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Some good terminology

set system (S, FFFFFFFFF ) : a finite set S

with a collection F of subsets of S

a set system is “good” if :

F is closed under taking subsets, and

F covers all of S

( for all s ∈ S there is an F ∈ F with s ∈ F )
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Two important examples

G = (V G, EG) a graph

take SSSSSSSSSG the collection of all stable sets

( sets containing no adjacent pairs of vertices )

then (V G, SG) is a good set system

V a vector space, and U a subset of V \ {0}

take IIIIIIIIIU the collection of all

linearly independent subsets of U

then (U, IU) is a good set system
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Coverings

a covering of (S, F) :

a collection of sets from F whose union is S

covering number Cov(S, FFFFFFFFF ) :

the minimum number of elements in a covering

for a graph G : Cov(V G, SG) is the minimum number of

stable sets needed to cover all vertices

so Cov(V G, SG) is just the chromatic number
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Let’s make life more complicated

the covering number is also the solution of the IP problem :

minimise
∑

F ∈F

xF

subject to
∑

F ∋ s

xF ≥ 1, for all s ∈ S

xF ∈ { 0, 1 } , for all F ∈ F
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The fractional version

removing the integrality condition :

minimise
∑

F ∈F

xF

subject to
∑

F ∋ s

xF ≥ 1, for all s ∈ S

xF ≥ 0, for all F ∈ F

gives the fractional covering number F-Cov(S, FFFFFFFFF )

and we obviously have : F-Cov(S, F) ≤ Cov(S, F)
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Rule 1 of Linear Programming : dualise

the dual LP problem of the fractional covering number is :

maximise
∑

s ∈ S

ys

subject to
∑

s ∈ F

ys ≤ 1, for all F ∈ F

ys ≥ 0, for all s ∈ S

this gives the fractional packing number F-Pack(S, FFFFFFFFF )

and by LP-duality : F-Pack(S, F) = F-Cov(S, F)
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And the integral version of that one

only allowing integers gives :

maximise
∑

s ∈ S

ys

subject to
∑

s ∈ F

ys ≤ 1, for all F ∈ F

ys ∈ { 0, 1 } , for all s ∈ S

this gives the packing number Pack(S, FFFFFFFFF )

with the relation : Pack(S, F) ≤ F-Pack(S, F)
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The packing number

we can interpret the packing number Pack(S, FFFFFFFFF ) as :

the maximum size |T | of a subset T ⊆ S so that

|T ∩ F | ≤ 1, for all F ∈ F

i.e.: the maximum size |T | of a subset T ⊆ S so that

no two elements of T appear together in a set from F

for a graph G : Pack(V G, SG) is the maximum size of

a set of vertices with no two elements in a stable set

so Pack(V G, SG) is just the clique number
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The status so far

for any good set system (S, F) we have

Pack(S, F) ≤ F-Pack(S, F) = F-Cov(S, F) ≤ Cov(S, F)

we will add one more parameter :

the circular covering number C-Cov(S, FFFFFFFFF )
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The circular covering number

map the elements of S to a circle so that :

for every unit interval [x, x + 1) along the circle

elements mapped into that interval form a set from F

s1

s2

s3,s4

circular covering number C-Cov(S, FFFFFFFFF ) :

minimum circumference of a circle for which this is possible

Degrees of Perfection



The right place for the circular covering number - I

for a good set system : C-Cov(S, F) ≤ Cov(S, F)

take a disjoint cover F 1, . . . , F k of (S, F)

put the elements of each F i together at unit distance

around a circle with circumference k :

all s ∈ F 1

all s ∈ F 2

gives a circular cover with circumference k
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The right place for the circular covering number - II

for a good set system : F-Cov(S, F) ≤ C-Cov(S, F)

take a circular cover along a circle

s1

s2

s3,s4

“move” the unit interval with “unit speed” round the circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears
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The right place for the circular covering number - II

for a good set system : F-Cov(S, F) ≤ C-Cov(S, F)

take a circular cover along some circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears

then for all s ∈ S :
∑

F ∋ s
xF = 1

and
∑

F ∈F

xF = circumference

this gives a fractional cover with value the circumference
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Inequalities, inequalities, and more inequalities

so now we know :

Pack ≤
F-Pack

=
F-Cov

≤ C-Cov ≤ Cov

can we say for which good set systems we have equality for

one of the inequalities ?

probably too hard ( “too local” )

what about those that satisfy an equality

“through and through” ?
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Through and through = induced

(S, F) a good set system and T ⊆ S , then define :

FT = { F ∩ T | F ∈ F } = { F ∈ F | F ⊆ T }

then (T , FT ) is again a good set system

called an induced set system

for a graph G with U ⊆ V G :

(SG)U are the stable sets of the subgraph induced by U
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Degrees of perfection

a good set system is (A = B)-perfect :

the system and all its induced systems satisfy A = B

note that we have six degrees of perfection

by definition, perfect graphs are exactly those graphs G

for which (V G, SG) is (Pack = Cov)-perfect

that makes them perfect for all inequalities !

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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What about the other set systems ?

we know non-perfect graphs very well :

Strong Perfect Graph Theorem ( Chudnovsky et al., 2006 )

G not a perfect graph ⇐⇒

G contains an induced copy :

of an odd cycle C2k+1 , k ≥ 2, or

of the complement C2k+1 of an odd cycle, k ≥ 2

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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What about other “graphical” set systems ?

for an odd cycle C2k+1 , k ≥ 2, it is easy to check :

Pack(V C2k+1, SC2k+1) = 2

F-Cov(V C2k+1, SC2k+1) = C-Cov(V C2k+1, SC2k+1) = 2 +
1

k

Cov(V C2k+1, SC2k+1) = 3

similar things happen for

the complement C2k+1 of an odd cycle, k ≥ 2

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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Perfect graphs are very perfect

so :

a good set system of the form (V G, SG) is

(Pack = F-Cov)-perfect, or

(Pack = C-Cov)-perfect, or

(Pack = Cov)-perfect, or

(F-Cov = Cov)-perfect, or

(C-Cov = Cov)-perfect

⇐⇒ G is perfect

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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And what about non-graphical set systems ?

suppose (S, F) is a good set system such that

all minimal sets not in F have size 2

( smaller than 2 is not possible, as F covers S )

then form the graph G with V G = S by setting

s1s2 ∈ EG ⇐⇒ {s1, s2} /∈ F

easy to check : (S, F) = (V G, SG)

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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And what about non-graphical set systems ?

(S, F) is a non-graphical good set system ⇐⇒

there is a subset T ⊆ S with |T | = k ≥ 3 so that :

T /∈ F

but every proper subset of T is in F

for such a T , the induced set system (T , FT ) satisfies :

Pack(T , FT ) = 1

F-Cov(T , FT ) = C-Cov(T , FT ) = 1 +
1

k − 1
Cov(T , FT ) = 2

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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Perfect graphs are really, really perfect !

so :

a good set system (S, F) is

(Pack = F-Cov)-perfect, or

(Pack = C-Cov)-perfect, or

(Pack = Cov)-perfect, or

(F-Cov = Cov)-perfect, or

(C-Cov = Cov)-perfect

⇐⇒ (S, F) = (V G, SG) for some perfect graph G

Pack ≤ F-Cov ≤ C-Cov ≤ Cov
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All that is left to do . . .

what good set systems (S, F) are

(F-Cov = C-Cov)-perfect ?

well . . .

stable sets of perfect graphs

stable sets of odd cycles or complements of odd cycles

loopless matroids ( vdH & Thomassé )

and a lot more . . .

F-Cov ≤ C-Cov
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What the ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ is a loopless matroid ?

a set system (S, F) is a loopless matroid if

(S, F) is good

for each F 1, F 2 ∈ F with |F 1| > |F 2| :

there is an s ∈ F 1 \ F 2 so that F 2 ∪ {s} ∈ F

example

take V a vector space and U a subset of V \ {0}

then (U, IU) is a loopless matroid

so : F-Cov(U, IU) = C-Cov(U, IU)

F-Cov ≤ C-Cov
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The “remaining” case

good set systems that are (F-Cov = C-Cov)-perfect :

stable sets of perfect graphs

stable sets of odd cycles or complements of odd cycles

loopless matroids

disjoint unions of the above

and probably a lot more . . .

F-Cov ≤ C-Cov
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What’s the difference ?

stable set systems and loopless matroids

are very different animals :

a set system (S, F) is both

a stable set system and a loopless matroid

⇐⇒

(S, F) = (V G, SG) with G a disjoint union of cliques

F-Cov ≤ C-Cov
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The “remaining” case

questions :

can we characterise

(F-Cov = C-Cov)-perfect set systems ?

or at least the graphs G for which (V G, SG) is

(F-Cov = C-Cov)-perfect ?

what “natural” class of set systems

contains both matroids and stable sets of perfect graphs ?

F-Cov ≤ C-Cov
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And another open problem

the Strong Perfect Graph Theorem “easily” gives :

a good set system of the form (V G, SG) is

(Pack = F-Cov)-perfect, (Pack = C-Cov)-perfect,

(Pack = Cov)-perfect, (F-Cov = Cov)-perfect, or

(C-Cov = Cov)-perfect

⇐⇒ G is perfect

all cases but one were known before the SPGT

find a proof without using the SPGT that

non-perfect graphs are not (C-Cov = Cov)-perfect
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