Circular Arboricity of Graphs (and Matroids)

JAN VAN DEN HEUVEL

Grenoble, 20 January 2011

Department of Mathematics London School of Economics and Political Science

• a covering of (S, \mathcal{F}) :

a collection of sets from $\boldsymbol{\mathcal{F}}$ whose union is \boldsymbol{S}

• covering number $Cov(S, \mathcal{F})$:

the minimum number of elements in a covering

Let's make things more complicated

the covering number is also the solution of the IP problem :

minimise $\sum_{F \in \mathcal{F}} x_F$ subject to $\sum_{F \ni s} x_F \ge 1$, for all $s \in S$ $x_F \in \{0, 1\}$, for all $F \in \mathcal{F}$

The fractional version

removing the integrality condition :

minimise $\sum_{F \in \mathcal{F}} x_F$ subject to $\sum_{F \ni s} x_F \ge 1$, for all $s \in S$ $x_F \ge 0$, for all $F \in \mathcal{F}$

gives the fractional covering number F-Cov(S, F)

• and we obviously have : $F-Cov(S, \mathcal{F}) \leq Cov(S, \mathcal{F})$

map the elements of S to a circle so that :

for every unit interval [x, x + 1) along the circle
 elements mapped into that interval form a set from *F*

circular covering number C-Cov(S, F) :

minimum circumference of a circle for which this is possible

The right place for the circular covering number - I

- for a good set system : $C-Cov(S, \mathcal{F}) \leq Cov(S, \mathcal{F})$
 - take a disjoint cover F_1, \ldots, F_k of (S, \mathcal{F})
 - put the elements of each F_i together at unit distance around a circle with circumference k :

gives a circular cover with circumference k

Circular Arboricity of Graphs (and Matroids)

Circular Arboricity of Graphs (and Matroids)

so now we know :

$$\mathsf{F}\text{-}\mathsf{Cov}\ \leq\ \mathsf{C}\text{-}\mathsf{Cov}\ \leq\ \mathsf{Cov}$$

can we say for what good set systems we have equality for one of the inequalities ?

But first some examples

- $G = (V_G, E_G)$ a graph
 - take S_G the collection of all stable sets in V_G
 (sets containing no adjacent pairs of vertices)
- Cov(V_G, S_G):
 minimum number of stable sets needed to cover V_G

SO :

- $\operatorname{Cov}(V_G, \mathcal{S}_G) = \chi(G)$
- $F\text{-Cov}(V_G, \mathcal{S}_G) = \chi_f(G)$
- $C\text{-Cov}(V_G, \mathcal{S}_G) = \chi_c(G)$

chromatic number of *G* fractional chromatic nr. circular chromatic nr.

Another example

- $G = (V_G, E_G)$ a graph, with multiple edges allowed
 - A_G : the collection of subsets of E_G that induce an acyclic graph (= induce a forest)
- $Cov(E_G, A_G)$: minimum number of forests needed to cover E_G

SO :

- $\operatorname{Cov}(E_G, \mathcal{A}_G) = a(G)$
- $F\text{-Cov}(E_G, \mathcal{A}_G) = a_f(G)$
- $C\text{-}Cov(E_G, \mathcal{A}_G) = a_c(G)$

arboricity of *G* fractional arboricity circular arboricity

probably too hard ("too local")

better question (maybe):

when do we have equality for (S, F) and for all its induced set systems? • (S, \mathcal{F}) a good set system, then for $T \subseteq S$ define :

 $\mathcal{F}_{\mathcal{T}} = \{ F \cap T \mid F \in \mathcal{F} \} = \{ F \in \mathcal{F} \mid F \subseteq T \}$

then (T, F_T) is the set system induced by T (it is automatically good)

 for a graph G:
 U ⊆ V_G: (S_G)_U are the stable sets of the subgraph induced by U
 D ⊆ E_G: (A_G)_D are the acyclic edge sets of the subgraph induced by D

Perfect graphs

a graph G is perfect if

for all induced subgraphs H of G: $\omega(H) = \chi(H)$ ($\omega(H)$: clique number of H)

for any graph H: $\omega(H) \leq \chi_f(H)$

SO :

G a perfect graph

 \implies for all $U \subseteq V_G$:

 $F-Cov(U, (\mathcal{S}_G)_U) = Cov(U, (\mathcal{S}_G)_U)$

and $C-Cov(U, (\mathcal{S}_G)_U) = Cov(U, (\mathcal{S}_G)_U)$

Circular Arboricity of Graphs (and Matroids)

Perfect graphs are really special

but in fact :

(S, \mathcal{F}) any good set system

then:

F-Cov $(T, \mathcal{F}_T) = Cov(T, \mathcal{F}_T)$ for all induced (T, \mathcal{F}_T)

 \iff $(S, \mathcal{F}) = (V_G, \mathcal{S}_G)$ for some perfect graph G

• $C\text{-}Cov(T, \mathcal{F}_T) = Cov(T, \mathcal{F}_T)$ for all induced (T, \mathcal{F}_T)

 \iff $(S, \mathcal{F}) = (V_G, \mathcal{S}_G)$ for some perfect graph G

and a few constructions for new ones from old ones

- we want to map the edges E_G to the circle C_{α} so that :
 - for every unit interval [x, x + 1) along the circle

edges mapped into that interval form a forest

circular arboricity **a**_c(**G**) :

minimum α for which this is possible

Integral and fractional arboricity

Quick proof of the fractional arboricity

set $x_F = 1/Q$ for these forests

Back to what we want to prove

- want to prove: $a_c(G) = \max_{H \subseteq G} \frac{|E_H|}{|V_H| 1} = \frac{P}{Q}$
- instead of "real" circle $C_{P/Q}$ and unit intervals, we can :
 - consider the "discrete" circle Z_P
 - and have "intervals" of Q consecutive integers

Circular Arboricity of Graphs (and Matroids)

Changing our point of view

we want to :

- map the edges into Z_P
- so that: edges mapped into any set of *Q* consecutive points form a forest
- this is equivalent to :
 - map each edge to Q consecutive points of Z_P
 - so that for $x \in \mathbb{Z}_P$: edges covering x form a forest

Changing our point of view

The general theorem

Theorem

■ given : $K \in \mathbb{N}$ and edge weights $w : E_G \to \mathbb{N}$ ■ suppose : for all $H \subseteq G$: $K \ge \frac{\sum_{e \in E_H} w(e)}{|V_H| - 1}$

then:

• we can map each e to w(e) consecutive points of Z_K

• so that for all $x \in \mathbb{Z}_{K}$: edges covering x form a forest

Corollary:

K = P and $w \equiv Q$ gives: $a_c(G) = \frac{P}{Q} = \max_{H \subseteq G} \frac{|E_H|}{|V_H| - 1}$

- remove the copy of e₂ from x₁
 - this will break the cycle at x₁ !!
- map a new copy of e_2 to position x_2
- this may introduce a cycle at position x₂
- there is an edge e_3 in this cycle not mapped to $x_2 1$
- say e_3 gets mapped to the sequence $x_2, \ldots, x_3 1$

say e_3 gets mapped to the sequence $x_2, \ldots, x_3 - 1$

• remove the copy of e_3 from x_2

- this will break the cycle at x₂
- map a new copy of e_3 to position x_3
- this may introduce a cycle at position x₃
- there is an edge e_4 in this cycle not mapped to $x_3 1$

ad infinitum

NOT !

Another corollary

(that case even open for matroids)

The other corollary

Theorem

- if:
 - $\max_{H \subseteq G} \frac{|E_H|}{|V_H| 1} = \frac{|E_G|}{|V_G| 1}$
 - and: $|V_G| 1$ and $|E_G|$ are co-prime
 - then:

• there exists a circular ordering of E_G

• so that each $|V_G| - 1$ consecutive edges

form a spanning tree

• can we characterise the graphs G

• for which $\chi_f(H) = \chi_c(H)$, for all $H \subseteq G$?

Circular Arboricity of Graphs (and Matroids)