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First : A more general problem

set system (S, FFFFFFFFF ) : a finite set S

with a collection F of subsets of S

a set system is “good” if :

F is closed under taking subsets, and

F covers all of S (
⋃

F∈F

F = S )

(S,F) good =⇒ for all s ∈ S : {s} ∈ F
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Coverings

a covering of (S,F) :

a collection of sets from F whose union is S

covering number Cov(S, FFFFFFFFF ) :

the minimum number of elements in a covering
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Let’s make things more complicated

the covering number is also the solution of the IP problem :

minimise
∑

F ∈F

xF

subject to
∑

F ∋ s

xF ≥ 1, for all s ∈ S

xF ∈ { 0, 1 } , for all F ∈ F
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The fractional version

removing the integrality condition :

minimise
∑

F ∈F

xF

subject to
∑

F ∋ s

xF ≥ 1, for all s ∈ S

xF ≥ 0, for all F ∈ F

gives the fractional covering number F-Cov(S, FFFFFFFFF )

and we obviously have : F-Cov(S,F) ≤ Cov(S,F)
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The circular covering number

map the elements of S to a circle so that :

for every unit interval [x , x + 1) along the circle

elements mapped into that interval form a set from F

s1

s2

s3,s4

circular covering number C-Cov(S, FFFFFFFFF ) :

minimum circumference of a circle for which this is possible
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The right place for the circular covering number - I

for a good set system : C-Cov(S,F) ≤ Cov(S,F)

take a disjoint cover F 1, . . . , F k of (S,F)

put the elements of each F i together at unit distance

around a circle with circumference k :

all s ∈ F 1

all s ∈ F 2

gives a circular cover with circumference k
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The right place for the circular covering number - II

for a good set system : F-Cov(S,F) ≤ C-Cov(S,F)

take a circular cover along a circle

s1

s2

s3,s4

“move” the unit interval with “unit speed” round the circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears
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The right place for the circular covering number - II

for a good set system : F-Cov(S,F) ≤ C-Cov(S,F)

take a circular cover along some circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears

then for all s ∈ S :
∑

F ∋ s

xF = 1 s1

s2

s3,s4and
∑

F ∈F

xF = circumference
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The right place for the circular covering number - II

for a good set system : F-Cov(S,F) ≤ C-Cov(S,F)

take a circular cover along some circle

for a set F that appears in the interval at some point :

denote by xF the “length of time” it appears

then for all s ∈ S :
∑

F ∋ s

xF = 1

and
∑

F ∈F

xF = circumference

this gives a fractional cover with value the circumference
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Inequalities

so now we know :

F-Cov ≤ C-Cov ≤ Cov

can we say for what good set systems we have equality for

one of the inequalities ?
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But first some examples

G = (V G, EG) a graph

take SSSSSSSSSG the collection of all stable sets in V G

( sets containing no adjacent pairs of vertices )

Cov(V G,SG) :

minimum number of stable sets needed to cover V G

so :

Cov(V G,SG) = χ(G) chromatic number of G

F-Cov(V G,SG) = χf (G) fractional chromatic nr.

C-Cov(V G,SG) = χc(G) circular chromatic nr.
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Another example

G = (V G, EG) a graph, with multiple edges allowed

AAAAAAAAAG : the collection of subsets of EG

that induce an acyclic graph ( = induce a forest )

Cov(EG,AG) :

minimum number of forests needed to cover EG

so :

Cov(EG,AG) = a(G) arboricity of G

F-Cov(EG,AG) = af (G) fractional arboricity

C-Cov(EG,AG) = ac(G) circular arboricity
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Back to the question

now we know for all good set systems :

F-Cov ≤ C-Cov ≤ Cov

when do we have equality ?

probably too hard ( “too local” )

better question ( maybe ) :

when do we have equality for (S,F)

and for all its induced set systems ?
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Induced set systems

(S,F) a good set system, then for T ⊆ S define :

FTFTFTFTFTFTFTFTFT = { F ∩ T | F ∈ F } = { F ∈ F | F ⊆ T }

then (T ,FT ) is the set system induced by T

( it is automatically good )

for a graph G :

U ⊆ V G : (SG)U are the stable sets

of the subgraph induced by U

D ⊆ EG : (AG)D are the acyclic edge sets

of the subgraph induced by D
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Perfect graphs

a graph G is perfect if

for all induced subgraphs H of G : ω(H) = χ(H)

( ω(H)ω(H)ω(H)ω(H)ω(H)ω(H)ω(H)ω(H)ω(H) : clique number of H )

for any graph H : ω(H) ≤ χf (H)

so :

G a perfect graph

=⇒ for all U ⊆ V G :

F-Cov(U, (SG)U) = Cov(U, (SG)U)

and C-Cov(U, (SG)U) = Cov(U, (SG)U)
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Perfect graphs are really special

but in fact :

(S,F) any good set system

then :

F-Cov(T ,FT ) = Cov(T ,FT ) for all induced (T ,FT )

⇐⇒ (S,F) = (V G,SG) for some perfect graph G

C-Cov(T ,FT ) = Cov(T ,FT ) for all induced (T ,FT )

⇐⇒ (S,F) = (V G,SG) for some perfect graph G
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All that is left to do . . .

for what good set systems (S,F) do we have :

F-Cov(T ,FT ) = C-Cov(T ,FT ) for all induced (T ,FT ) ?

well . . .

(S,F) = (V G,SG) for a perfect graph G

(S,F) = (EG,AG) for any graph G ( vdH & Thomassé )

( actually, for any matroid )

we know a few more special cases

and a few constructions for new ones from old ones
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Fractional and circular arboricity

for the remainder of the talk, we’ll look at the result

for any graph G : af (G) = ac(G) ( vdH & Thomassé )

some extra notation :

CαCαCαCαCαCαCαCαCα : circle with circumference α ( α ∈ R , α > 0 )

ZkZkZkZkZkZkZkZkZk : integers modulo k

( think : 1, 2, . . . , k with a circular ordering )
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Circular arboricity again

we want to map the edges EG to the circle Cα so that :

for every unit interval [x , x + 1) along the circle

edges mapped into that interval form a forest

e1

e2

e3,e4

1
Cα

circular arboricity ac(G) :

minimum α for which this is possible
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A bound on the circular arboricity

for every subgraph H ⊆ G we must have :

a forest can have at most |V H | − 1 edges from H

so every unit interval of Cα can have

at most |V H | − 1 edges from H

so we must have : ac(G) ≥ max
H ⊆ G

|EH |

|V H | − 1

Conjecture ( Gonçalves ) : ac(G) = max
H ⊆ G

|EH |

|V H | − 1
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Integral and fractional arboricity

Theorem ( Nash-Williams, 1964; Edmonds, 1964 )

K ≥ max
H ⊆ G

⌈

|EH |

|V H | − 1

⌉

( where K ∈ N )

=⇒ EG can be partitioned into K forests

this means : ac(G) ≤ a(G) = max
H ⊆ G

⌈

|EH |

|V H | − 1

⌉

folklore :

for the fractional arboricity : af (G) = max
H ⊆ G

|EH |

|V H | − 1
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Quick proof of the fractional arboricity

suppose max
H ⊆ G

|EH |

|V H | − 1
=

P

Q

form G
Q

G
Q

G
Q

G
Q

G
Q

G
Q

G
Q

G
Q

G
Q by replacing each edge by Q parallel edges

then : max
H ⊆ G

Q

⌈

|EH |

|V H | − 1

⌉

= max
H ⊆ G

Q

|EH |

|V H | − 1
= P

Nash-Williams; Edmonds :

edges of G
Q can be covered by P forests

so : G has P forests covering each edge at least Q times

set xF = 1/Q for these forests �
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Back to what we want to prove

want to prove : ac(G) = max
H ⊆ G

|EH |

|V H | − 1
=

P

Q

instead of “real” circle CP/Q and unit intervals, we can :

consider the “discrete” circle ZP

and have “intervals” of Q consecutive integers

e1

e2

e3,e4
CP/Q

1 ✲✛

e1

e2

e3,e4

ZP

Q
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Changing our point of view

we want to :

map the edges into ZP

so that : edges mapped

into any set of Q consecutive points form a forest

this is equivalent to :

map each edge to Q consecutive points of ZP

so that for x ∈ ZP : edges covering x form a forest
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Changing our point of view

e1

e2

e3,e4

ZP

Q ✲✛
ZP

x

e1

e2

crucial idea :

generalise this, by allowing different edges

to be mapped to a different number of consecutive points

in other words : give each edge e some weight w(e)
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The general theorem

Theorem

given : K ∈ N and edge weights w : EG → N

suppose : for all H ⊆ G : K ≥

∑

e ∈ EH

w(e)

|V H | − 1

then :

we can map each e to w(e) consecutive points of ZK

so that for all x ∈ ZK : edges covering x form a forest

Corollary :

K = P and w ≡ Q gives : ac(G) =
P

Q
= max

H ⊆ G

|EH |

|V H | − 1
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Some ideas from the proof

proof by induction on
∑

w(e)

choose an edge e1 and replace w(e1) by w(e1) − 1

find a suitable mapping to ZK with this reduced weight

say e1 gets mapped to the sequence x0, . . . , x1 − 1

map an extra copy of e1 to position x1

this may introduce a cycle at position x1

there is an edge e2 in this cycle not mapped to x1 − 1

say e2 gets mapped to the sequence x1, . . . , x2 − 1
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Some ideas from the proof

say e2 gets mapped to the sequence x1, . . . , x2 − 1

remove the copy of e2 from x1

this will break the cycle at x1 !!

map a new copy of e2 to position x2

this may introduce a cycle at position x2

there is an edge e3 in this cycle not mapped to x2 − 1

say e3 gets mapped to the sequence x2, . . . , x3 − 1
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Some ideas from the proof

say e3 gets mapped to the sequence x2, . . . , x3 − 1

remove the copy of e3 from x2

this will break the cycle at x2

map a new copy of e3 to position x3

this may introduce a cycle at position x3

there is an edge e4 in this cycle not mapped to x3 − 1

ad infinitum . . . . . . . . .

NOT !
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Another corollary

Conjecture ( Kajitani et al., 1988 )

if : max
H ⊆ G

|EH |

|V H | − 1
=

|EG|

|V G| − 1
( G is uniformly dense )

there exists a circular ordering of EG

so that each |V G| − 1 consecutive edges

form a spanning tree

known to be true for

a few special cases of graphs

graphs consisting of 2 edge-disjoint spanning trees

( that case even open for matroids )
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The other corollary

Theorem

if :

max
H ⊆ G

|EH |

|V H | − 1
=

|EG|

|V G| − 1

and : |V G| − 1 and |EG| are co-prime

then :

there exists a circular ordering of EG

so that each |V G| − 1 consecutive edges

form a spanning tree
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Some open problems - I

before the Strong Perfect Graph Theorem we knew :

G not perfect

=⇒ there is an H ⊆ G so that χf (H) 6= χ(H)

the Strong Perfect Graph Theorem makes it trivial to prove :

G not perfect

=⇒ there is an H ⊆ G so that χc(H) 6= χ(H)

but can we prove this without it ?
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Some open problems - II

can we characterise the graphs G

for which χf (H) = χc(H) , for all H ⊆ G ?
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Some open problems - III

we know two large classes of good set systems (S,F)

for which :

F-Cov(T ,FT ) = C-Cov(T ,FT ) for all induced (T ,FT )

namely :

(V G,SG) for perfect graphs G

(EM , IM) for loopless matroids M

( with (EG,AG) for all all graphs G as special cases )

what “natural” class of set systems contains

both matroids and stable sets of perfect graphs ?
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