \leq \left(\frac{3}{2} + o(1)\right) \Delta\) (\(\Delta \to \infty\))

- we actually prove the list-colouring version
- and for much larger classes of graphs:

Theorem

- \(G\) graph, \(K_{3,k}\)-minor free for some fixed \(k\)

\[\implies\] \(\text{ch}(G^2) \leq \left(\frac{3}{2} + o(1)\right) \Delta\)
What about larger D?

Theorem (Agnarsson & Halldórsson, 2003)

- G planar $\implies \chi(G^D) \leq c_D \Delta^{\lfloor D/2 \rfloor}$

- best possible: take Δ-regular tree with radius $\lfloor \frac{1}{2} D \rfloor$
What about larger D?

Theorem (Agnarsson & Halldórsson, 2003)

- G planar $\implies \chi(G^D) \leq c_D \Delta^{[D/2]}$

in fact, their proof gives something much more general:

Theorem

- G k-degenerate $\implies \chi(G^D) \leq c_{k,D} \Delta^{[D/2]}$

- G is k-degenerate: every subgraph of G

 has a vertex of degree at most k
Main ideas of a simple proof

- \(G \) is \(m \)-orientable: \(G \) has an orientation in which every vertex has outdegree at most \(m \)

- \(G \) is \(k \)-degenerate \(\implies \) \(G \) is \(k \)-orientable

- \(G \) is \(m \)-orientable \(\implies \) \(G \) is \(2m \)-degenerate
 \(\implies \) \(\chi(G) \leq 2m + 1 \)

Theorem

- \(G \) is \(m \)-orientable \(\implies \) \(G^D \) is \(c_{m,D} \Delta^{[D/2]} \)-orientable
Main ideas of a simple proof

- fix an orientation \vec{G} of G with maximum outdegree m, and fix $D \geq 1$

- let uv be an edge in G^D
 - so there is uv-path $u = x_0, x_1, \ldots, x_\ell = v$ of length $\ell \leq D$

- orient uv in G^D according to the majority of the orientation of the edges in that uv-path (when going from u to v) (arbitrarily if a tie)
Main ideas of a simple proof

- so outdegree in oriented G^D of a vertex u is at most:
 - the number of uv-paths of length $\ell \leq D$ in G with at least $\lceil \frac{1}{2} \ell \rceil$ edges oriented $x_i \rightarrow x_{i+1}$ in \vec{G}

- and the number of such paths is at most:

$$
\sum_{\ell=1}^{D} \sum_{i=\lfloor \ell/2 \rfloor}^{\ell} \binom{\ell}{i} \cdot m^i \cdot \Delta^{\ell-i} \\
= \sum_{\ell=1}^{D} \sum_{j=0}^{\lfloor \ell/2 \rfloor} \binom{\ell}{j} \cdot m^{\ell-j} \cdot \Delta^j \leq c_{m,D} \Delta^{\lfloor D/2 \rfloor}
$$
Colouring the cube of planar graphs

- so now we know there is some constant c_3 so that:

 \[G \text{ planar} \implies \chi(G^3) \leq c_3 \Delta + O(1) \]

- but what is the best c_3?

- we only know: $4 \leq c_3 \leq 68$

- and what about distance $D > 3$?
A variant with exact distances

- suppose we only want vertices at distance exactly D to have different colours

- can be modelled using the exact distance graph $G^{=D}$ of G:
 - same vertex set as G
 - edges between vertices with distance exactly D in G
Exact distance graphs

G

$G=2$

$G=3$
Colouring exact distance graphs of planar graphs

- obviously:
 $$G \text{ planar} \implies \chi(G^{=D}) \leq \chi(G^D) \leq O(\Delta^{\left\lfloor \frac{D}{2} \right\rfloor})$$

- and for $$D = 2$$ we can have $$\chi(G^{=2}) = \frac{3}{2} \Delta$$:

- in fact, for all even $$D$$, the bound seems to be $$\frac{3}{2} \Delta$$
Colouring exact distance graphs

- for odd D, the situation is very different:

Theorem (Nešetřil & Ossona de Mendez, 2008)

- \mathcal{K} a graph class with “bounded expansion”, D odd
 - then there exists a constant $c_{\mathcal{K},D}$ so that:
 \[G \in \mathcal{K} \implies \chi(G^D) \leq c_{\mathcal{K},D} \]

- a proper minor-closed class is of bounded expansion
- hence planar graphs are of bounded expansion
Colouring exact distance graphs

- the result is best possible in many senses:
 - not true for even \(D \)
 - not true for \(k \)-degenerate graphs:
 - consider \(S_{n,D} \): complete graph \(K_n \) with edges replaced by paths of length \(D \)
 - \(S_{n,D} \) is 2-degenerate, but \(\chi((S_{n,D})=D) = n \)
 - not true if “\(u, v \) have distance exactly \(D \)” replaced by “there is a \(uv \)-path of length \(D \)”
 - consider wheel \(W_n \) with \(n \) spokes
The exact cube of planar graphs

- so now we know: \(G \) planar \(\implies \chi(G^{=3}) \leq c'_3 \)
 - short proof?
 - what can we say about \(c'_3 \) ?

- more general: what can we say about the structure of \(G^{=3} \) for planar \(G \) ?
 - does not contain \(K_5 \) as a subgraph
 - can contain any complete bipartite \(K_{n,n} \) as a subgraph
 - hence arbitrarily large \(K_n \) as a minor
Kostochka & Woodall conjectured: \(\text{ch}(G^2) = \chi(G^2) \)

Conjecture

for any graph \(G \): \(\text{ch}(G^{-2}) = \chi(G^{-2}) \)

Shortly after the talk, I realised that simple counterexamples to this conjecture exist.
More fun with powers of graphs

- going from G to G^D, how many edges do we gain?
 - in particular: do we have $e(G^D) \geq (1 + \varepsilon_D) e(G)$ for some $\varepsilon_D > 0$?

- natural to assume:
 - G is connected
 - $\text{diam}(G) \geq D$
More fun with powers of graphs

- do we have \(e(G^D) \geq (1 + \varepsilon_D) e(G) \) for some \(\varepsilon_D > 0 \)?

- connected and large diameter is still not enough:
 - take \(G \):
 - complete \(n^{2/3} \) vertices
 - path with \(n^{1/3} \) vertices
 - then: \(e(G) \approx \binom{n^{2/3}}{2} = \Theta(n^{4/3}) \)
 - while \(G^D \) gains only about \(Dn = O(n) \) new edges

- so let’s require regular as well
More fun with powers of graphs

Theorem (Hegarty, 2009)

- For \(D \geq 3 \), there exist \(\varepsilon_D > 0 \) so that:

 \[
 G \text{ connected, regular, and } \text{diam}(G) \geq D
 \implies e(G^D) \geq (1 + \varepsilon_D) e(G)
 \]

- For \(D = 2 \), no such \(\varepsilon_2 \) exists (Hegarty)

- \(\varepsilon_3 \geq 0.087 \) (Hegarty), \(\varepsilon_3 \geq 1/6 \) (Pokrovskiy, 2010)

- For \(D \geq 4 \):

 \[
 \varepsilon_D \geq \left\lceil \frac{1}{3} D \right\rceil - 2
 \]

 Can’t be increased to \(\alpha D \) for \(\alpha > \frac{1}{3} \) (Pokrovskiy, 2010)
One final problem

- **given**: graph G
 - **question**: is there an H so that $G = L(H)$?
 - can be done in polynomial time

- **given**: graph G
 - **question**: is there an H so that $G = H^2$?
 - is **NP-complete** (Motwani & Rajeev, 1994)

- what about checking if there is an H so that $G = H^{-2}$?

 I have no found an argument that shows this can be done in polynomial time.