Degrees of Perfection

JAN VAN DEN HEUVEL

PCC, 9 July 2010

Department of Mathematics London School of Economics and Political Science

- $G = (V_G, E_G)$ a graph
 - take S_G the collection of all stable sets
 - (sets containing no adjacent pairs of vertices)
 - then (V_G, S_G) is a good set system
- V a vector space, and U a subset of $V \setminus \{0\}$
 - take \mathcal{I}_U the collection of all

linearly independent subsets of U

• then (U, \mathcal{I}_U) is a good set system

• a covering of (S, \mathcal{F}) :

a collection of sets from \mathcal{F} whose union is S

covering number $Cov(S, \mathcal{F})$:

the minimum number of elements in a covering

for a graph G: Cov(V_G, S_G) is the minimum number of stable sets needed to cover all vertices

• so $Cov(V_G, S_G)$ is just the chromatic number

the covering number is also the solution of the IP problem :

minimise	$\sum_{F\in\boldsymbol{\mathcal{F}}}\boldsymbol{x}_{F}$	
subject to	$\sum_{F\ni s} x_F \geq 1,$	for all $s \in S$
	$x_F \in \{0,1\},$	for all $F \in \mathcal{F}$

The fractional version

removing the integrality condition :

gives the fractional covering number F-Cov(S, \mathcal{F})

• and we obviously have: $F-Cov(S, \mathcal{F}) \leq Cov(S, \mathcal{F})$

the dual LP problem of the fractional covering number is :

maximise
$$\sum_{s \in S} y_s$$
subject to $\sum_{s \in F} y_s \leq 1$, for all $F \in \mathcal{F}$ $y_s \geq 0$, for all $s \in S$

• this gives the fractional packing number $F-Pack(S, \mathcal{F})$

• and by LP-duality: $F-Pack(S, \mathcal{F}) = F-Cov(S, \mathcal{F})$

And the integral version of that one

only allowing integers gives :

maximise $\sum_{s \in S} y_s$ subject to $\sum_{s \in F} y_s \leq 1$, for all $F \in \mathcal{F}$ $y_s \in \{0, 1\}$, for all $s \in S$

this gives the packing number Pack(S, F)

• with the relation: $Pack(S, \mathcal{F}) \leq F-Pack(S, \mathcal{F})$

• we can interpret the **packing number** $Pack(S, \mathcal{F})$ as:

• the maximum size |T| of a subset $T \subseteq S$ so that $|T \cap F| \leq 1$, for all $F \in \mathcal{F}$

• i.e.: the maximum size |T| of a subset $T \subseteq S$ so that no two elements of T appear together in a set from \mathcal{F}

for a graph G: Pack(V_G, S_G) is the maximum size of a set of vertices with no two elements in a stable set

• so $Pack(V_G, S_G)$ is just the clique number

for any good set system (S, \mathcal{F}) we have

 $Pack(S, F) \leq F-Pack(S, F) = F-Cov(S, F) \leq Cov(S, F)$

we will add one more parameter :

the circular covering number $C-Cov(S, \mathcal{F})$

map the elements of S to a circle so that :

for every unit interval [x, x + 1) along the circle elements mapped into that interval form a set from *F*

circular covering number C-Cov(S, \mathcal{F}):

minimum circumference of a circle for which this is possible

The right place for the circular covering number - I

- for a good set system : $C-Cov(S, \mathcal{F}) \leq Cov(S, \mathcal{F})$
 - take a disjoint cover F_1, \ldots, F_k of (S, \mathcal{F})
 - put the elements of each F_i together at unit distance around a circle with circumference k :

gives a circular cover with circumference k

for a good set system : $F-Cov(S, \mathcal{F}) \leq C-Cov(S, \mathcal{F})$

take a circular cover along some circle

- for a set *F* that appears in the interval at some point :
 denote by *x_F* the "length of time" it appears
- then for all $s \in S$: $\sum_{F \ni s} x_F = 1$
- and $\sum_{F \in \mathcal{F}} x_F$ = circumference

this gives a fractional cover with value the circumference

Inequalities, inequalities, and more inequalities

so now we know :

		F-Pack				
Pack	\leq	=	\leq	C-Cov	\leq	Cov
		F-Cov				

- can we say for which good set systems we have equality for one of the inequalities?
 - probably too hard ("too local")
- what about those that satisfy an equality

"through and through"?

Degrees of Perfection

(S, \mathcal{F}) a good set system and $T \subseteq S$, then define :

 $\mathcal{F}_T = \{ F \cap T \mid F \in \mathcal{F} \} = \{ F \in \mathcal{F} \mid F \subseteq T \}$

• then (T, \mathcal{F}_T) is again a good set system

called an induced set system

for a graph G with $U \subseteq V_G$:

 $(S_G)_U$ are the stable sets of the subgraph induced by U

Pack \leq F-Cov \leq C-Cov \leq Cov

Degrees of Perfection

What about other "graphical" set systems?

for an odd cycle C_{2k+1} , $k \ge 2$, it is easy to check:

•
$$Pack(V_{C_{2k+1}}, S_{C_{2k+1}}) = 2$$

• F-Cov $(V_{C_{2k+1}}, S_{C_{2k+1}}) = C-Cov(V_{C_{2k+1}}, S_{C_{2k+1}}) = 2 + \frac{1}{\nu}$

•
$$Cov(V_{C_{2k+1}}, S_{C_{2k+1}}) = 3$$

similar things happen for

the complement $\overline{C_{2k+1}}$ of an odd cycle, $k \ge 2$

And what about non-graphical set systems?

(S, F) is a non-graphical good set system <⇒
 there is a subset T ⊆ S with |T| = k ≥ 3 so that:
 T ∉ F

• but every **proper** subset of T is in \mathcal{F}

for such a T, the induced set system (T, \mathcal{F}_T) satisfies :

• $Pack(T, \mathcal{F}_T) = 1$

• $\operatorname{F-Cov}(T, \mathcal{F}_T) = \operatorname{C-Cov}(T, \mathcal{F}_T) = 1 + \frac{1}{k - 1}$

• $\operatorname{Cov}(T, \mathcal{F}_T) = 2$

Pack \leq F-Cov \leq C-Cov \leq Cov

Degrees of Perfection

Perfect graphs are really, really perfect !

- (Pack = F-Cov)-perfect, or
- (Pack = C-Cov)-perfect, or
- (Pack = Cov)-perfect, or
- (F-Cov = Cov)-perfect, or
- (C-Cov = Cov)-perfect

 \iff $(S, \mathcal{F}) = (V_G, \mathcal{S}_G)$ for some perfect graph G

• a set system (S, \mathcal{F}) is a **loopless matroid** if

• (S, \mathcal{F}) is good

• for each $F_1, F_2 \in \mathcal{F}$ with $|F_1| > |F_2|$:

there is an $s \in F_1 \setminus F_2$ so that $F_2 \cup \{s\} \in \mathcal{F}$

example

- take V a vector space and U a subset of $V \setminus \{0\}$
 - then (U, \mathcal{I}_U) is a loopless matroid
 - so: $F-Cov(U, \mathcal{I}_U) = C-Cov(U, \mathcal{I}_U)$

- good set systems that are (F-Cov = C-Cov)-perfect:
 - stable sets of perfect graphs
 - stable sets of odd cycles or complements of odd cycles
 - loopless matroids
 - disjoint unions of the above
 - and probably a lot more . . .

The "remaining" case

questions :

can we characterise

(F-Cov = C-Cov)-perfect set systems?

• or at least the graphs G for which (V_G, S_G) is (F-Cov = C-Cov)-perfect?

contains both matroids and stable sets of perfect graphs?

- the Strong Perfect Graph Theorem "easily" gives : a good set system of the form (V_G, S_G) is
 - (Pack = F-Cov)-perfect, (Pack = C-Cov)-perfect,
 (Pack = Cov)-perfect, (F-Cov = Cov)-perfect, or
 (C-Cov = Cov)-perfect
 - \iff **G** is perfect
- all cases but one were known before the SPGT
- find a proof without using the SPGT that non-perfect graphs are not (C-Cov = Cov)-perfect