Mixing Colour(ing)s in Graphs

JAN VAN DEN HEUVEL

Hoboken, 18 August 2010

Department of Mathematics London School of Economics and Political Science

reporting research by: PAUL BONSMA (ex-Twente) LUIS CERECEDA (ex-LSE) JVDH (LSE) and MATTHEW JOHNSON (Durham)

in several different combinations

 and it all started with a question of HAJO BROERSMA (Durham)

First definitions

graph G = (V, E): finite, simple, no loops, *n* vertices

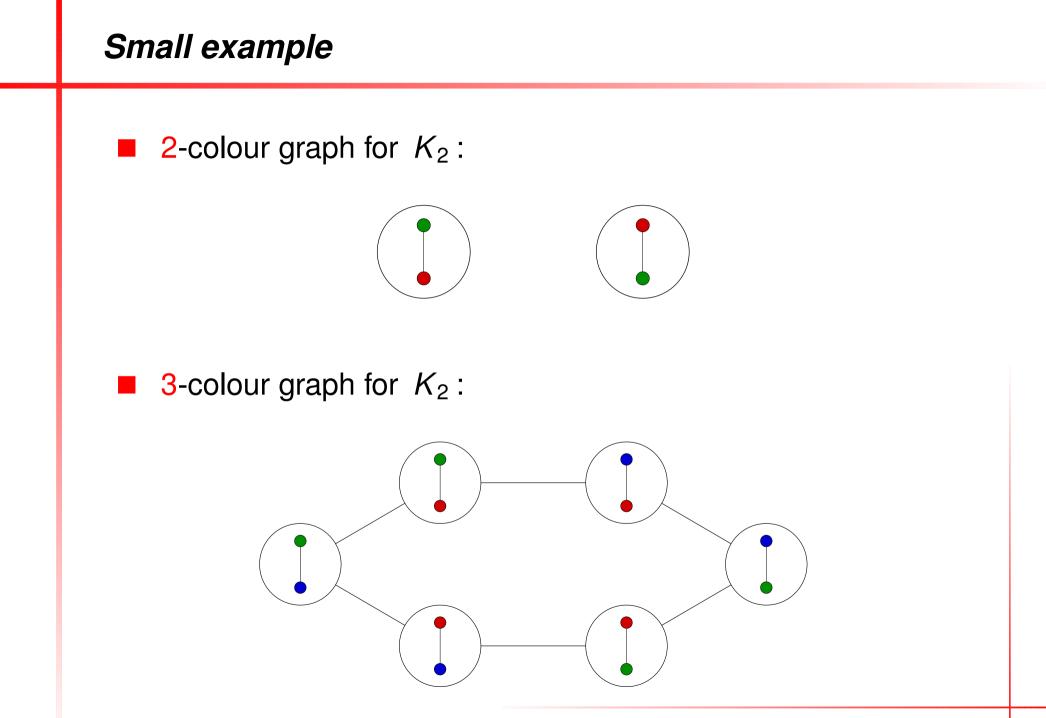
<u>k-colouring of G</u>: proper vertex-colouring using colours from {1,2,...,k}

• we always assume $k \ge \chi(G)$

• we use α, β, \ldots to indicate k-colourings

k-colour graph C(G; k)

- vertices are the k-colourings of G
- two k-colourings are adjacent if they differ in the colour on exactly one vertex of G



Central question

General question

Given G and k,

what can we say about the colour graph C(G; k)?

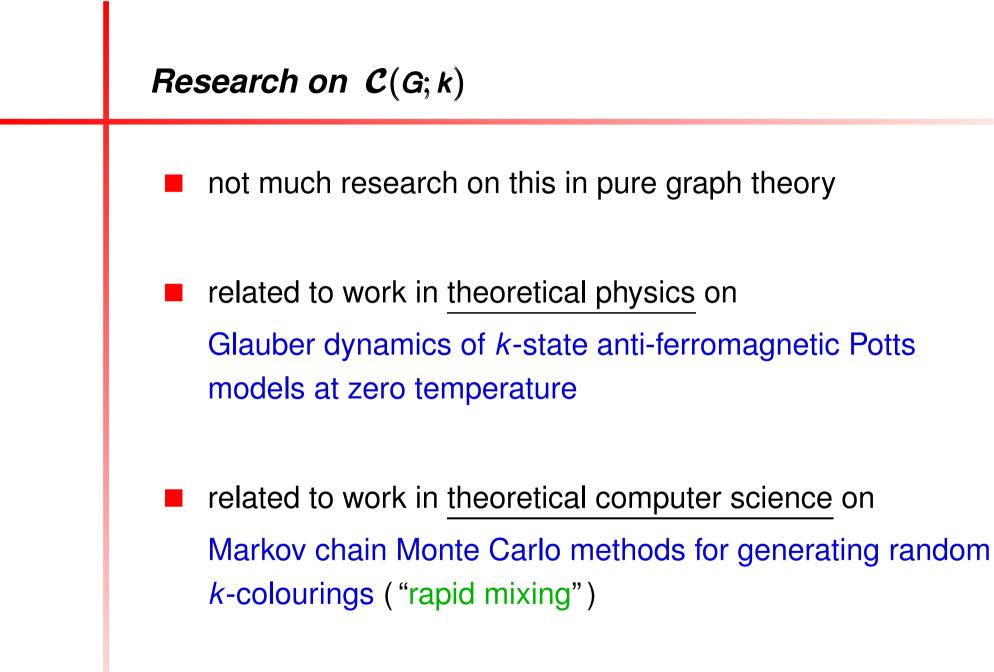
In particular

• is C(G; k) connected?

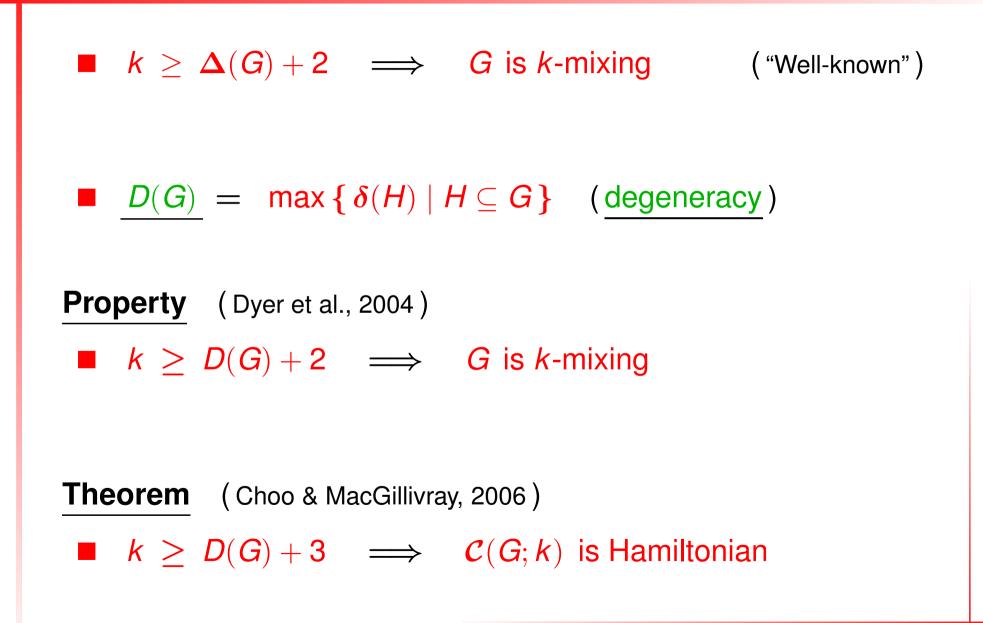
good way to think about it :

can we go from any k-colouring to any other k-colouring by recolouring one vertex at the time?

Terminology: C(G; k) is connected \iff G is k-mixing



Some first results on mixing

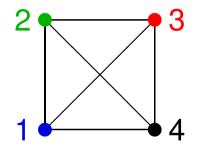


Mixing Colour(ing)s in Graphs

Extremal graphs for the degree bounds

"boring" extremal graph : complete graph K_m

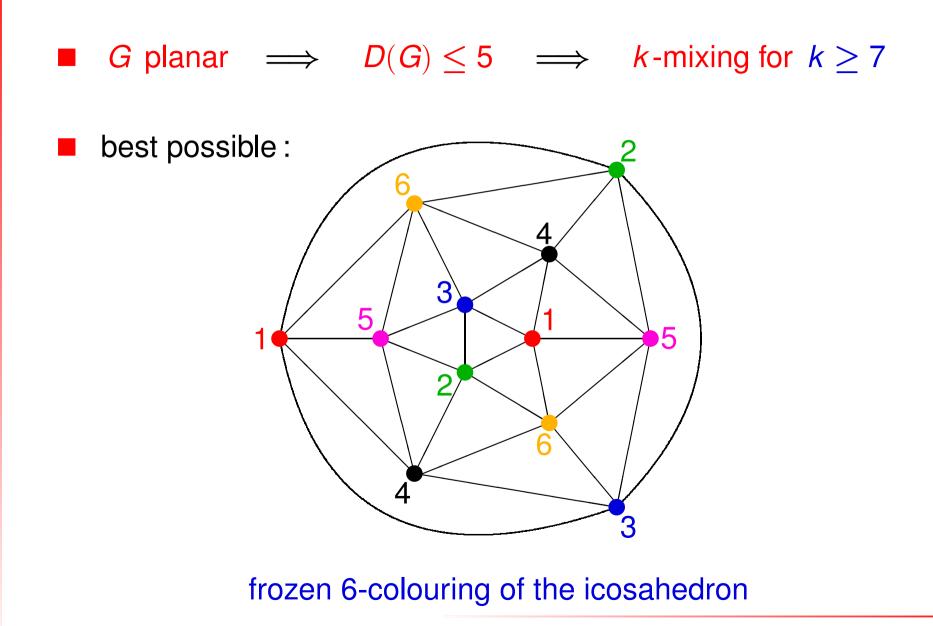
- $\Delta(K_m) + 1 = D(K_m) + 1 = m$
- all *m*-colourings look the same :
- no vertex can change colour



Terminology

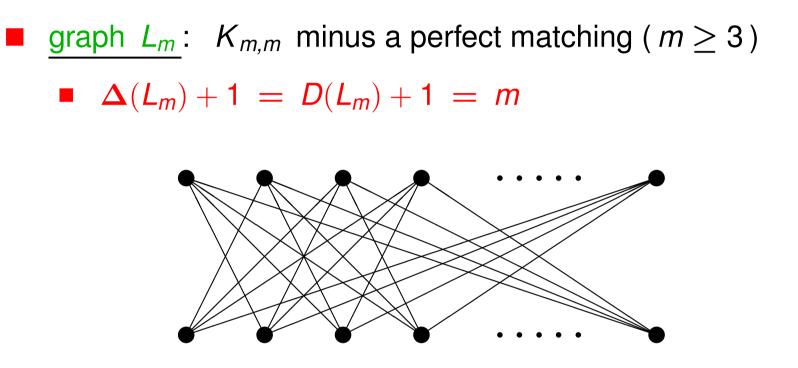
- frozen k-colouring: colouring in which no vertex can change colour
 - frozen colourings form isolated nodes in C(G; k)
 - immediately mean G is not k-mixing

The case for planar graphs

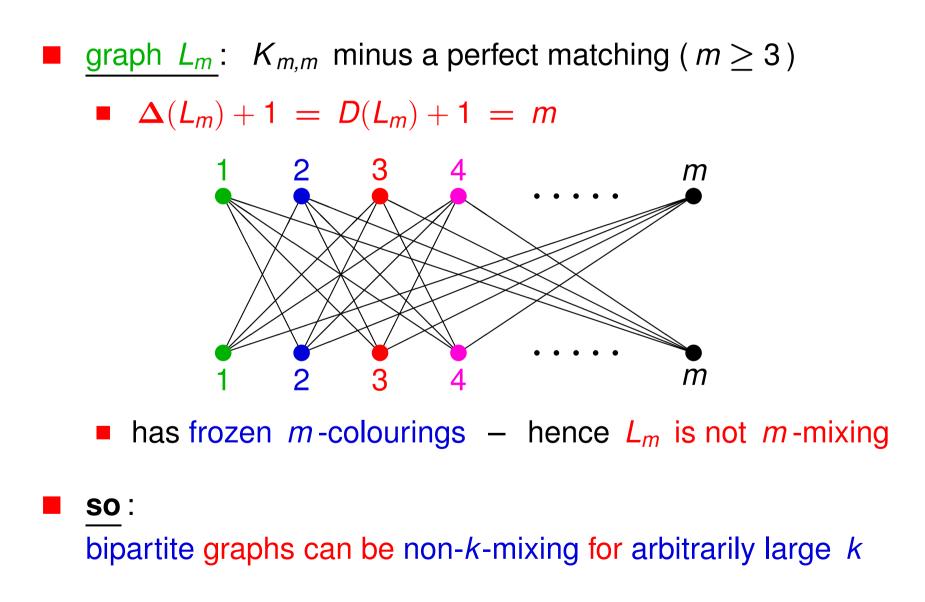


Mixing Colour(ing)s in Graphs

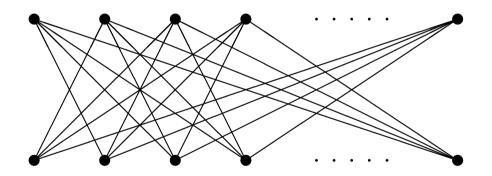
More interesting extremal graphs



More interesting extremal graphs

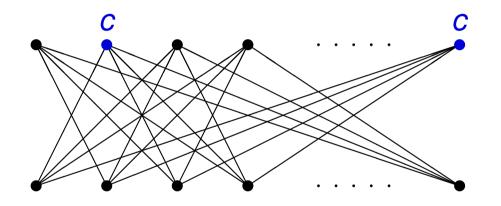


Mixing Colour(ing)s in Graphs



More interesting properties of L_m

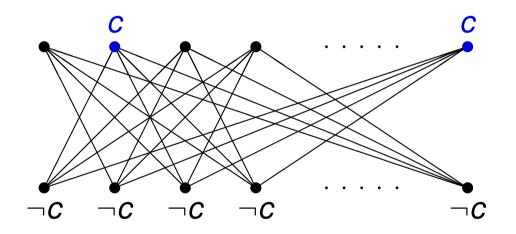
- non-*k*-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



some colour c must appear more than once on the top

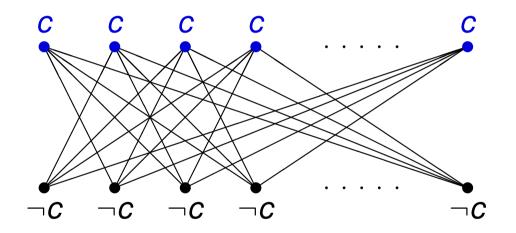
More interesting properties of L_m

- non-*k*-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



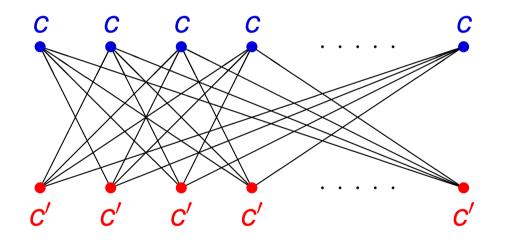
that colour c can't appear among the bottom vertices

- non-*k*-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



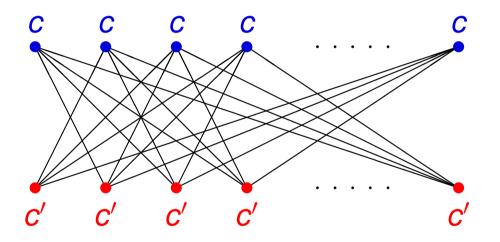
so all vertices on the top can be recoloured to c

- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



• then the bottom can be recoloured to some $c' \neq c$

- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours



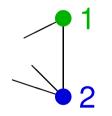
hence any colouring is connected to a 2-colouring

easy to see that all these 2-colourings are connected

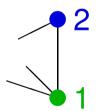
so: mixing is not a monotone property

Mixing for small values of k

- smallest possible is $k = \chi(G)$
- $\chi(G) = 1$: graph without edges boring
- \$\chi(G) = 2\$: bipartite graph with at least one edge
 not-mixing for \$k = 2\$:



can't become



The case $k = \chi = 3$

 $\chi(G) = 3$: 3-colourable graph with at least one odd cycle

cycle C₃ has six 3-colourings, all frozen

 \implies C_3 is not 3-mixing

cycle C₅ has 30 3-colourings, none of them frozen

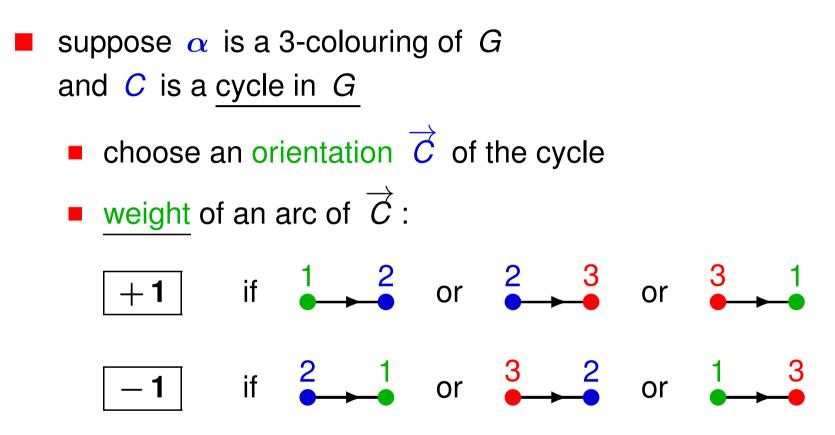
• the colour graph $C(C_5; 3)$ is formed of two 15-cycles

 \implies C_5 is not 3-mixing

Theorem

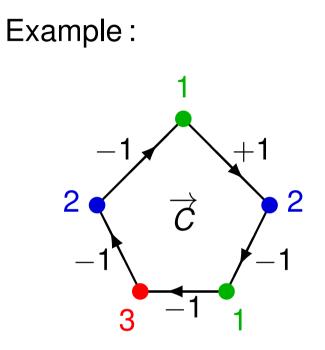
•
$$\chi(G) = 3 \implies G \text{ is not 3-mixing}$$

Proof looks at 3-colourings of cycles



• weight of the oriented cycle : $w(\overrightarrow{C}; \alpha) = \text{sum of the weights of the arcs}$

Proof looks at 3-colourings of cycles

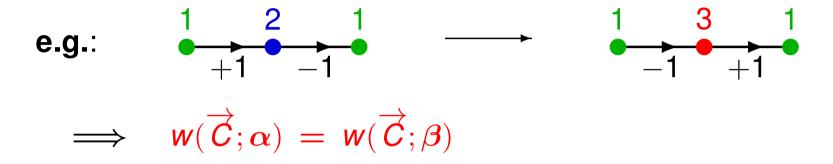


 $w(\overrightarrow{C}; \alpha) = -3$

Mixing Colour(ing)s in Graphs

Weights of 3-colourings of cycles

recolour one vertex to go from α to β



Property

• α and β connected by a path in C(G;3) \implies for all cycles C in $G: w(\overrightarrow{C};\alpha) = w(\overrightarrow{C};\beta)$

Weights of 3-colourings of cycles

given 3-colouring α , form α^* by swapping colours 1 and 2

$$\implies$$
 all arcs change sign

$$\implies$$
 so for all *C* in *G*: $w(\overrightarrow{C}; \alpha^*) = -w(\overrightarrow{C}; \alpha)$

- **now**: take 3-chromatic graph G with a 3-colouring α , and take an odd cycle C in G
- $\implies w(\overrightarrow{C}; \alpha) \neq 0 \quad (\text{odd sum of } + 1 \text{s and } -1 \text{s})$ $\implies w(\overrightarrow{C}; \alpha^*) = -w(\overrightarrow{C}; \alpha) \neq w(\overrightarrow{C}; \alpha)$

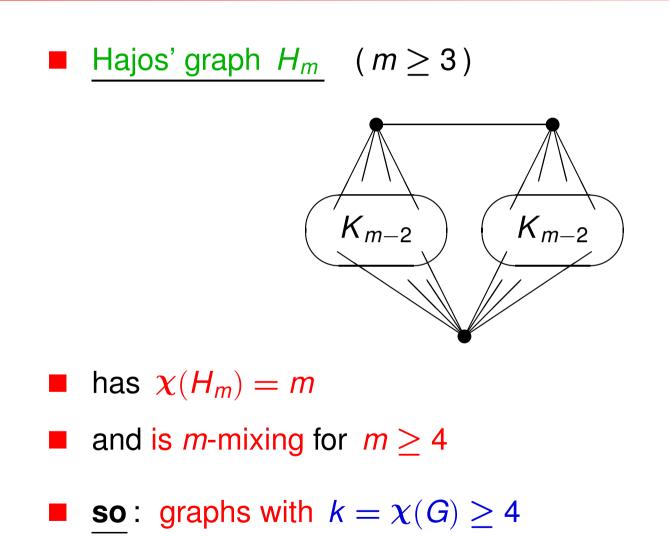
 $\implies \alpha$ and α^* not connected in $\mathcal{C}(G;3)$

 $\implies \mathcal{C}(G; 3)$ not connected

Mixing for larger values of $k = \chi$

- $\chi(G) = 2 \implies G \text{ is not } 2 \text{-mixing}$
- $\chi(G) = 3 \implies G$ is not 3-mixing
- What about $k \ge 4$?
- complete graph K_k has frozen k-colourings
 so: G has K_k as a subgraph \implies G not k-mixing

Mixing for larger values of $k = \chi$



can be k-mixing or not k-mixing

Decision problems

k-MIXING

Input: graph *G* Question: is *G k*-mixing?

probably very hard, since finding one k-colouring of a graph
G is probably very hard, even if we know $k \ge \chi(G)$

Maybe easier:

BIPARTITE- k-MIXING

Input : bipartite graph G Question : is G k-mixing?

Is a given bipartite graph k-mixing?

trivial for k = 2 ("yes" if and only if G has no edges)

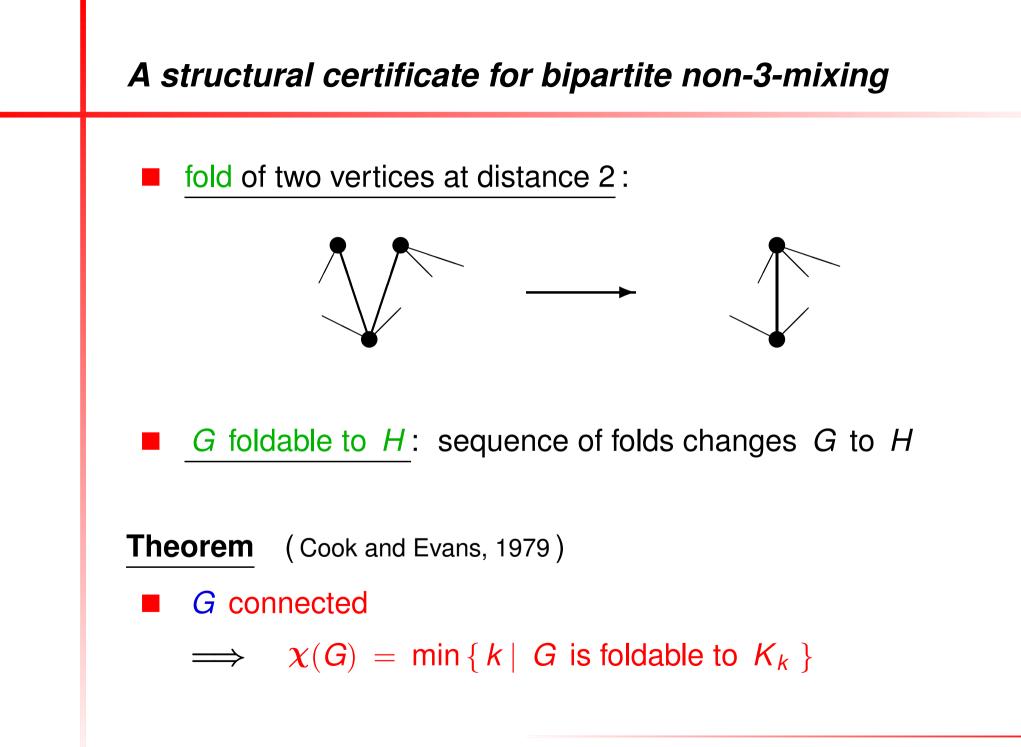
necessary for k = 3:

for all 3-colourings α and cycles C in $G: w(\overrightarrow{C}; \alpha) = 0$

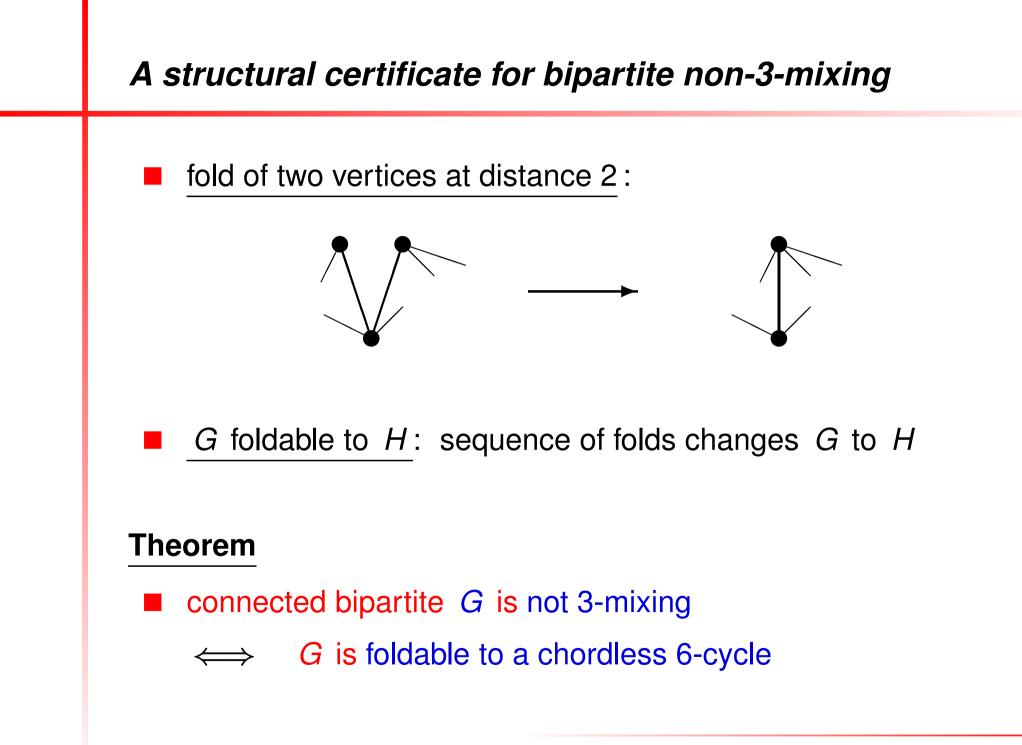
Theorem

- the condition is also sufficient for a graph to be 3-mixing
- so: BIPARTITE-3-MIXING is in coNP

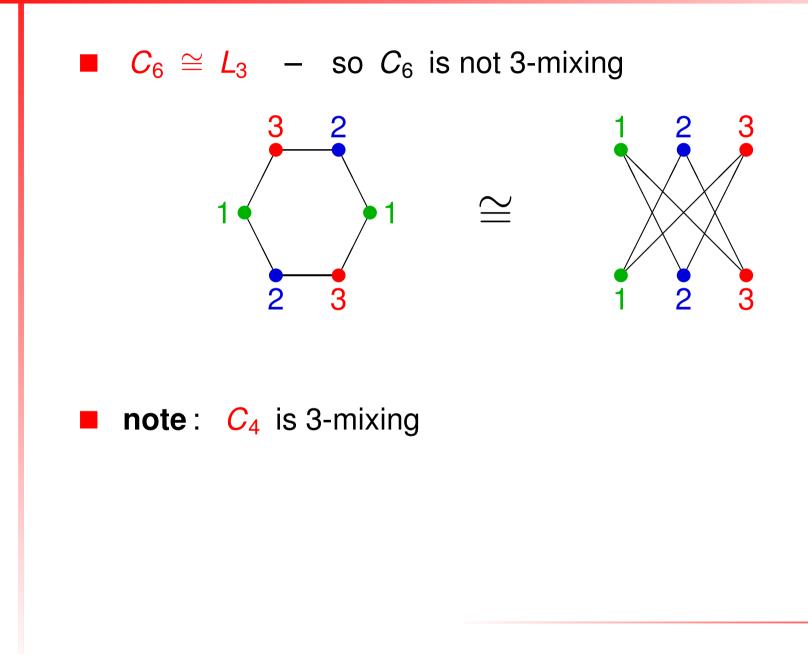
certificate for not 3-mixing: 3-colouring α and cycle *C* in *G* with $w(\overrightarrow{C}; \alpha) \neq 0$



Mixing Colour(ing)s in Graphs



Why the 6-cycle?



Deciding bipartite mixing

• bipartite G not 3-mixing \iff G foldable to C_6

Theorem

• deciding foldability to C_6 is NP-complete

hence

BIPARTITE-3-MIXING is coNP-complete

Theorem

BIPARTITE-3-MIXING is polynomial for planar graphs

open: what happens for $k \ge 4$?

A decision problem for general graphs

k-COLOUR-PATH

Input: graph *G* and two *k*-colourings α and β **Question**: is there is a path in C(G; k) from α to β ? or: "are α and β connected?"

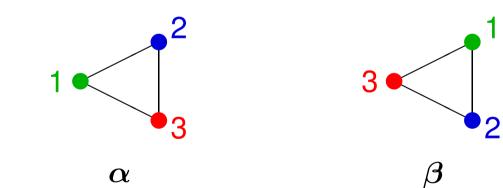
- this question might be doable for any k
- trivially decidable for k = 2

necessary condition 1

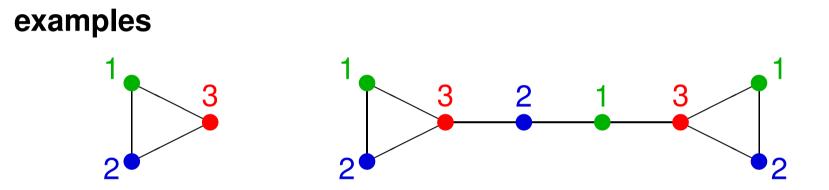
for two 3-colourings α and β to be connected :

• for all cycles *C* in *G*:
$$w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$$

but not sufficient :



fixed vertex of a colouring : can never change colour

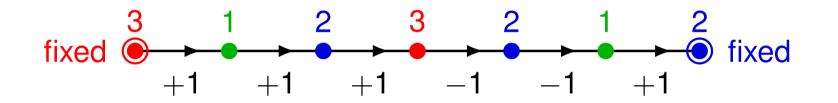


necessary condition 2

for two 3-colourings α and β to be connected :

all fixed vertices in \(\alpha\) must be fixed in \(\beta\) as well and must have the same colour in both

• a path *P* with two fixed end vertices can also be given a weight $w(\overrightarrow{P}; \alpha)$



and this weight stays the same when recolouring

necessary condition 3

for two 3-colourings α and β to be connected :

• for all fixed-ends paths $P: w(\overrightarrow{P}; \alpha) = w(\overrightarrow{P}; \beta)$

two 3-colourings α and β can only be connected if :

• for all cycles C in G: $w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$

• for all fixed-ends paths $P: w(\overrightarrow{P}; \alpha) = w(\overrightarrow{P}; \beta)$

• the sets of fixed vertices in α and β must be identical

Theorem

the conditions above are also sufficient

the conditions can be checked in polynomial time

and

if connected, then there is a path of length $O(n^2)$

k-COLOUR-PATH for $k \ge 4$

Theorem

for $k \ge 4$, *k*-COLOUR-PATH is PSPACE-complete

PSPACE

- decision problems that can be solved using a polynomial amount of memory (no restrictions on time)
- contains NP and coNP
- equal to its non-deterministic variant NPSPACE

k-COLOUR-PATH for $k \ge 4$

Theorem

k-COLOUR-PATH for bipartite, planar graphs :

- k = 2: trivially decidable
- **k** = 3 : decidable in polynomial time
- **k** = 4 : PSPACE-complete
- $k \ge 5$: always "YES"

Length of paths between connected colourings

Theorem

- for $k \ge 4$, k-COLOUR-PATH is PSPACE-complete
- If NP ≠ PSPACE (similar status as P ≠ NP), then
 no PSPACE-complete problem should have polynomial
 length certificates
- **so**: for $k \ge 4$ path length between two connected k-colourings should not always be polynomial

Length of paths between connected colourings

Theorem

for all $k \ge 4$, there exists graphs G

with two *k*-colourings α and β so that

- α and β are connected
- the shortest path from α to β has exponential length

the graphs can be bipartite

and for k = 4 even bipartite and planar

Something different : using extra colours

- given a graph G and two k-colourings α and β
- suppose we can "buy" extra colours to go from α to β how many extra colours do we need?

Theorem

\chi(G) – 1 extra colours is always enough

χ – 1 extra colours are always enough

sketch of the proof

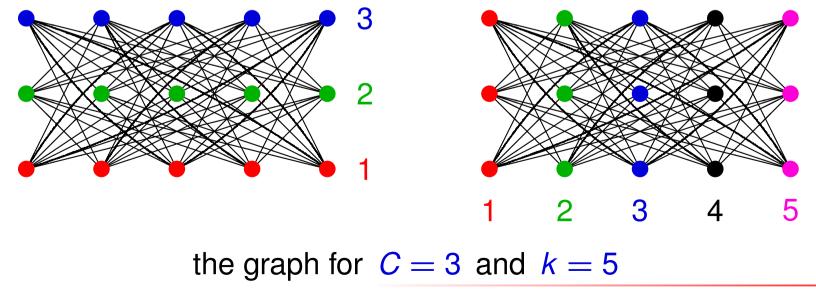
- take a χ -colouring using colours $-1, -2, ..., -\chi$ say with colour-classes $V_{-1}, V_{-2}, ..., V_{-\chi}$
- starting with the k-colouring α (using colours $1, 2, \ldots, k$)
 - recolour vertices in V_{-1} with colour -1
 - recolour vertices in V_{-2} with colour -2
 - etc., until vertices in $V_{-(\chi-1)}$ with colour $-(\chi-1)$
- the remaining vertices in $V_{-\chi}$ form an independent set
 - hence can be recoloured to their colours according to β
- now recolour vertices in $V_{-1} \cup V_{-2} \cup \cdots \cup V_{-(\chi-1)}$

according to β as well

χ – 1 extra colours may be needed

Theorem

for all C, k with k ≥ C ≥ 2
 there exists graphs G with X(G) = C
 and two k-colourings α and β so that
 to get from α to β requires C - 1 extra colours



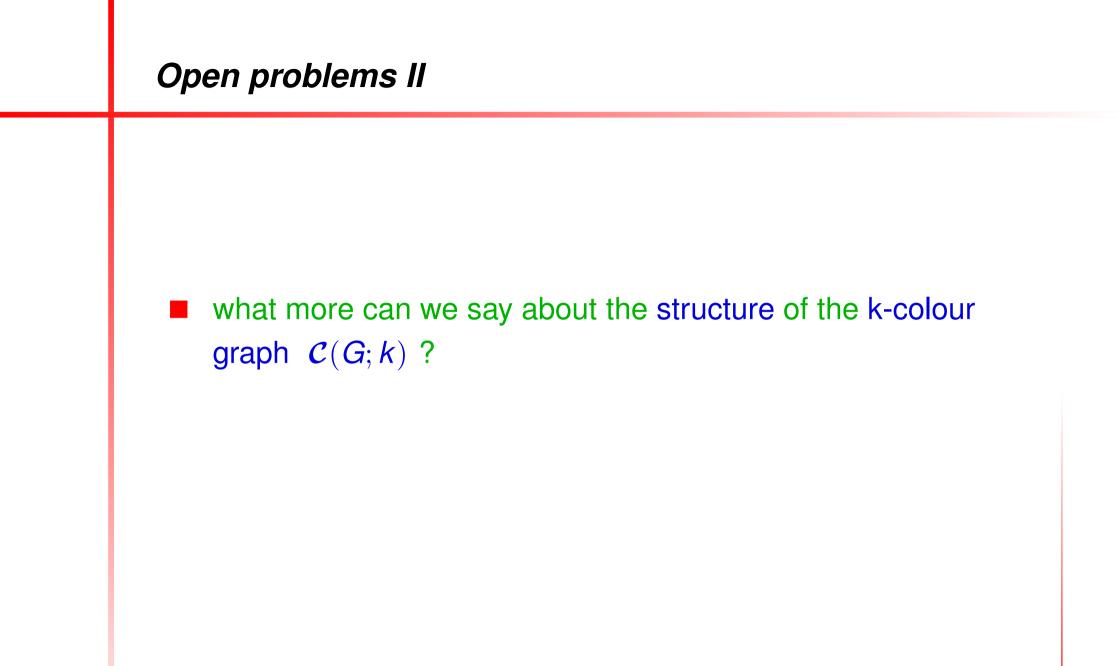
Open problems I

we know

- BIPARTITE-2-MIXING is trivial (so certainly in P)
- **BIPARTITE-3-MIXING** is coNP-complete
- **BIPARTITE-4-COLOUR-PATH** is PSPACE-complete

- what is the complexity of BIPARTITE-4-MIXING ?
- maybe easier if the graph is cubic ?

what can we say in general if $k = \Delta + 1$ or $k = \Delta$?



Open problems III

what happens if we use a different recolouring rule ?

- Kempe recolouring :
 - changing the colour of one vertex v from c_1 to c_2
 - by swapping colours on the component induced by vertices coloured c₁ or c₂ containing v

Folklore

- G bipartite \implies G is Kempe-k-mixing for all k
- what is the complexity of KEMPE-k-PATH or KEMPE-k-MIXING for non-bipartite graphs?