Extending Fractional Pre-colourings

JAN VAN DEN HEUVEL

joint work with: Dan Král', Martin Kupec,

Jean-Sébastien Sereni & Jan Volec

Department of Mathematics

London School of Economics and Political Science

The basics of graph colouring

- vertex-colouring with k colours:
 adjacent vertices must receive different colours
- **chromatic number** $\chi(G)$:

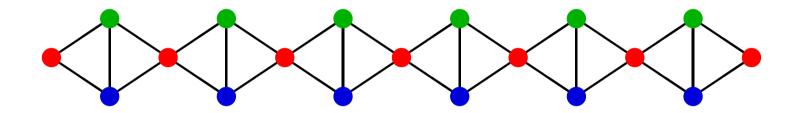
 minimum k so that a vertex-colouring exists

general question:

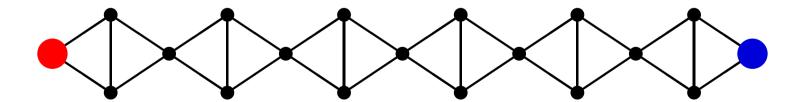
- what can we say if some vertices are already pre-coloured?
- in particular: will $\chi(G)$ colours still be enough?

Not much chance

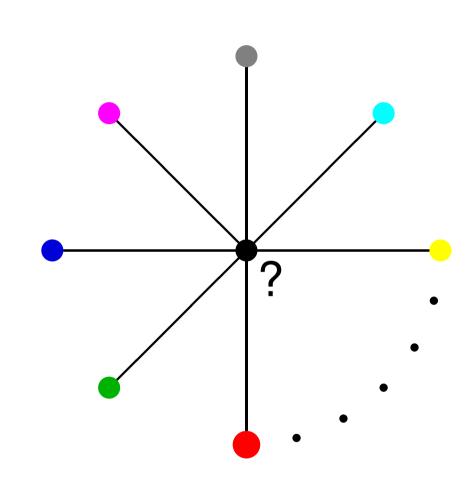
■ 3-colourable graph:



■ but it can't be done with 3 colours if we start:



Not even if we have lots of extra colours



Pre-colouring questions

next best questions:

- what condition on pre-coloured vertices makes life easier?
- and how many extra colours are needed then?
- \blacksquare dist(P): minimum distance between any two vertices in P

Question (Thomassen, 1997)

- G planar
 - $P \subseteq V(G)$ a set of vertices with dist(P) at least 100
 - can any 5-colouring of P

be extended to a 5-colouring of *G*?

The first answer

```
Theorem (Albertson, 1998)
```

 \blacksquare G any graph, chromatic number χ

```
P \subseteq V(G) with dist(P) \ge 4
```

 \implies any $(\chi+1)$ -colouring of P

can be extended to a $(\chi+1)$ -colouring of G

Some more answers

Theorem (Albertson, 1998)

■ G planar graph

$$P \subseteq V(G)$$
 with $dist(P) \ge 3$

 \implies any 6-colouring of P

can be extended to a 6-colouring of G

Theorem

 \blacksquare G any graph, chromatic number χ

$$P \subseteq V(G)$$
 with $dist(P) \ge 3$

$$\implies$$
 any $(\chi + \chi)$ -colouring of P

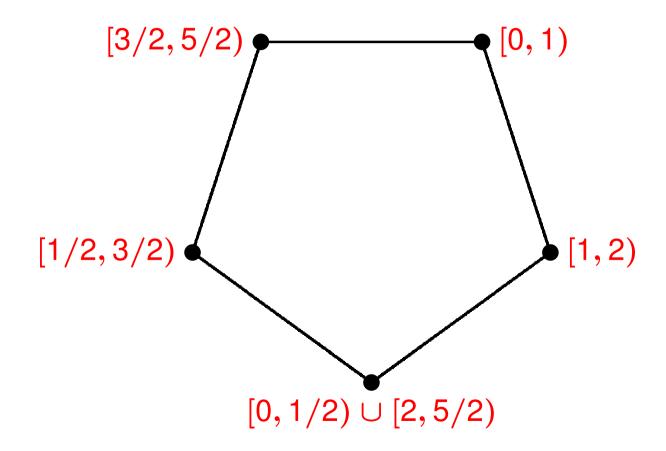
can be extended to a $(\chi + \chi)$ -colouring of G

A different kind of colouring

- **I** fractional K-colouring of graph G ($K \in \mathbb{R}$, $K \ge 0$):
 - every vertex $v \in V$ is assigned a subset $\phi(v) \subseteq [0, K]$ so that:
 - every subset $\phi(v)$ has 'measure' 1
 - and $uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset$
- **I** fractional chromatic number $\chi_F(G)$:
 - = $\inf \{ K \ge 0 \mid G \text{ has a fractional } K\text{-colouring } \}$
 - $= \min \{ K \ge 0 \mid G \text{ has a fractional } K \text{-colouring } \}$

A different kind of colouring

• fractional 5/2 -colouring of C_5 :



A different kind of colouring

- **note**: we always have $\chi_F(G) \leq \chi(G)$
- we have $\chi_F(G) \ge 2$ (except if G has no edges)
 - \blacksquare and every rational number $\chi_F \geq 2$ is possible

Pre-colouring in the fractional world

- so now suppose that for some vertices $P \subseteq V(G)$, the vertices in P are already pre-coloured:
 - vertices $p \in P$ have been given some set $\phi(p)$ of measure 1
- when can this be extended to a fractional colouring of the whole graph G?
- in general we should expect to require more than $\chi_F(G)$ colours

The set-up of the problem

- \blacksquare G a graph, fractional chromatic number $\chi_F \geq 2$
 - $D \ge 3$ an integer
 - $ightharpoonup P \subseteq V(G)$ with $dist(P) \ge D$
- the vertices $p \in P$ are pre-coloured with $\phi(p) \subseteq [0, \chi_F + \alpha]$
 - for some real $\alpha \geq 0$
 - and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
- **how large** should α be to make sure this can be done?

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar & Volec, 2011)

lacktriangle extension is always possible, provided α is at least:

$$\frac{\sqrt{(\lfloor D/4 \rfloor \chi_F - 1)^2 + 4 \lfloor D/4 \rfloor (\chi_F - 1)} - \lfloor D/4 \rfloor \chi_F + 1}{2 \lfloor D/4 \rfloor}$$
if $D \equiv 0 \mod 4$

$$\frac{\sqrt{(\lfloor D/4\rfloor\,\chi_F)^2+4\,\lfloor D/4\rfloor\,(\chi_F-1)}-\lfloor D/4\rfloor\,\chi_F}{2\,\lfloor D/4\rfloor},$$
 if $D\equiv 2\ \text{mod}\ 4$

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar & Volec, 2011)

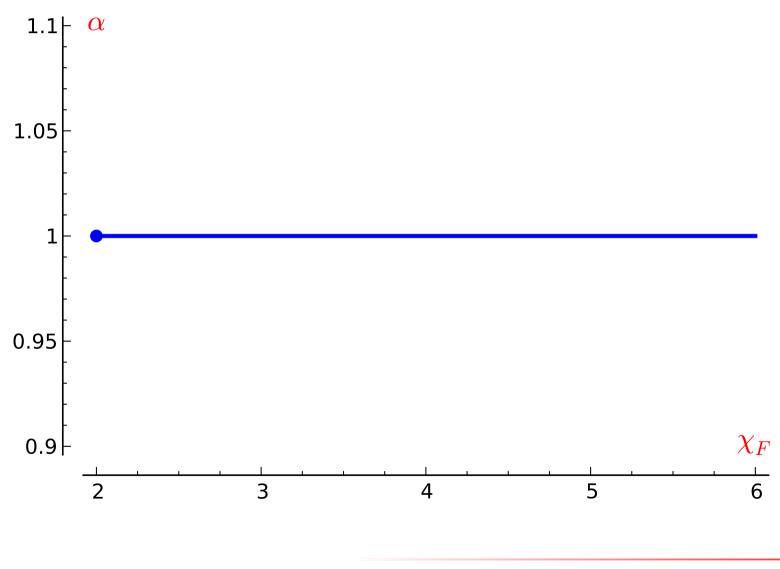
- \blacksquare moreover, these bounds on α are best possible,
 - if D=3: for all $\chi_F \geq 2$
 - if $D \ge 4$: for $\chi_F = 2$ or $\chi_F \ge 3$

A major part of the answer

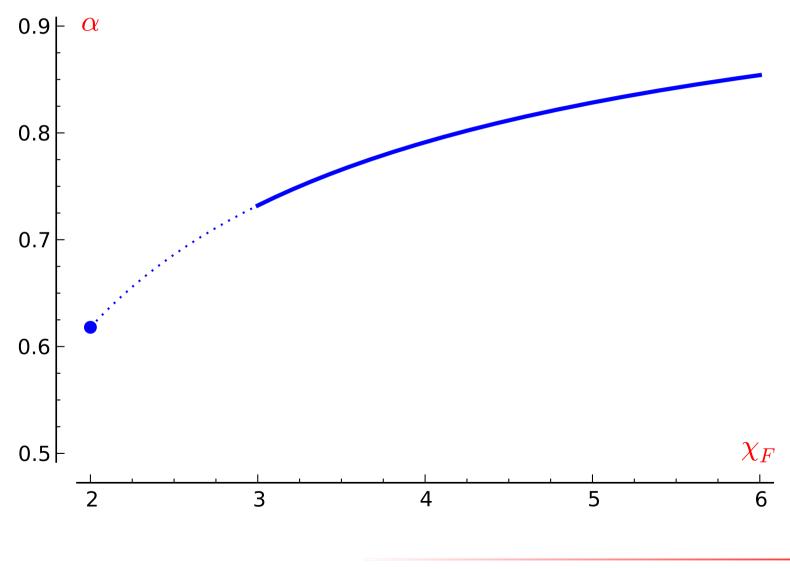
in other words:

- for all integers $D \ge 4$, all rational numbers $\chi_F \in \{2\} \cup [3, \infty)$, and all $\alpha \ge 0$ failing the bound for that D and χ_F
- there is a graph G with fractional chromatic number χ_F , a subset $P \subseteq V(G)$ with $\operatorname{dist}(P) \geq D$, and a fractional pre-colouring $\phi(p) \subseteq [0, \chi_F + \alpha]$ for $p \in P$
- so that ϕ cannot be extended to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$ only

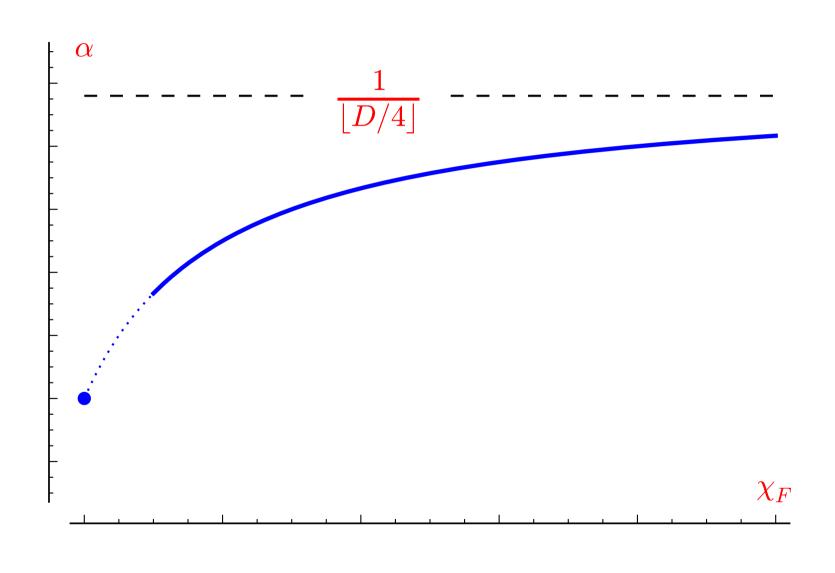
The picture for D = 3



The picture for D=4



The picture for general $D \ge 4$



Almost the complete answer

so we know the complete answer for all $D \ge 4$, and for $\chi_F = 2$ or $\chi_F \ge 3$

■ so what happens in the gap $2 < \chi_F < 3$?

The complete answer for D = 4

Theorem (vdH, Král', Kupec, Sereni & Volec, 2011)

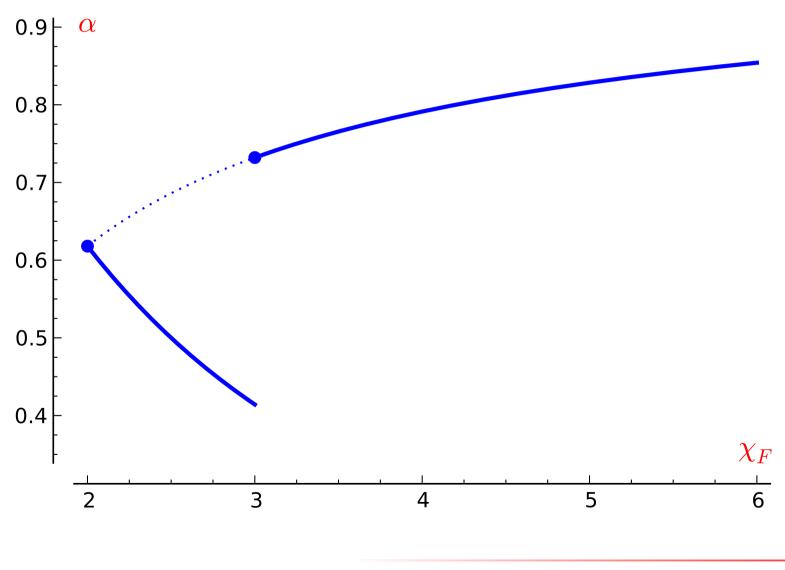
for D = 4 we need:

•
$$\alpha \ge \frac{\sqrt{(\chi_F - 1)^2 + 4(\chi_F - 1)} - \chi_F + 1}{2}$$
, for $\chi_F \ge 3$

•
$$\alpha \ge \frac{\sqrt{(\chi_F - 1)^2 + 4} - \chi_F + 1}{2}$$
, for $2 \le \chi_F < 3$

and these bounds are best possible

The complete picture for D = 4



Almost the complete answer for *D* = 5

Theorem (vdH, Král', Kupec, Sereni & Volec, 2011)

for D = 5 we need:

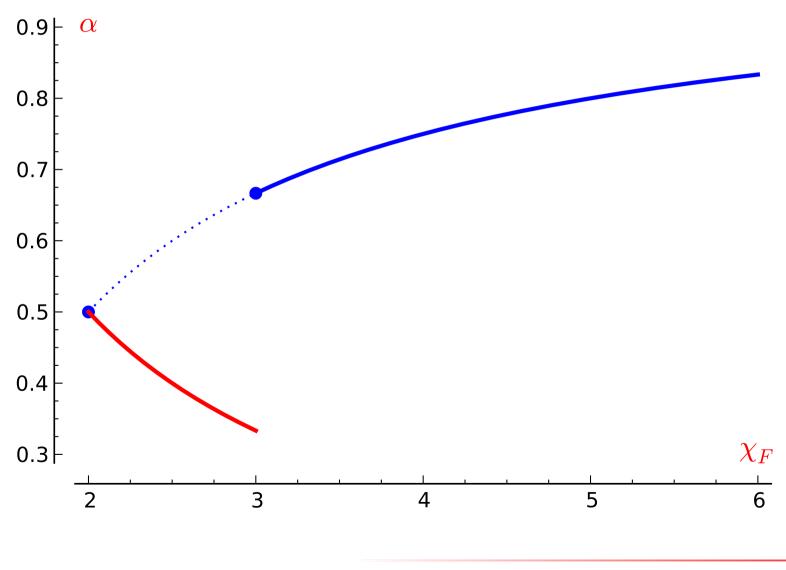
for
$$\chi_F \geq 3$$

$$\quad \blacksquare \quad \alpha \geq \frac{1}{\chi_F},$$

for
$$2 \le \chi_F < 3$$

but we don't know if the bound for $2 \le \chi_F < 3$ is best possible

Almost the complete picture for D=5



The complete answer for D = 6

Theorem (vdH, Král', Kupec, Sereni & Volec, 2011)

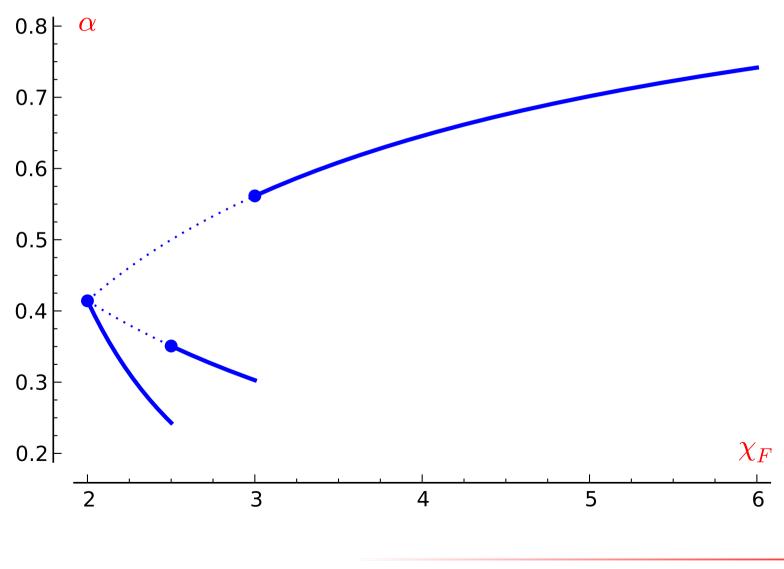
 \blacksquare for D=6 we need:

$$\bullet \quad \alpha \geq \frac{\sqrt{\chi_F^2 + 4 - \chi_F}}{2}, \qquad \qquad \text{for } 2\frac{1}{2} \leq \chi_F < 3$$

•
$$\alpha \geq \frac{\sqrt{\chi_F^2 + 4/(\chi_F - 1) - \chi_F}}{2}$$
, for $2 \leq \chi_F < 2\frac{1}{2}$

and these bounds are best possible

The complete picture for D = 6



And for $D \ge 7$

for $D \ge 7$ we have no further precise results

for
$$2 < \chi_F < 3$$

but all indications are that it gets more and more complicated when D gets larger

Alternative definition for fractional colouring

- Kneser graph Kn(m, q):
 - vertices: the collection of *q*-subsets of $\{1, \ldots, m\}$
 - uv an edge: $u \cap v = \emptyset$
- note: $\chi_F(Kn(m,q)) = \begin{cases} m/q, & \text{if } m \geq 2q \\ 1, & \text{if } q \leq m < 2q \end{cases}$
- and: $\chi_F(G) = \chi_F$ \iff there is a homomorphism $G \longrightarrow Kn(m,q)$ for some m,q with $\chi_F = m/q$

Fractional colouring and Kneser graphs

so to understand fractional colouring,we can use Kneser graphs

- but we want to deal with pre-colouring of vertex sets with a minimum distance D
 - for that we need to build more complicated graphs
 - by 'gluing' Kneser graphs together

Pre-colouring involving Kneser graphs

- so consider a Kneser graph
 - with one pre-coloured vertex v
- to extend this to a colouring of the whole graph:
 - next consider the vertices in Kn(m, q)
 - that are neighbours of *v*
 - then the neighbours of the neighbours of v
 - etc.

Now things get interesting

- \blacksquare v is a vertex in Kn(m,q), i.e., a q-subset of $\{1,\ldots,m\}$
- \blacksquare its neighbours are the q-subsets that are disjoint from v
 - those neighbours together form a subgraph that is isomorphic to the Kneser graph Kn(m-q,q)
- so for $\chi_F = \frac{m}{q} \ge 3$: $\chi_F(\text{set of neighbours of } v) = \frac{m-q}{q} = \chi_F 1$
- while for $2 \le \chi_F = \frac{m}{q} < 3$: $\chi_F(\text{set of neighbours of } v) = \chi_F(\text{isolated vertices}) = 1$

And things get even more interesting

- next consider the set of neighbours of neighbours of v
- for $\chi_F = \frac{m}{q} \ge 3$, this is the whole Kneser graph Kn(m,q)
- for $2 \le \chi_F = \frac{m}{q} < 2\frac{1}{2}$,

this is again a collection of isolated vertices

- but for $2\frac{1}{2} \le \chi_F = \frac{m}{q} < 3$, it gets complicated
 - the structure is not a Kneser graph
 - its structure can vary even in cases where $\frac{m}{q} = \frac{m'}{q'}$

To summarise these findings

- when extending a fractional pre-colouring of graphs that are formed by 'gluing' together Kneser graphs:
 - for $\chi_F = \frac{m}{q} \ge 3$, we are always dealing with structures that are Kneser graphs itself
 - for $2 \le \chi_F = \frac{m}{q} < 3$, we have to consider structures that are not Kneser graphs
- we just seem to lack an understanding of the internal structure of Kneser graphs to deal with those latter cases in general