Fractional Colouring and Pre-colouring Extension of Graphs

JAN VAN DEN HEUVEL

joint work with:

DAN KRÁL', MARTIN KUPEC, JEAN-SÉBASTIEN SERENI & JAN VOLEC

Department of Mathematics

London School of Economics and Political Science

The basics of graph colouring

- vertex-colouring with k colours:
 adjacent vertices must receive different colours
- **chromatic number** $\chi(G)$:

 minimum k so that a vertex-colouring exists

general question:

- what can we say if some vertices are already pre-coloured?
- in particular: can $\chi(G)$ colours still be enough?

Pre-colouring questions

next best questions:

- how many extra colours may be needed?
- and what conditions on the pre-coloured vertices can make life easier?

Question (Thomassen, 1997)

- G planar,
 - $W \subseteq V(G)$, a set of vertices so that distance between any two vertices in W is at least 100
 - can any 5-colouring of W

be extended to a 5-colouring of *G*?

The first answer

 \blacksquare dist(W): minimum distance between any two vertices in W

```
Theorem (Albertson, 1998)
```

 \blacksquare G any graph with chromatic number χ

$$W \subseteq V(G)$$
 with $dist(W) \ge 4$

$$\implies$$
 any $(\chi+1)$ -colouring of W

can be extended to a $(\chi+1)$ -colouring of G

Some more answers

Theorem (Albertson, 1998)

■ G planar graph

$$W \subseteq V(G)$$
 with dist $(W) \ge 3$

 \implies any 6-colouring of W

can be extended to a 6-colouring of G

Theorem

 \blacksquare G any graph with chromatic number χ

$$W \subseteq V(G)$$
 with $dist(W) \ge 3$

$$\implies$$
 any $(\chi + \chi)$ -colouring of W

can be extended to a $(\chi + \chi)$ -colouring of G

A different kind of colouring

- **I** fractional K-colouring of graph G ($K \in \mathbb{R}$, $K \ge 0$):
 - every vertex $v \in V$ is assigned a subset $\phi(v) \subseteq [0, K]$ so that :
 - every subset $\phi(v)$ has 'measure' 1
 - and $uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset$
- **I** fractional chromatic number $\chi_F(G)$:
 - = $\inf \{ K \ge 0 \mid G \text{ has a fractional } K\text{-colouring } \}$
 - $= \min \{ K \ge 0 \mid G \text{ has a fractional } K\text{-colouring } \}$

A different kind of colouring

- **note**: we always have $\chi_F(G) \leq \chi(G)$
 - but the difference can be arbitrarily large
- \blacksquare $\chi_F(G) = 1 \iff G$ has no edges
 - $\chi_F(G) = 2 \iff G$ has edges and is bipartite
 - for all rational $K \geq 2$: there exist G with $\chi_F(G) = K$

Pre-colouring in the fractional world

- so now suppose that for some vertices $W \subseteq V(G)$, the vertices in W are already pre-coloured:
 - vertices $w \in W$ have been given some set $\phi(w)$ of measure 1
- when can this be extended to a fractional colouring of the whole graph G?
- in general we should expect to require more than $\chi_F(G)$ colours

The set-up of the problem

- \blacksquare G a graph with fractional chromatic number $\chi_F \geq 2$
 - $D \ge 3$ an integer
 - $W \subseteq V(G)$ with $dist(W) \ge D$
- - for some real $\alpha \geq 0$
 - and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
- **how large** should α be to make sure this can be done?

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar & Volec, 2011)

lacktriangle extension is always possible, provided α is at least:

$$\frac{\sqrt{(\lfloor D/4 \rfloor \chi_F - 1)^2 + 4 \lfloor D/4 \rfloor (\chi_F - 1)} - \lfloor D/4 \rfloor \chi_F + 1}{2 \lfloor D/4 \rfloor}$$
if $D \equiv 0 \mod 4$

$$\frac{\sqrt{(\lfloor D/4\rfloor\,\chi_F)^2+4\,\lfloor D/4\rfloor\,(\chi_F-1)}-\lfloor D/4\rfloor\,\chi_F}{2\,\lfloor D/4\rfloor}, \\ \text{if } D\equiv 2 \bmod 4$$

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar & Volec, 2011)

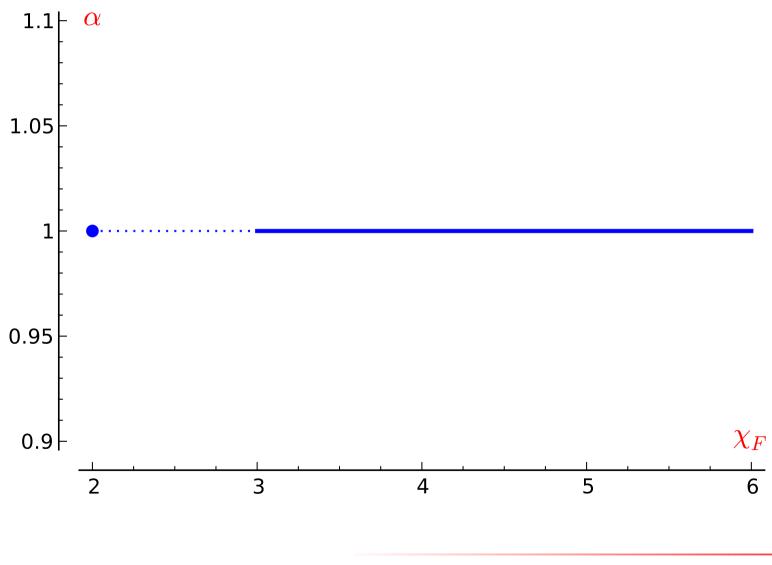
- \blacksquare moreover, these bounds on α are best possible,
 - for all $D \ge 3$
 - and if $\chi_F = 2$ or $\chi_F \ge 3$

A major part of the answer

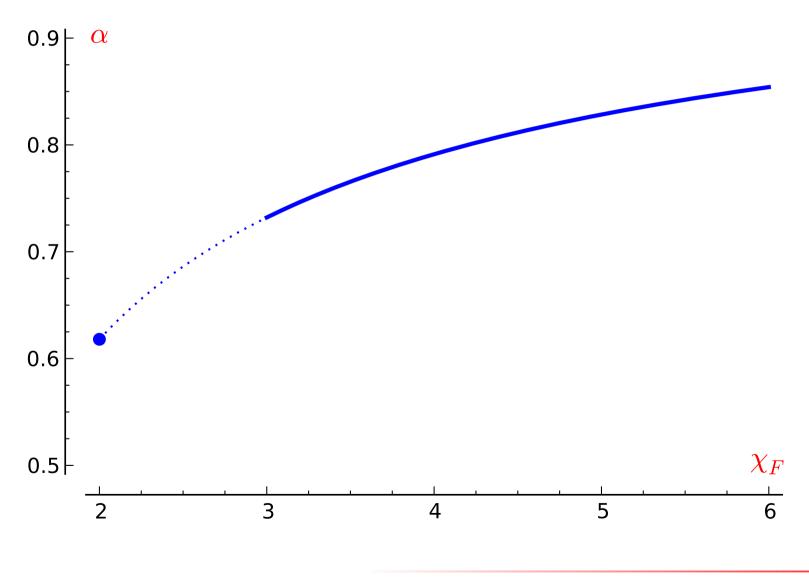
in other words:

- for all integers $D \geq 3$, all rational numbers $\chi_F \in \{2\} \cup [3, \infty)$, and all $\alpha \geq 0$ failing the bound for that D and χ_F
- there is a graph G with fractional chromatic number χ_F , a subset $W \subseteq V(G)$ with $\operatorname{dist}(W) \geq D$, and a fractional pre-colouring $\phi(w) \subseteq [0, \chi_F + \alpha]$ for $w \in W$
- so that ϕ cannot be extended to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$ only

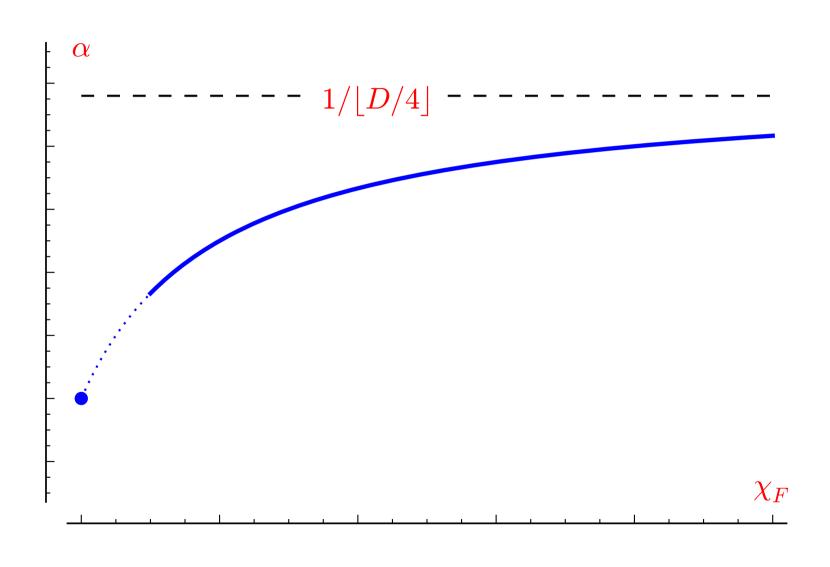
The picture for D = 3



The picture for D=4



The picture for general $D \ge 4$



Almost the complete answer

so we know the full answer for all $D \ge 3$, and for $\chi_F = 2$ or $\chi_F \ge 3$

so what happens in the gap $2 < \chi_F < 3$?

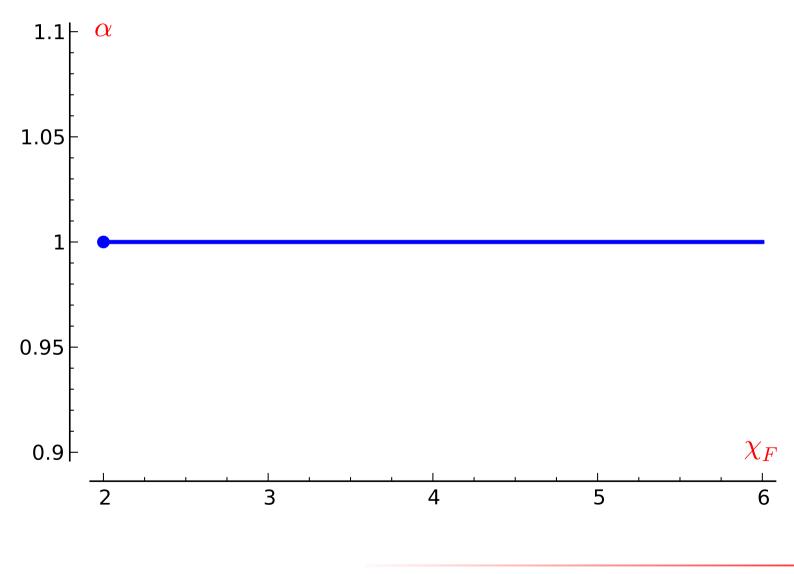
Some more answers

- the problem again :
 - we have some $W \subseteq V(G)$ with $dist(W) \ge D$
 - the vertices $w \in W$ are pre-coloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of 'measure' 1
 - and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$

Theorem

- for D=3 we need: $\alpha>1$
- \blacksquare and this bound is best possible for all $\chi_F \geq 2$

The full picture for D=3



The answer for D = 4

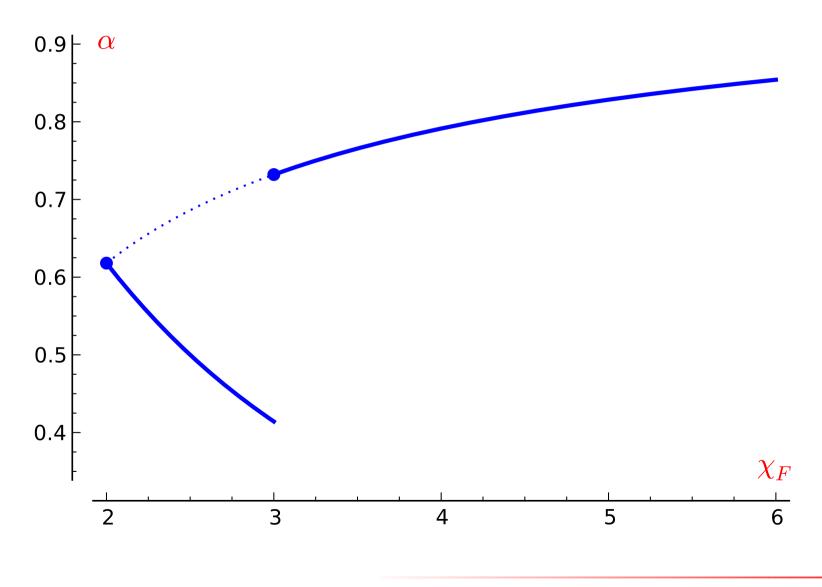
Theorem (vdH, Král', Kupec, Sereni & Volec, 2011)

 \blacksquare for D=4 we need:

•
$$\alpha \ge \frac{\sqrt{(\chi_F - 1)^2 + 4} - \chi_F + 1}{2}$$
, for $2 \le \chi_F < 3$

and these bounds are best possible

The full picture for D=4



Almost the answer for D = 5

Theorem (vdH, Král', Kupec, Sereni & Volec, 2011)

for D = 5 we need:

$$lacksquare lpha \geq rac{\chi_{\mathit{F}}-1}{\chi_{\mathit{F}}},$$

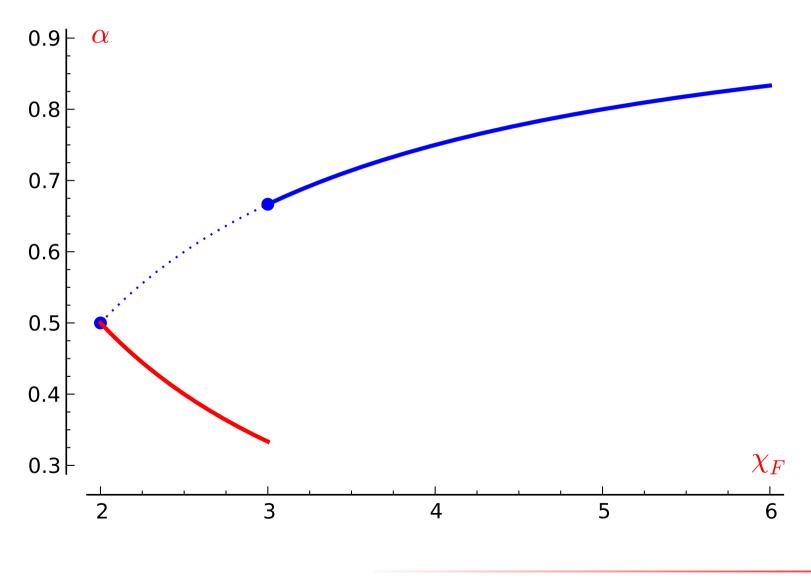
for
$$\chi_F \geq 3$$

$$\quad \blacksquare \quad \alpha \geq \frac{1}{\chi_F},$$

for
$$2 \le \chi_F < 3$$

but we don't know if the bound for $2 \le \chi_F < 3$ is best possible

Almost the full picture for D = 5



The answer for D = 6

Theorem (vdH, Král', Kupec, Sereni & Volec, 2011)

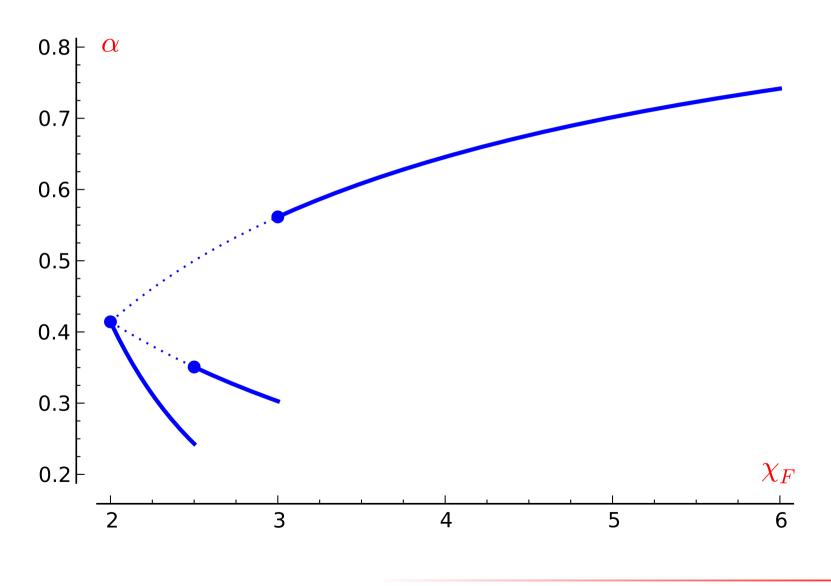
for D=6 we need:

$$\bullet \quad \alpha \geq \frac{\sqrt{\chi_F^2 + 4 - \chi_F}}{2}, \qquad \qquad \text{for } 2\frac{1}{2} \leq \chi_F < 3$$

•
$$\alpha \geq \frac{\sqrt{\chi_F^2 + 4/(\chi_F - 1) - \chi_F}}{2}$$
, for $2 \leq \chi_F < 2\frac{1}{2}$

and these bounds are best possible

The full picture for D=6



And for $D \ge 7$

for $D \ge 7$ we have no further precise results

for
$$2 < \chi_F < 3$$

but all indications are that it gets more and more complicated when D gets larger

- to understand the strange behaviour for $2 < \chi_F < 3$ we need to have a look at some aspects of the proof
 - and for that we need to have a further look at fractional colouring first

Fractional colouring again

- fractional K-colouring of graph G:
 - **assignment of subsets** $\phi(v) \subseteq [0, K]$ to $v \in V$ so that :
 - every subset $\phi(v)$ has 'measure' 1
 - and $uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset$

Alternative definition for fractional colouring

- notation: [m]: the set $\{1, \ldots, m\}$ $\binom{[m]}{q}$: the collection of q-subsets of [m]
- **(m, q)-colouring** of graph G $(1 \le q \le m)$:
 - every $v \in V$ is assigned a subset $\psi(v) \in {[m] \choose q}$, so that:
 - $uv \in E(G) \implies \psi(u) \cap \psi(v) = \emptyset$
- and then: $\chi_F(G) = \min \left\{ \frac{m}{q} \mid G \text{ has an } (m,q)\text{-colouring} \right\}$

And another definition

- Kneser graph Kn(m, q):
 - vertices: all of $\binom{[m]}{q}$, edge $uv \iff u \cap v = \emptyset$
- G has an (m, q)-colouring \iff there is a homomorphism $G \longrightarrow Kn(m, q)$
- - we can interpret this as just a labelling of the vertices of G, using labels from $\binom{[m]}{q}$

Fractional colouring and Kneser graphs

- so to understand fractional colouring,we can use Kneser graphs
- but we want to deal with pre-colouring of vertex sets with a minimum distance D
 - for that we need to build more complicated graphs
- \blacksquare in the rest of this talk we only look at the case D is even

Armed Kneser graphs

- \blacksquare given some m, q, D even, and an integer L
 - we start with a single Kn(m, q) as a core
 - out of the core we grow L disjoint arms, each consisting of D/2 disjoint copies of Kn(m,q)
 - we link two consecutive copies of Kn(m, q) in each arm as follows:
 - u_1 in copy 1 and v_2 in copy 2:

$$u_1 \sim v_2 \iff uv$$
 is an edge in $Kn(m,q)$

Armed Kneser graphs

- \blacksquare given some m, q, D even, and an integer L
 - we start with a single Kn(m, q) as a core
 - out of the core we grow L disjoint arms, each consisting of D/2 disjoint copies of Kn(m,q)
 - we link two consecutive copies of Kn(m, q) in each arm as follows:
 - u_1 in copy 1 and v_2 in copy 2:

 $u_1 \sim v_2 \iff uv \text{ is an edge in } Kn(m,q)$

 \blacksquare call the result the armed Kneser graph a-Kn(m, q, D, L)

Using armed Kneser graphs

■ now suppose we have a graph G with $\chi_F(G) = \chi_F$

so:
$$G \longrightarrow Kn(m,q)$$
, for some m,q with $\frac{m}{q} = \chi_F$

- and a set $W \subseteq V(G)$ with $dist(W) \ge D$
- take the armed Kneser graph a-Kn(m, q, D, |W|) with |W| arms
- we will map G to this armed Kneser graph
 - using the labels given by the homomorphism

$$G \longrightarrow Kn(m,q)$$

Using armed Kneser graphs

- \blacksquare each $w \in W$ gets its own arm
 - \blacksquare map w in the copy of Kn(m, q) at the end of its arm
 - map the neighbours of w in G in the copy of Kn(m, q) one step closer to the core
 - map the neighbours of the neighbours of w in G in the next copy (closer to the core) of Kn(m, q)
 - etc.
- map all vertices at distance at least D/2 from w in G in the core of the armed Kneser graph

Using armed Kneser graphs

- this mapping of G in the armed Kneser graph satisfies:
 - images of elements of W have distance D
 - a pre-colouring of W
 gives a pre-colouring of the images of W
 - a fractional colouring of the armed Kneser graph
 can be mapped back to a fractional colouring of G

in other words:

all aspects of fractional pre-colouring extensions of graphs are determined by fractional pre-colouring extensions of armed Kneser graphs!

Pre-colouring extensions of armed Kneser graphs

- suppose we have an armed Kneser graph
 a-Kn(m, q, D, L)
 - and one pre-coloured vertex in the end of each arm
- in a fractional colouring extending that pre-colouring:
 - the core must 'accommodate' all arms
 - so will have to be given some 'average' colouring
 - so along the arms, the colouring extension must connect
 - the pre-coloured vertex in the end
 - with some 'average' colouring of the core

Colouring along an arm of an armed Kneser graph

- so consider an arm of an armed Kneser graph
 - with one pre-coloured vertex w' in its end
- the colouring along the arm is mostly determined by :
 - w' itself, in the end copy of Kn(m, q)
 - then by vertices in the 2 nd copy of Kn(m, q)
 that are neighbours of w'
 - and then by vertices in the 3 rd copy of Kn(m, q)
 that are neighbours of neighbours of w'
 - etc.

Now things get interesting

- \blacksquare w' is a vertex in Kn(m,q), i.e., a q-subset of [m]
- \blacksquare its neighbours are the q-subsets of [m] disjoint from w'
 - those neighbours together form a subgraph that is isomorphic to the Kneser graph Kn(m-q,q)
- for $\chi_F = \frac{m}{q} \ge 3$ we have $\chi_F \big(Kn(m-q,q) \big) = \frac{m-q}{q} = \chi_F 1$
- for $2 \le \chi_F = \frac{m}{q} < 3$, Kn(m-q,q) has just isolated vertices
 - hence in those cases: $\chi_F(Kn(m-q,q)) = 1$

Now things get interesting

- so for $\chi_F = \ge 3$ we have χ_F (set of neighbours of w') = $\chi_F 1$
- while for $2 \le \chi_F < 3$ we have $\chi_F(\text{set of neighbours of } w') = 1$
- this causes the difference between the two cases when
 D = 4
 (then the armed Kneser graph has arms of length 2, with the set of neighbours of w' in the middle)

And things get even more interesting

- next consider the set of neighbours of neighbours of w'
- for $\chi_F = \frac{m}{q} \ge 3$, this is the whole Kneser graph Kn(m,q)
- for $2 \le \chi_F = \frac{m}{q} < 2\frac{1}{2}$,

this is again a collection of isolated vertices

- but for $2\frac{1}{2} \le \chi_F = \frac{m}{q} < 3$, it gets complicated
 - the structure is not a Kneser graph
 - its structure can vary even in cases where $\frac{m}{q} = \frac{m'}{q'}$

To summarise these findings

- when colouring along an arm of an an armed Kneser graph:
 - for $\chi_F = \frac{m}{q} \ge 3$, we are always dealing with structures that are Kneser graphs itself
 - for $2 \le \chi_F = \frac{m}{q} < 3$, we have to consider structures that are not Kneser graphs
- we just seem to lack an understanding of the internal structure of Kneser graphs to deal with those latter cases in general