
Graph Colouring with Distances

JAN VAN DEN HEUVEL

UPMC, Paris, 7 April 2011

Department of Mathematics

London School of Economics and Political Science



The basics of graph colouring

vertex-colouring with k colours :

adjacent vertices must receive different colours

chromatic number χ(G) :

minimum k so that a vertex-colouring exists

list-colouring : as vertex-colouring,

but each vertex v has its own list L(v) of colours

choice number ch(G) :

minimum k so that if all |L(v)| ≥ k ,

then a proper list vertex-colouring exists
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Another way to look at vertex-colouring

vertex-colouring :

vertices at distance one must receive different colours

now suppose we want vertices at larger distances

( say, up to distance D ) to receive different colours as well

can be modelled using the D -th power GD of a graph :

same vertex set as G

edges between vertices with distance at most D in G
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Powers of a graph
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A first conjecture / problem

powers of graphs seem to have more structure than graphs

in general

List-Square-Colouring Conjecture ( Kostochka & Woodall, 2001 )

for any graph G : ch(G2) = χ(G2)

if true, then ch(GD) = χ(GD) for all even D

( since G2d = (Gd)2 )

what about ch(GD) = χ(GD) for odd D ?
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Colouring powers of a graph

easy fact

∆(GD) ≤

D−1
∑

i = 0

∆(G) (∆(G) − 1)i = O(∆(G)D)

( ∆ = ∆(G) : maximum degree of G )

so : χ(GD) ≤ O(∆(G)D)

but for very few graphs you would expect to need that many

colours
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The square of d -degenerate graphs

G is d -degenerate : every subgraph of G

has a vertex of degree at most d

easy, but not trivial :

G d -degenerate =⇒ G2 is ((2 d − 1)∆) -degenerate

so :

G planar =⇒ χ(G2) ≤ 9∆ + 1
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The square of planar graphs

Conjecture ( Wegner, 1977 )

G planar

=⇒ χ(G2) ≤
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Towards Wegner’s Conjecture

G planar =⇒

χ(G2) ≤ 8∆ − 22 ( Jonas, PhD, 1993 )

χ(G2) ≤ 3∆ + 5 ( Wong, MSc, 1996 )

χ(G2) ≤ 2∆ + 25 ( vdH & McGuinness, 2003 )

χ(G2) ≤ 9
/

5∆ + 1 ( for ∆ ≥ 47 )

( Borodin, Broersma, Glebov & vdH, 2001 )

χ(G2) ≤ 5
/

3∆ + 24 ( for ∆ ≥ 241 )

( Molloy & Salavatipour, 2005 )
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Towards Wegner’s Conjecture

Theorem ( Havet, vdH, McDiarmid & Reed, 2008+ )

G planar =⇒ χ(G2) ≤
(

3
/

2 + o(1)
)

∆ (∆ → ∞)

we actually prove the list-colouring version

and for much larger classes of graphs :

Theorem

G graph, K 3,k -minor free for some fixed k

=⇒ ch(G2) ≤
(

3
/

2 + o(1)
)

∆
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Even more general results ?

Property

G graph, H -minor free for some fixed graph H

=⇒ ch(G2) ≤ CH ∆ + O(1) , for some constant CH

Question

given H, what is the smallest possible CH ?

e.g.

for H = K 3,k we know CK 3,k = 3
/

2

for H = K 5 we have 2 ≤ CK 5 ≤ 9

for H = K 4,4 we have CK 4,4 ≥ 7
/

3
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The clique number

Corollary

G graph, K 3,k -minor free for some fixed k

=⇒ ω(G2) ≤
(

3
/

2 + o(1)
)

∆

can be partially improved to

Theorem ( Amini, Esperet & vdH, 2009+ )

G embeddable on a fixed surface S

=⇒ ω(G2) ≤ 3
/

2∆ + O(1)

Theorem ( Cohen & vdH, 2011+ )

G planar, ∆(G) ≥ 41 =⇒ ω(G2) ≤
⌊

3
/

2∆
⌋

+ 1
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Sketch of the proof of square of planar graph

uses induction on the number of vertices

2-neighbour : vertex at distance at most two

d 2(v ) : number of 2-neighbours of v

= number of neighbours of v in G2

we would like to remove a vertex v with d2(v) ≤ 3
/

2∆

but that can change distances in G − v

contraction to a neighbour u will solve the distance problem

but may increase maximum degree if d(u) + d(v) > ∆

so : easy induction possible if there is an edge uv

with d(u) + d(v) ≤ ∆ and d2(v) ≤ 3
/

2∆
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When easy induction is not possible

S , small vertices : degree at most some constant C

B , big vertices : degree more than C

H , huge vertices : degree at least 1
2 ∆

small vertices v have a least two big neighbours

( otherwise contractible to neighbour and d2(v) ≤ 3
/

2∆ )

a planar graph has fewer than 3 |V | edges

and fewer than 2 |V | edges if it is bipartite

so :
all but O(|V |/C) vertices are small

fewer than 2 |B| vertices in V \ B

have more than two neighbours in B
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When easy induction is not possible

S , small vertices : degree at most some constant C

B , big vertices : degree more than C

H , huge vertices : degree at least 1
2 ∆

we can conclude :

“most” vertices are small

and these have exactly two huge neighbours
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The structure so far

there is a large subgraph F of G looking like :

green vertices X
have degree at least 1

2 ∆

black vertices Y
have degree at most C F

all other neighbours of Y -vertices are also small

inside F there is a subgraph H which satisfies additionally :

only “few” edges from X to rest of G

H satisfies “some edge density condition”
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The other induction step

remove from G the Y -vertices in H ( by contraction )

colour the smaller graph ( can be done by induction )

in the original graph G :

what to do with the uncoloured Y -vertices ?

y
x1 x2

2-neighbours of y already coloured ( i.e., outside Y ) :

at most (dG(x1) − dH(x1)) + (dG(x2) − dH(x2))

2-neighbours outside Y via x1 , x2

at most C2 other 2-neighbours outside Y
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Transferring to edge-colouring

so a vertex y from Y has at least

(3
/

2+ ε)∆− (dG(x1)− dH(x1))− (dG(x2)− dH(x2))−C2

colours still available

colouring Y is “almost” like

list-colouring edges of the multigraph He :

-

H He
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Edge-colouring multigraphs

χ′(G) : chromatic index of multigraph G

ch ′(G) : list chromatic index of multigraph G

χ′
f (G) : fractional chromatic index of multigraph G

Theorem ( Kahn, 1996, 2000 )

multigraph G with ∆ large enough

=⇒ ch′(G) ≈ χ′(G) ≈ χ′
f (G)

in fact, Kahn’s proofs provide something much more general

allowing lists of unequal size
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Kahn’s result

Theorem ( Kahn, 2000 )

for 0 < δ < 1 , α > 0 , there exists ∆δ,α so that if ∆ ≥ ∆δ,α :

G a multigraph with maximum degree at most ∆

each edge e has a list L(e) of colours so that

for all edges e : |L(e)| ≥ α∆

for all vertices v :
∑

e∋v
|L(e)|−1 ≤ 1 · (1 − δ)

for all K ⊆ G with |V(K )| ≥ 3 odd :
∑

e∈E(K)

|L(e)|−1 ≤ 1
2 (|V(K )| − 1) · (1 − δ)

then there exists a proper colouring of the edges of G

so that each edge gets colours from its own list
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Kahn’s approach for our case

we have a multigraph He :

He

so that each edge e = x1x2 has a list L(e) of at least

(3
/

2+ ε)∆− (dG(x1)− dH(x1))− (dG(x2)− dH(x2))−C2

colours

and He satisfies “some edge density condition”

Graph Colouring with Distances – UPMC, 7 April 2011



Extending Kahn’s approach

those density conditions guarantee that Kahn’s conditions

are satisfied for He

=⇒ we can edge-colour He

�

H He

=⇒ we can colour the Y -vertices in H ,

choosing from the left-over colours for each Y -vertex

also : we can deal with the “almost” list-edge colouring
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What about distances larger than 2 ?

Theorem ( Agnarsson & Halldórsson, 2003 )

G planar =⇒ χ(GD) ≤ cD ∆
⌊D/2⌋

best possible : take ∆ -regular tree with radius
⌊1

2 D
⌋

in fact, their proof gives something much more general :

Theorem

G k -degenerate =⇒ χ(GD) ≤ ck,D ∆
⌊D/2⌋
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Main ideas of a simple proof

G is m -orientable : G has an orientation

in which every vertex has outdegree at most m

G is k -degenerate =⇒ G is k -orientable

G is m -orientable =⇒ G is 2 m -degenerate

=⇒ χ(G) ≤ 2 m + 1

Theorem

G is m -orientable =⇒ GD is cm,D ∆
⌊D/2⌋ -orientable

Graph Colouring with Distances – UPMC, 7 April 2011



Main ideas of a simple proof

fix an orientation ~G of G with maximum outdegree m ,

and fix D ≥ 1

let uv be an edge in GD

so there is a uv -path u = x0, x1, . . . , xℓ = v

of length ℓ ≤ D

orient uv in GD according to the majority of the orientation

of the edges in that uv -path ( when going from u to v )

( arbitrarily if a tie )
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Main ideas of a simple proof

so outdegree in oriented GD of a vertex u is at most :

the number of uv -paths of length ℓ ≤ D in G

with at least
⌈1

2 ℓ
⌉

edges oriented x i → x i+1 in ~G

and the number of such paths is at most :

D
∑

ℓ= 1

ℓ
∑

i = ⌈ℓ/2⌉

(ℓ
i

)

· m i · ∆ℓ−i

=

D
∑

ℓ= 1

⌊ℓ/2⌋
∑

j = 0

(ℓ
j

)

· mℓ−j · ∆j ≤ cm,D ∆
⌊D/2⌋
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Colouring the cube of planar graphs

so now we know there is some constant c3 so that :

G planar =⇒ χ(G3) ≤ c3 ∆ + O(1)

but what is the best c3 ?

we only know : 4 ≤ c3 ≤ 68

and what about distance D > 3 ?
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A variant with exact distances

suppose we only want vertices at distance exactly D

to have different colours

can be modelled using the

exact distance graph G=D of G :

same vertex set as G

edges between vertices with distance exactly D in G
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Exact distance graphs
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Colouring exact distance graphs of planar graphs

obviously :

G planar =⇒ χ(G=D) ≤ χ(GD) ≤ O(∆
⌊D/2⌋

)

and for D = 2 we can have χ(G=2) = 3
/

2∆ :
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in fact, for all even D , the bound seems to be 3
/

2∆
D/2
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Colouring exact distance graphs

for odd D , the situation is very different :

Theorem ( Nešetřil & Ossona de Mendez, 2008 )

K a graph class with “bounded expansion”, D odd

then there exists a constant cK,D so that :

G ∈ K =⇒ χ(G=D) ≤ cK,D

a proper minor-closed class is of bounded expansion

hence planar graphs are of bounded expansion
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Colouring exact distance graphs

the result is best possible in many senses :

not true for even D

not true for k -degenerate graphs :

consider Sn,D : complete graph K n

with edges replaced by paths of length D

Sn,D is 2-degenerate, but χ((Sn,D)
=D) = n

not true if “ u, v have distance exactly D ”

replaced by “there is a uv -path of length D ”

consider wheel W n with n spokes
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The exact cube of planar graphs

so now we know : G planar =⇒ χ(G=3) ≤ c′
3

short proof ?

what can we say about c′
3 ?

best known bounds : 6 ≤ c′
3 ≤ 101010

G triangle-free planar =⇒ χ(G=3) ≤ 16

( consequence of result in ( Naserasr, 2007 ) )

in general : what can we say

about the structure of G=3 for planar G ?
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