Fire Containment in Planar Graphs

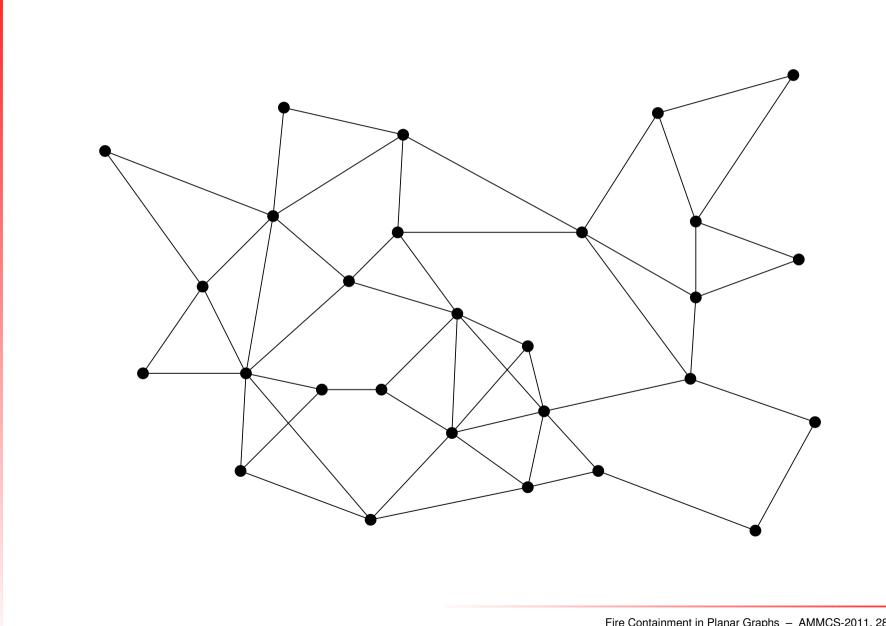
JAN VAN DEN HEUVEL

joint work with :

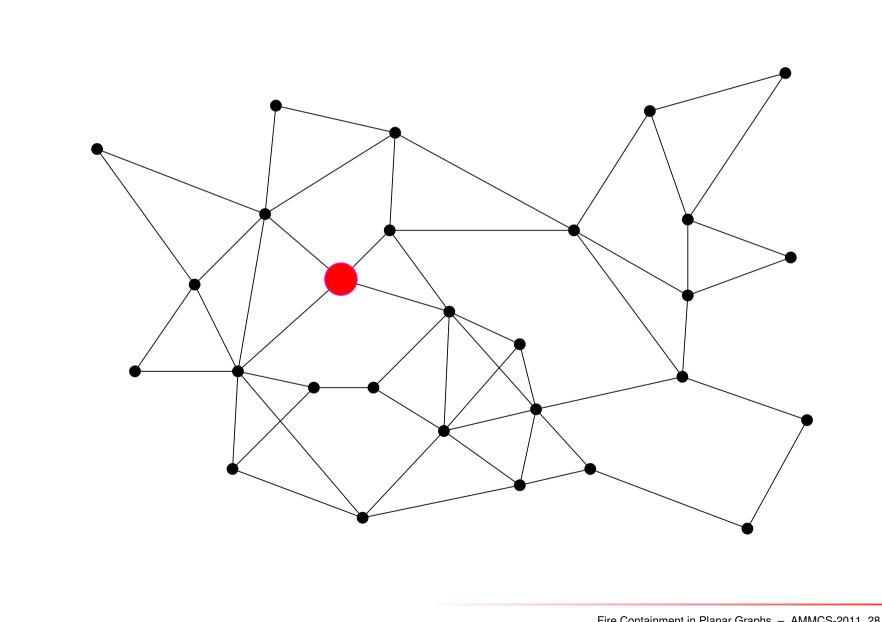
LOUIS ESPERET, FRÉDÉRIC MAFFRAY & FÉLIX SIPMA (Grenoble)

Department of Mathematics London School of Economics and Political Science

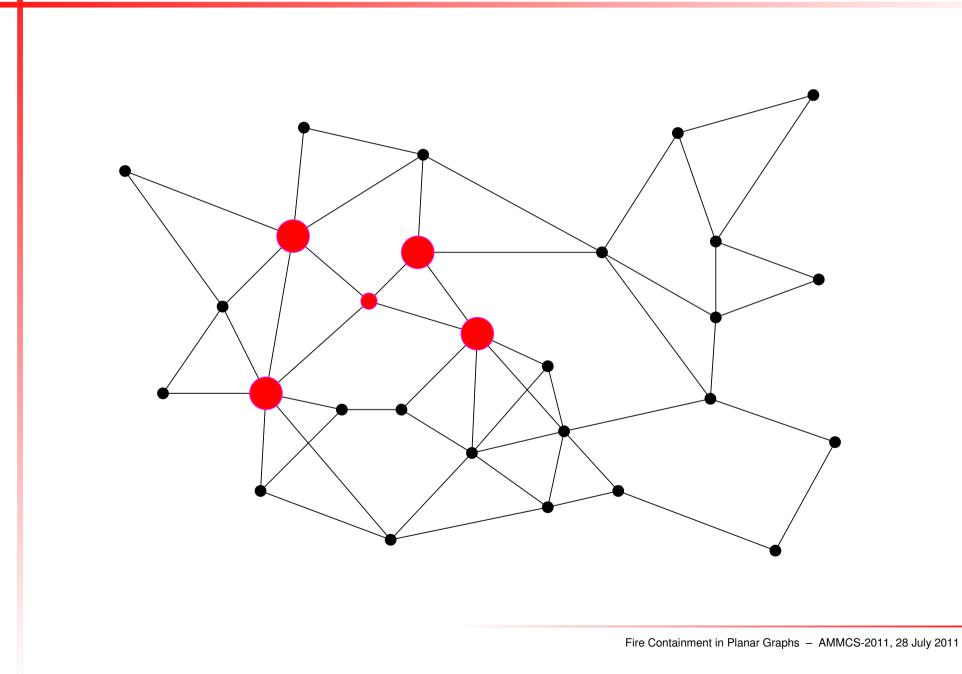
Fire in a graph



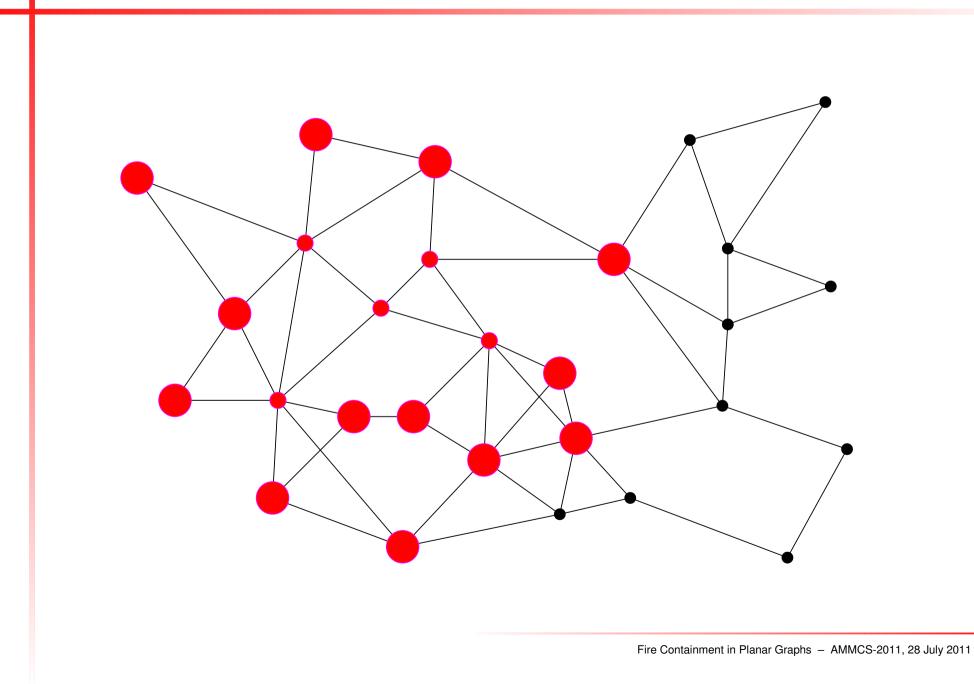
Fire in a graph – it starts at some vertex



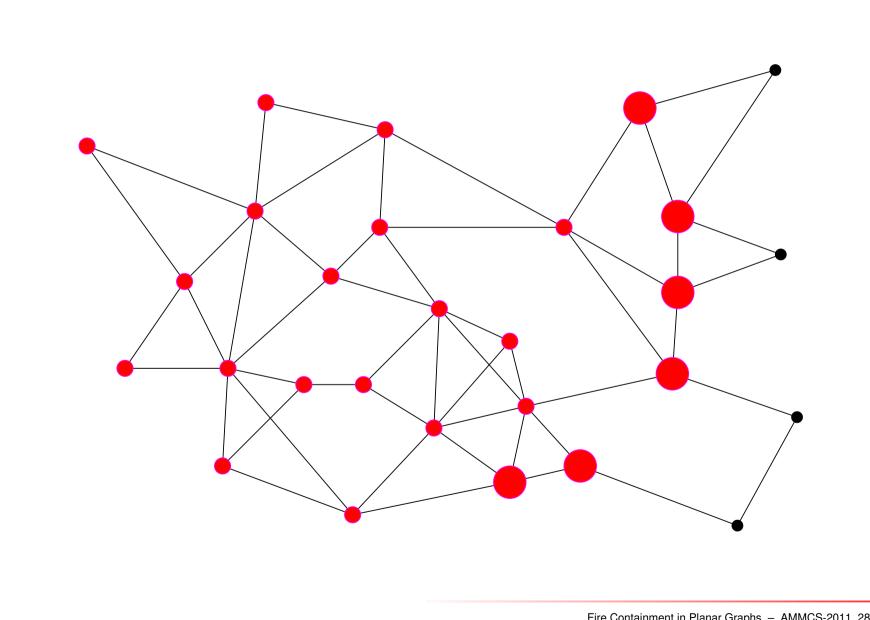
Fire in a graph – and then spreads to its neighbours



Fire in a graph – and to their neighbours

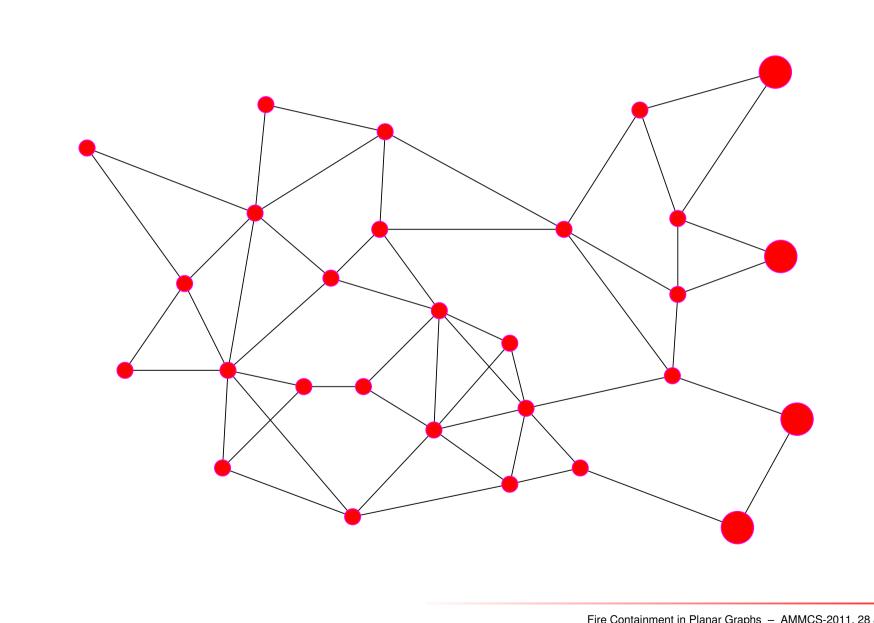


Fire in a graph – and their neighbours ...



Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

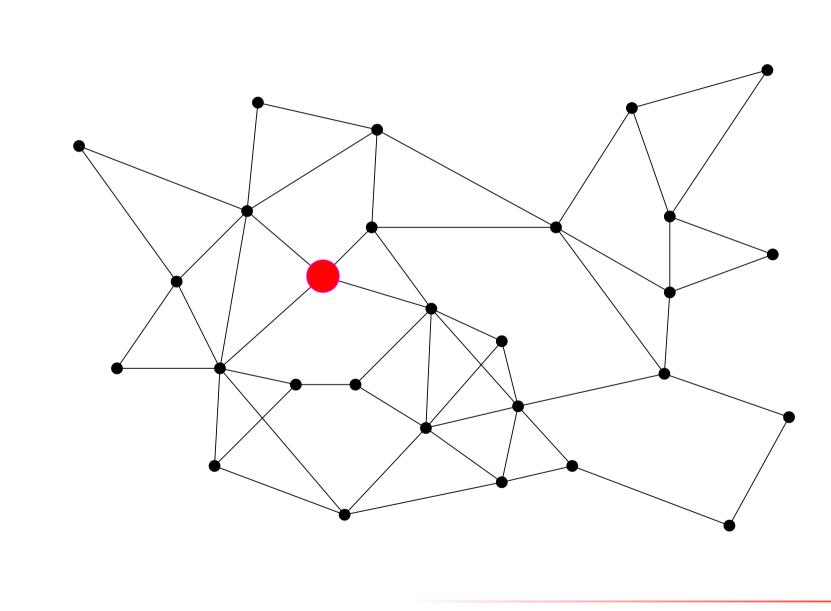
Fire in a graph – until it's all gone



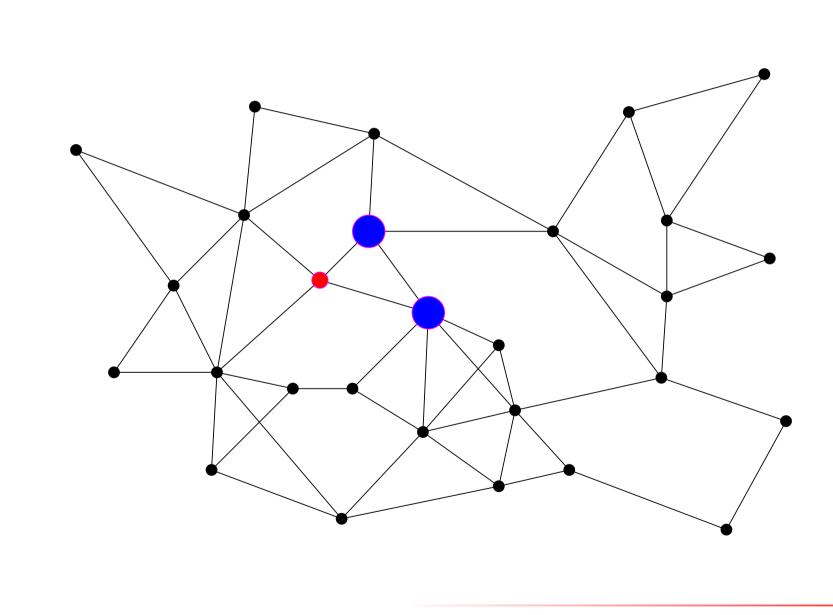
- suppose we have some firefighters
- one firefighter can :
 - at any time step move to any vertex
 - protect that vertex,

which will stay protected for ever afterwards

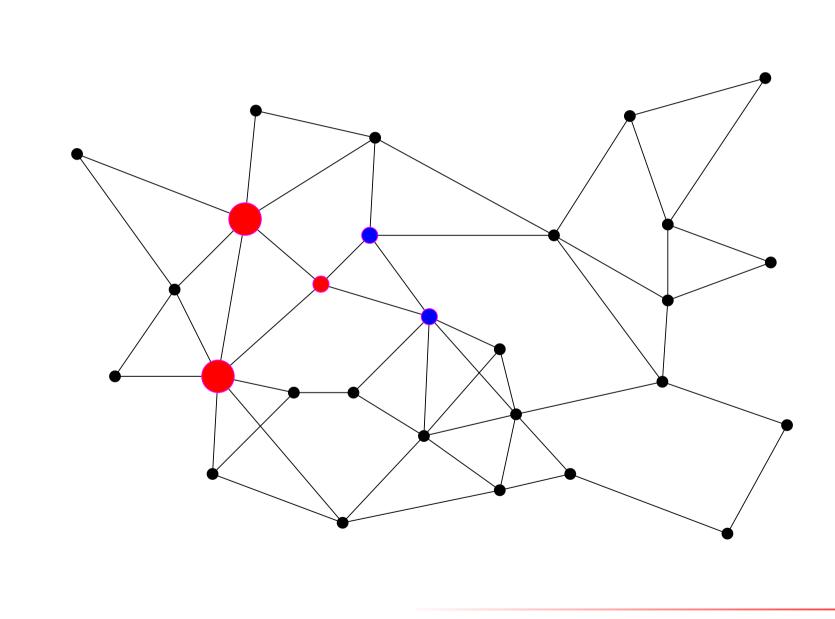
The start of the fire again



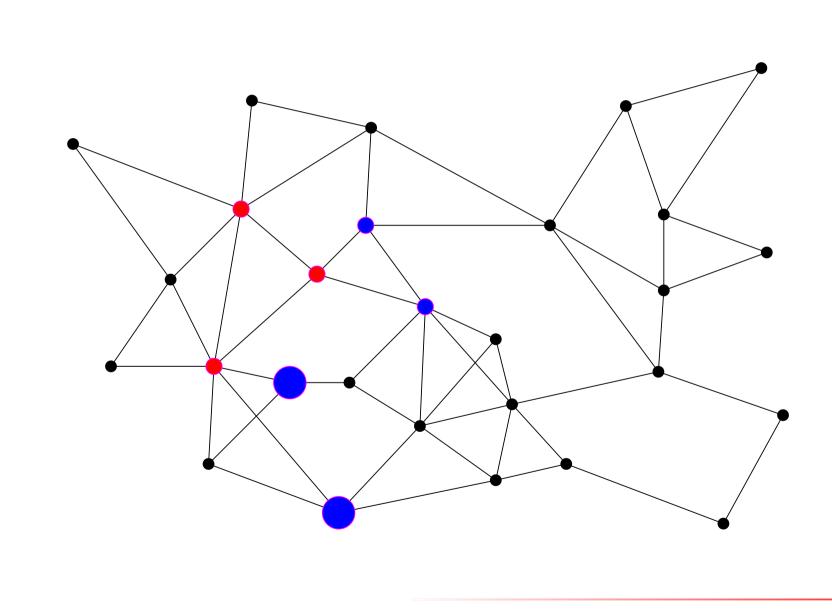
Two firefighters at work



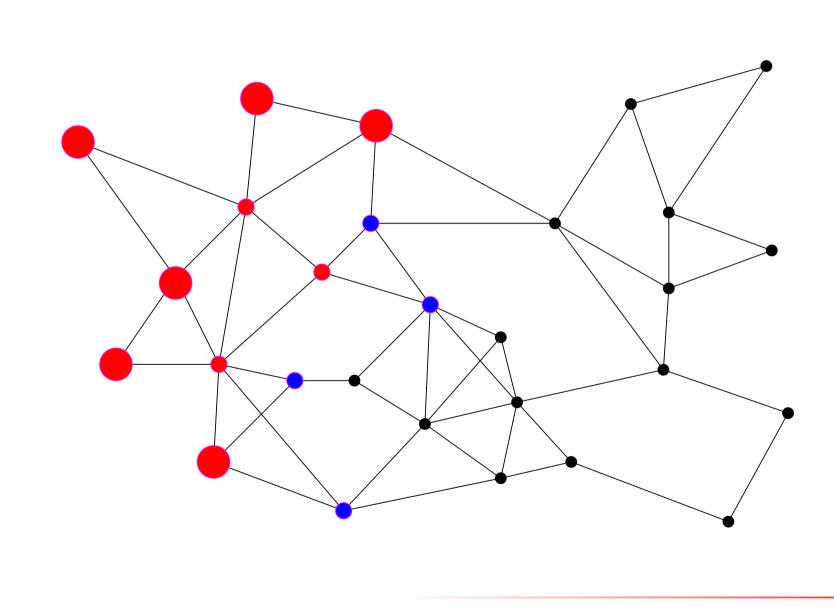
The fire spreads a bit



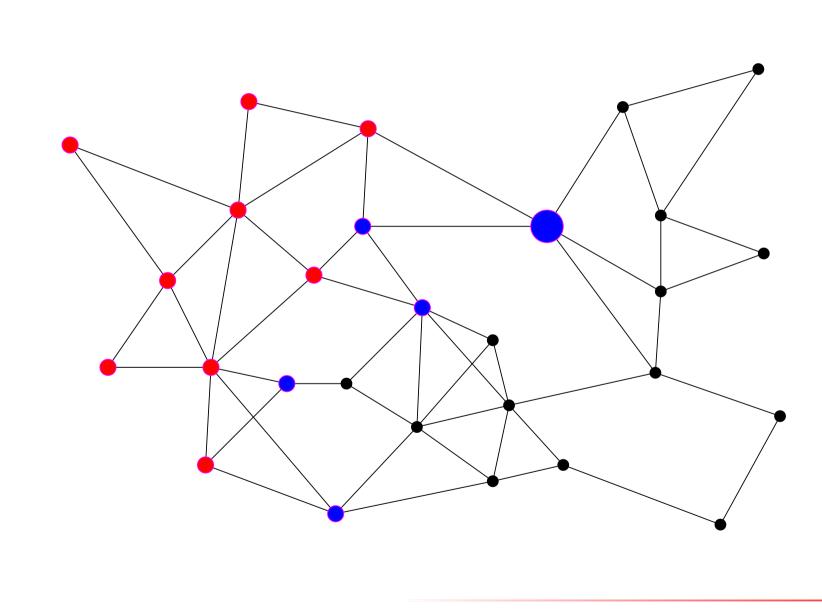
The firefighters continue their work



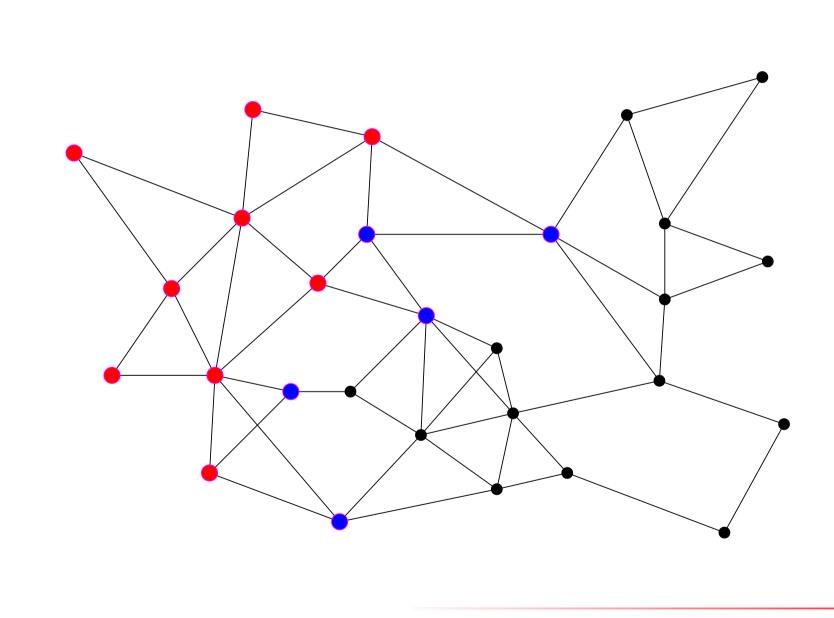
The fire spreads



One more move from a firefighter



The danger is over



The Firefighter Problem

given some input information

such as: the graph,

the vertex where the fire starts,

the number of firefighters per step, etc.

- possible aims :
 - maximise the number of saved vertices
 - minimise the time until the fire is under control
 - minimise the number of firefighters needed to protect a given number of vertices

Input: graph *G*, vertex *v*, integer *K*

Question : if a fire starts at *v*,

can a single firefighter save at least *K* vertices?

this problem is NP-complete (MacGillivray & Wang, 2003)

even restricted to trees with maximum degree 3

A small side-step : infinite grids

Theorem

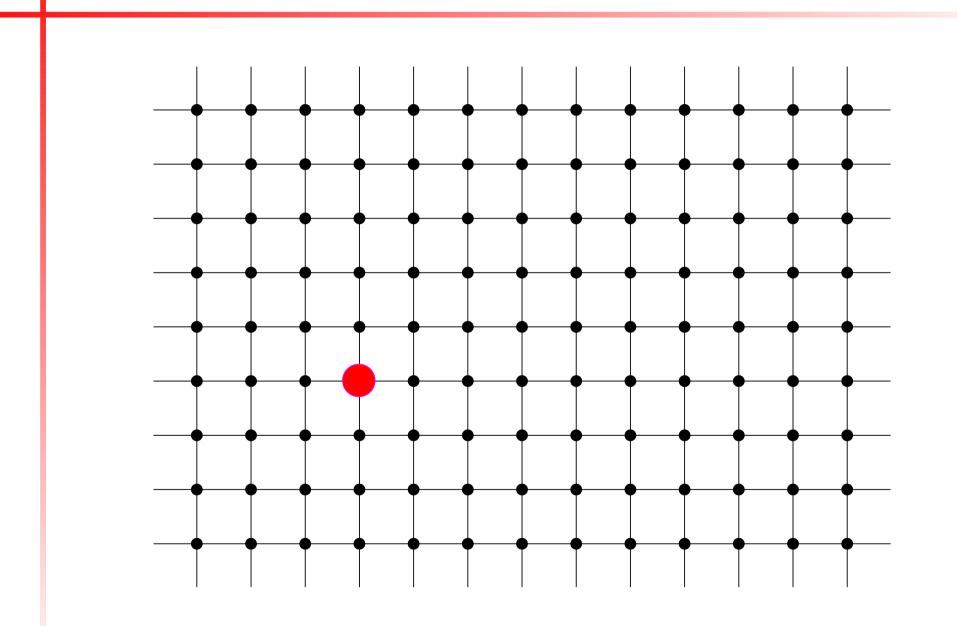
(Wang & Moeller, 2002; Fogarty, 2003; Develin & Hartke, 2007)

- for a d-dimensional grid \mathbf{Z}^d we have
 - d = 1 or $d \ge 3 \implies$ one fire can be contained

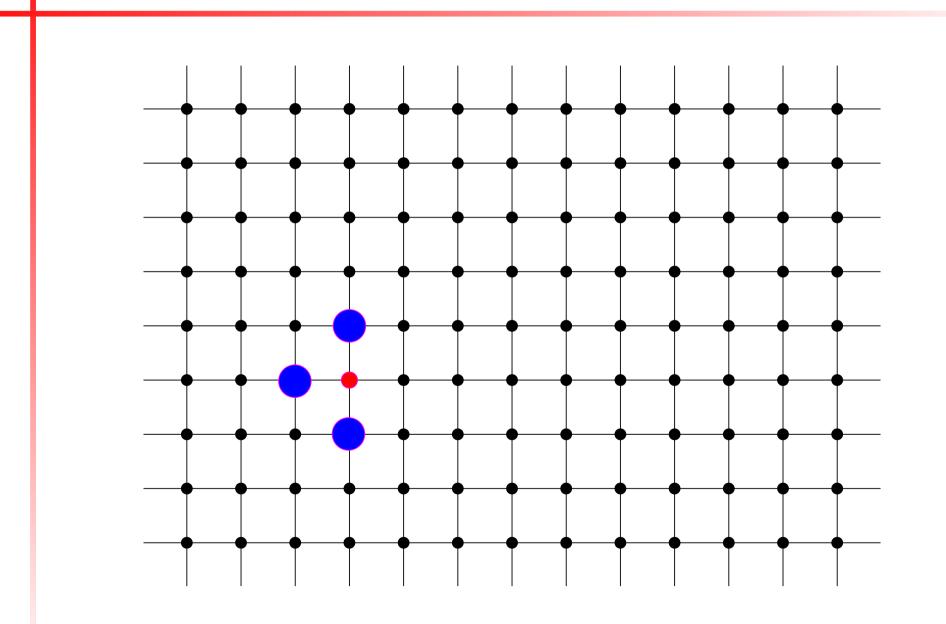
by 2d - 1 firefighters (in 2 steps)

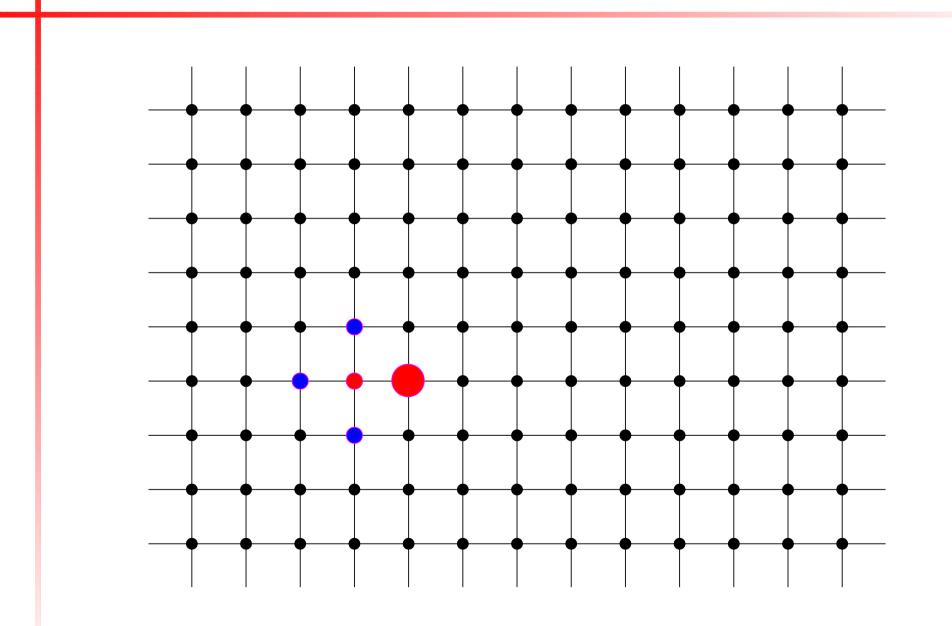
• $d = 2 \implies$ one fire can be contained by 2 firefighters (in 8 steps)

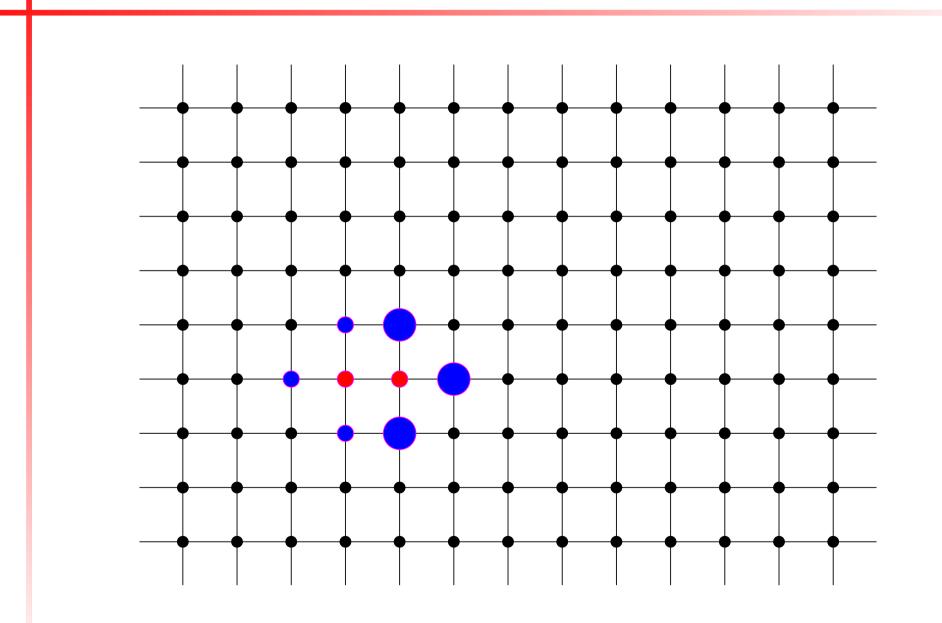
all numbers are best possible

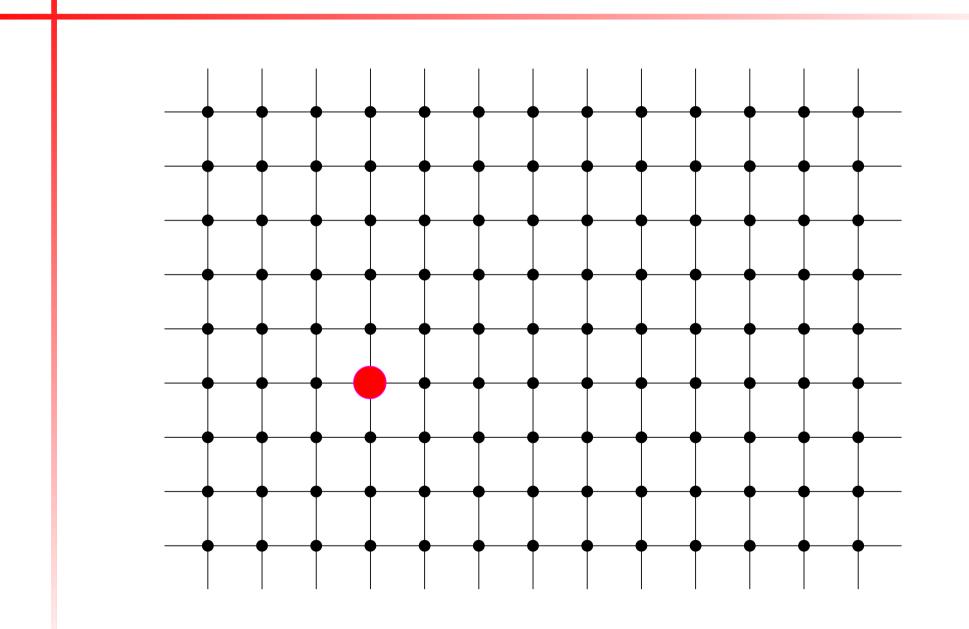


Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

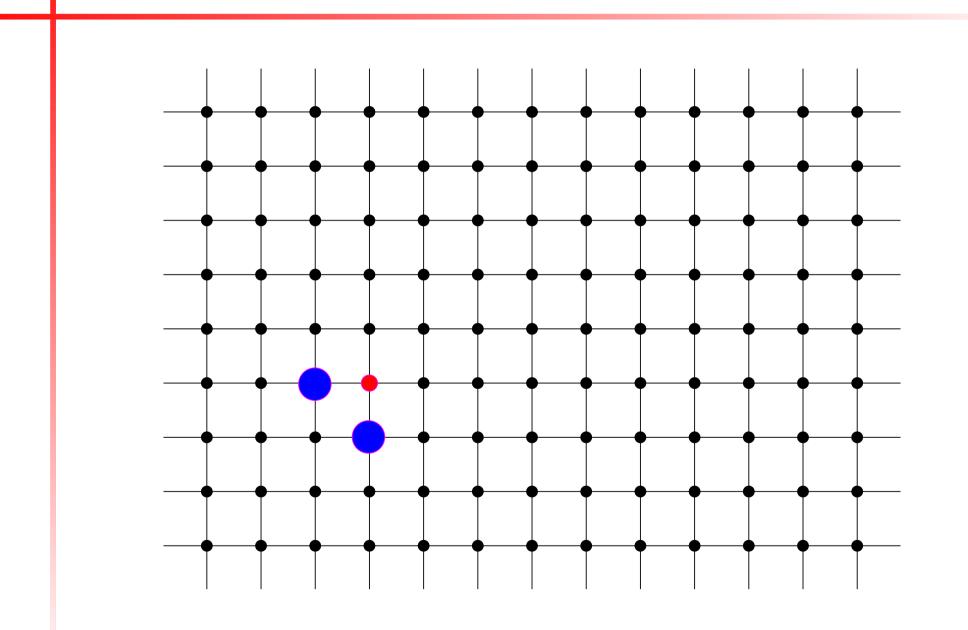


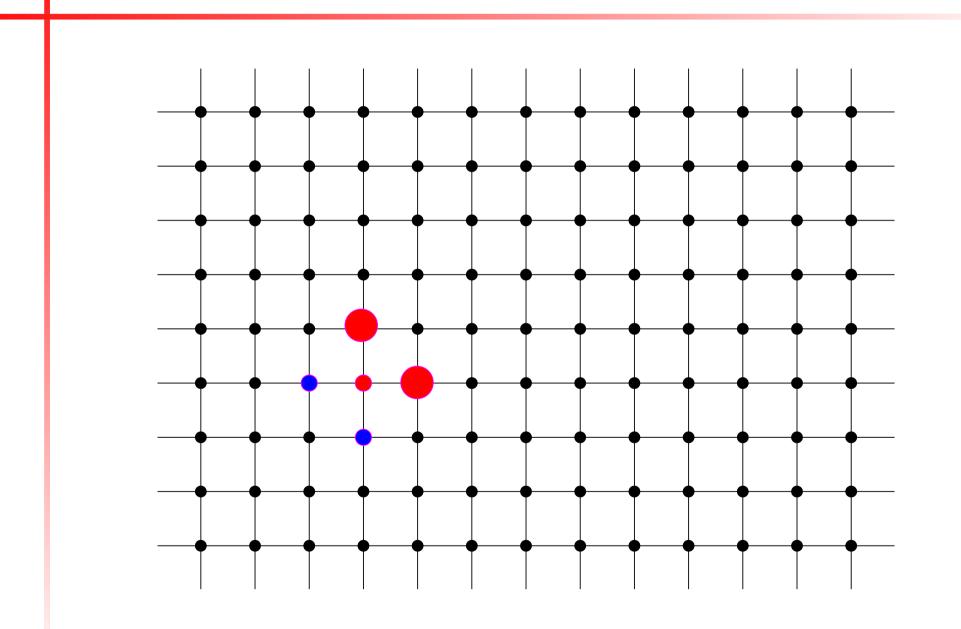


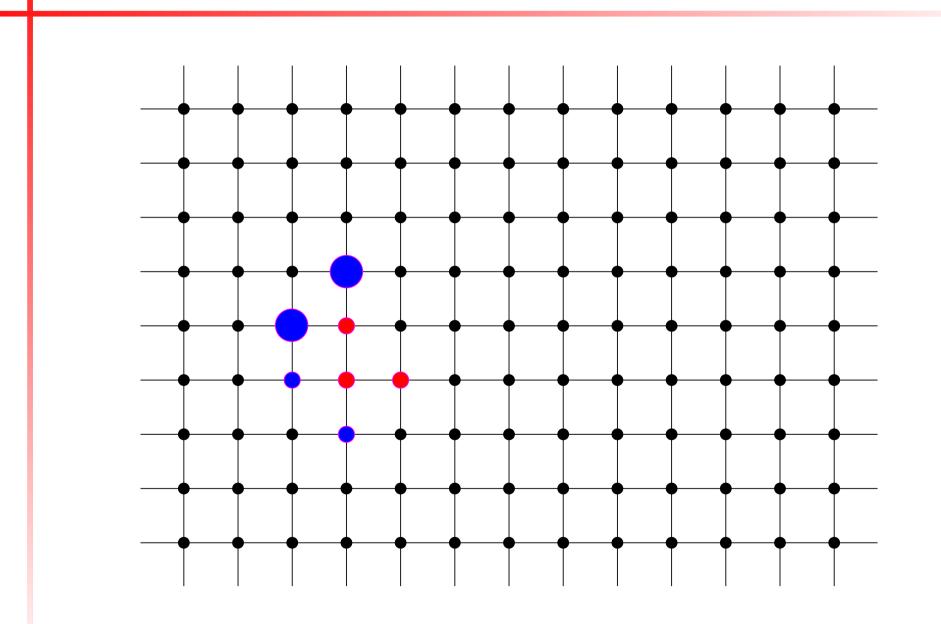


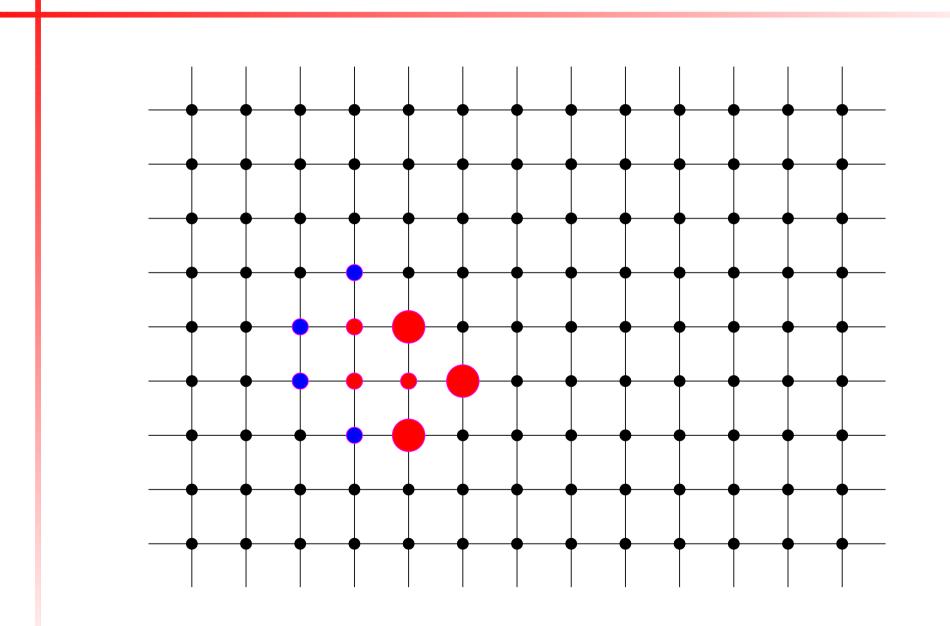


Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

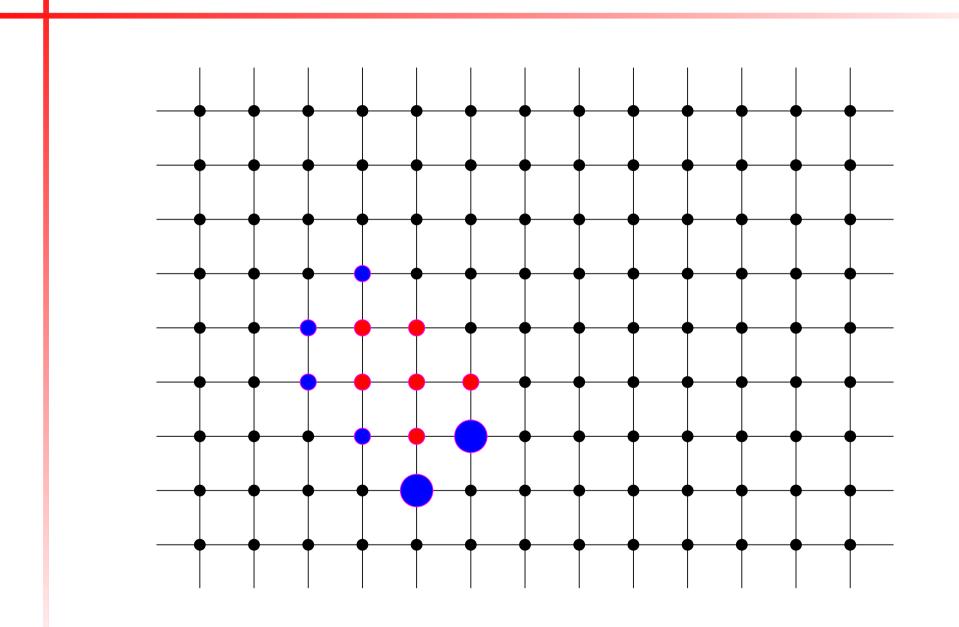


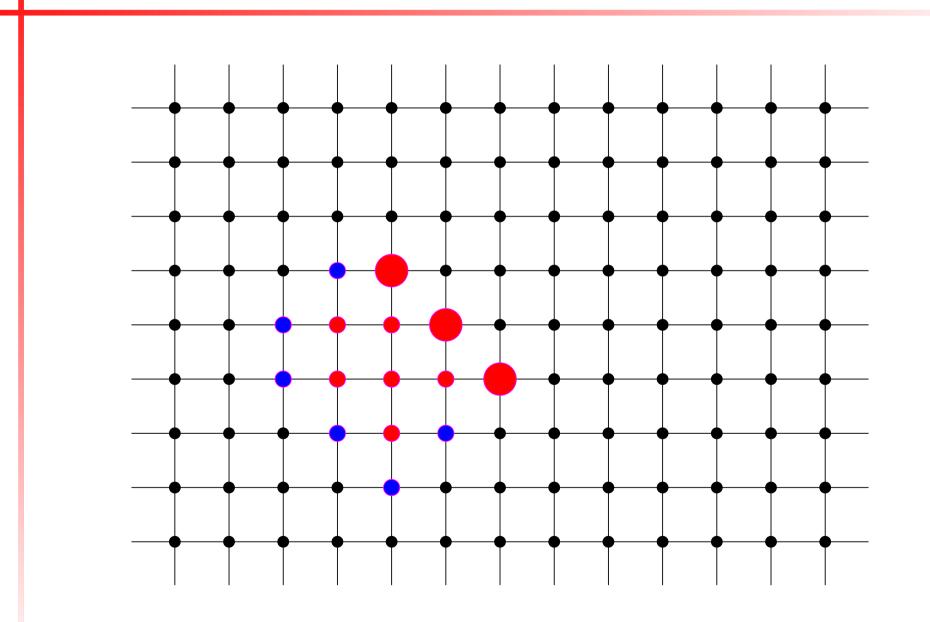


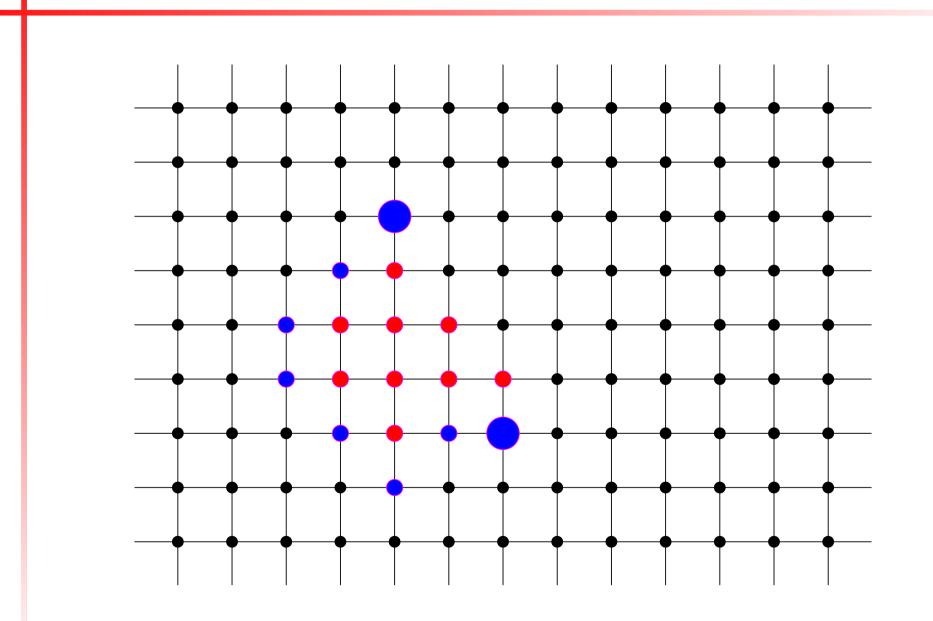


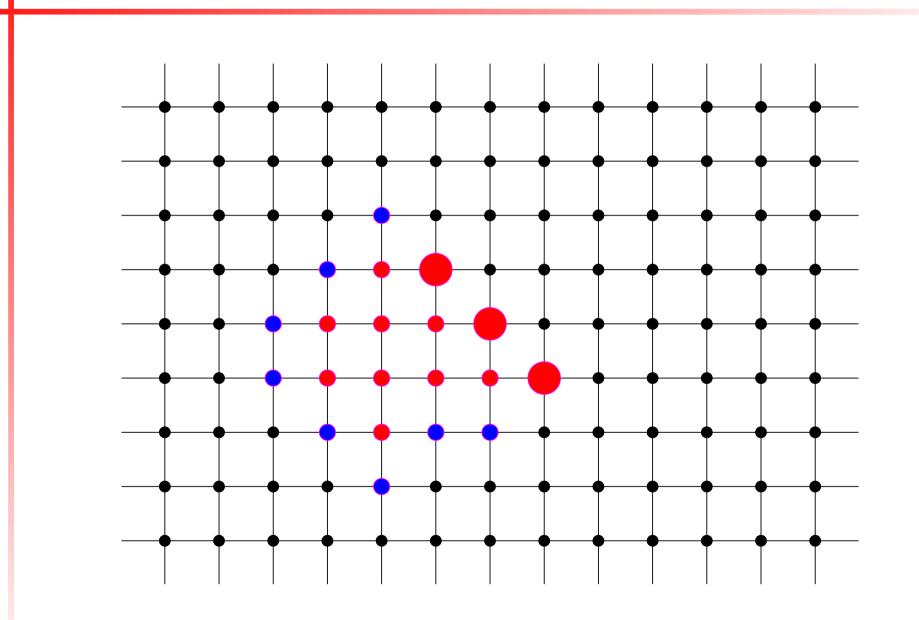


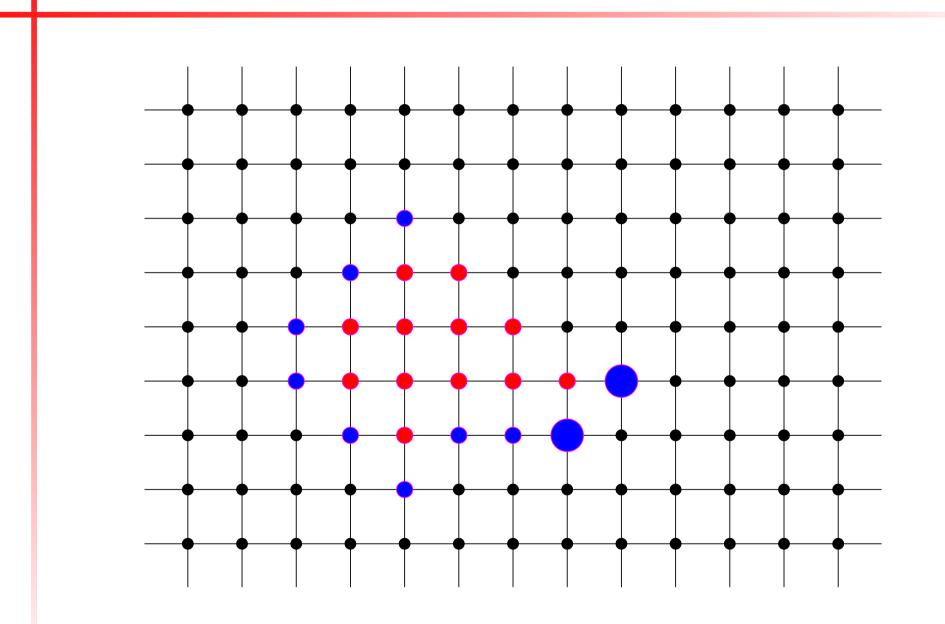
Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

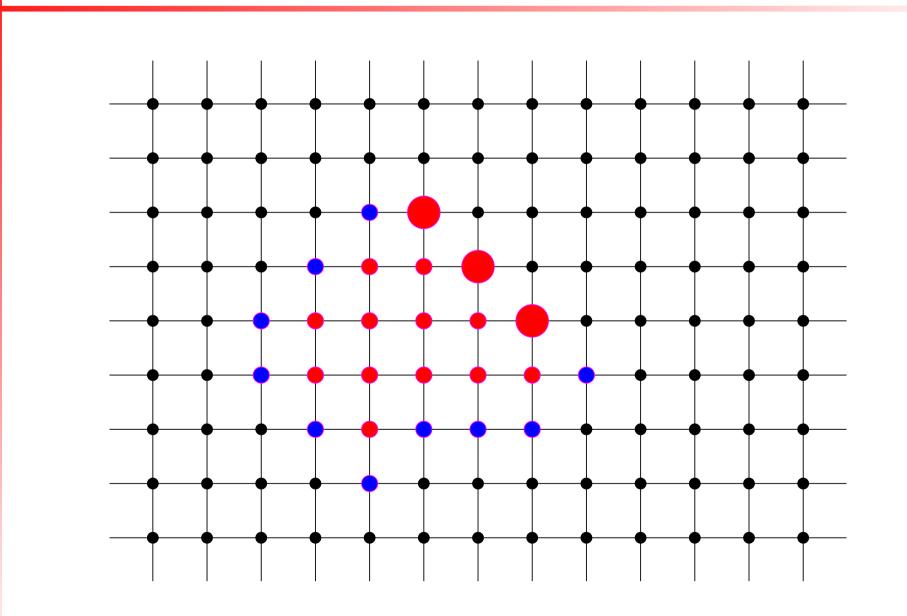


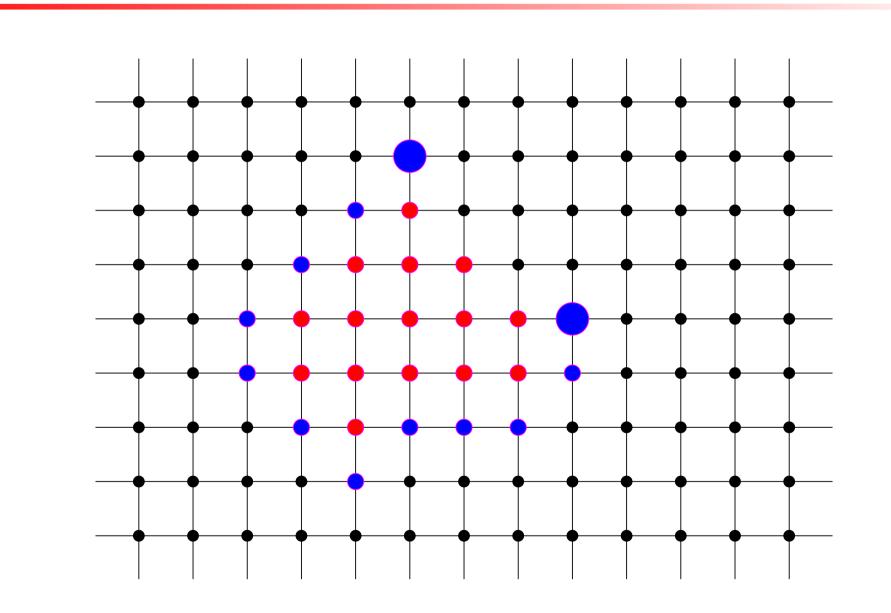


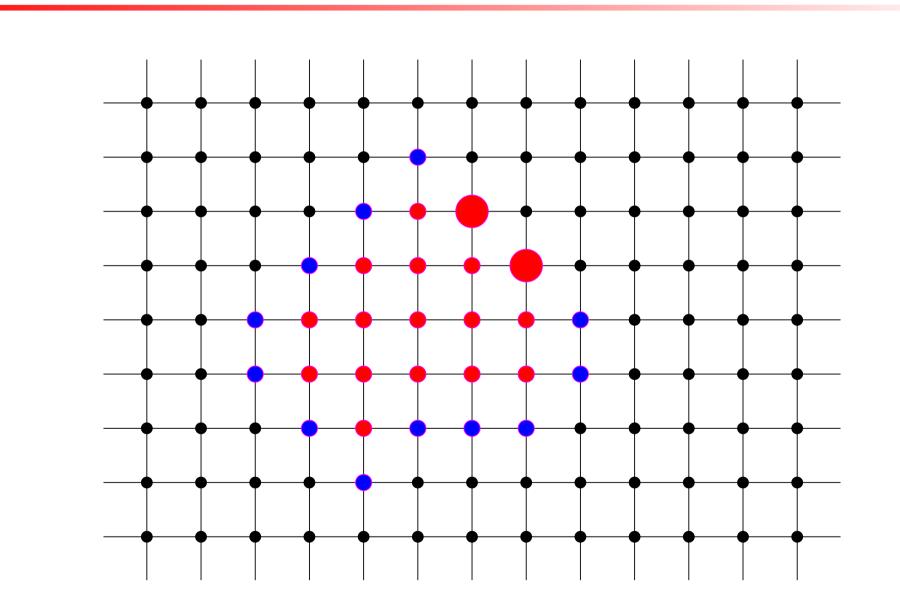




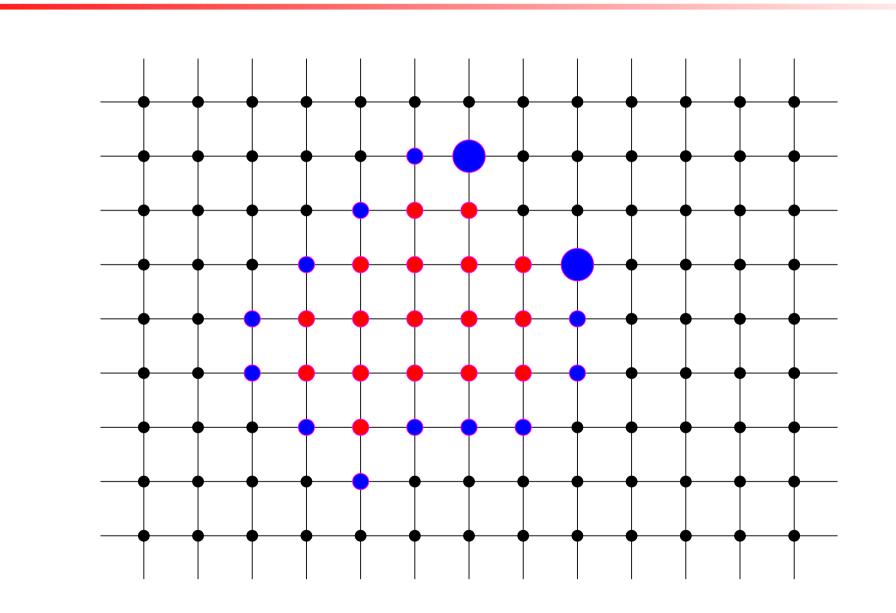






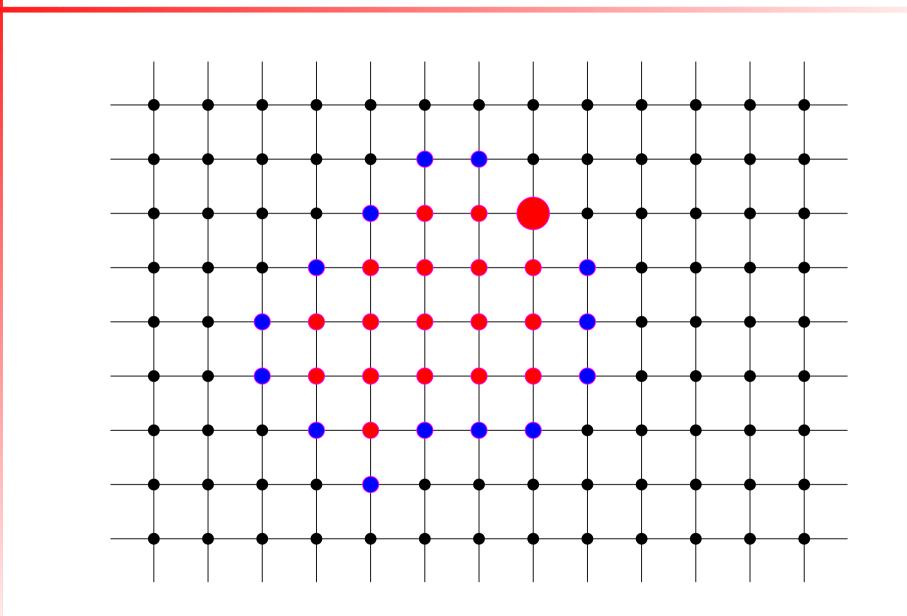


Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

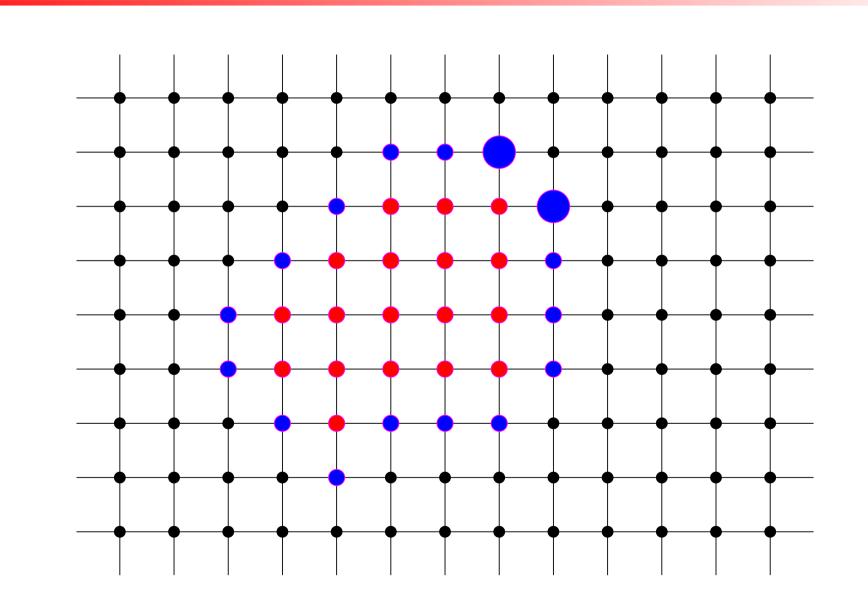


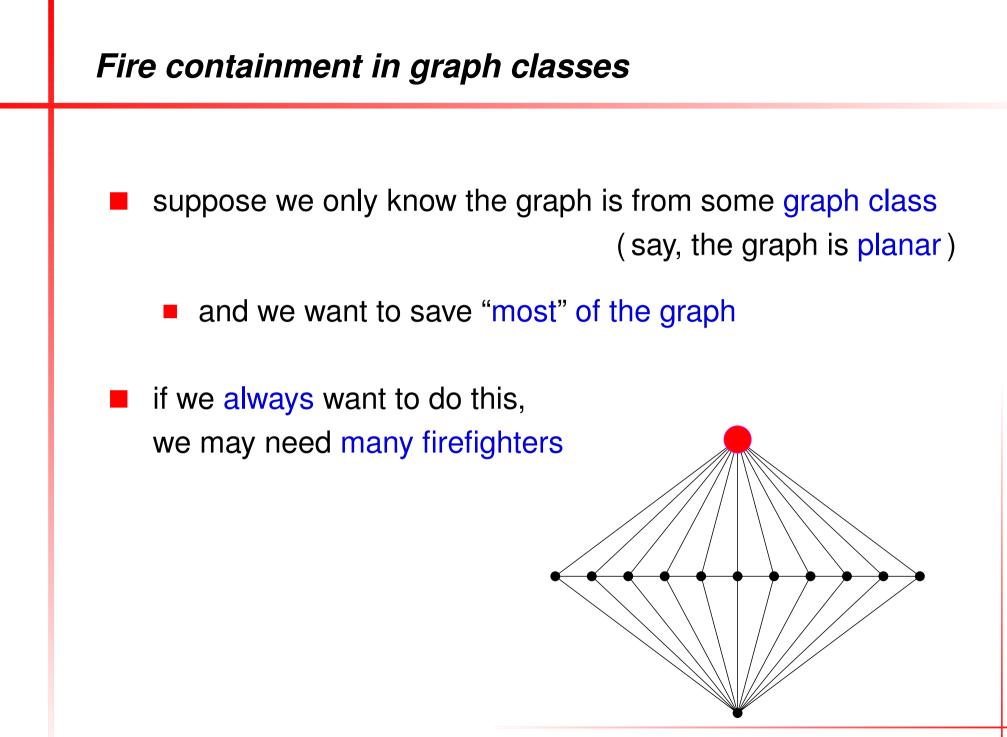
Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

The square grid with two firefighters



The square grid with two firefighters – done !





Fire containment in graph classes

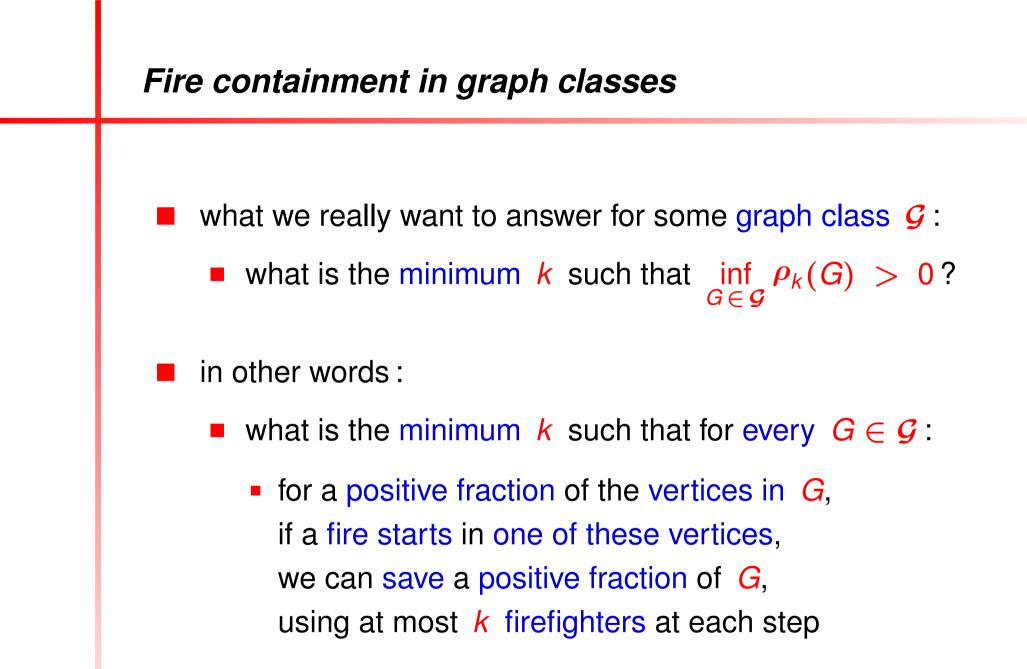
what

if we want to save "most" of the graph, "most of the time"?

suppose we have k firefighters

- \$\mathcal{P}_k(G, \nu)\$: proportion of vertices of \$G\$ that can be saved with \$k\$ firefighters if the fire starts in vertex \$\nu\$
- $\rho_k(G)$: expected value of $\rho_k(G, v)$ if v is chosen uniformly at random

$$= \frac{1}{|V(G)|} \sum_{v \in V(G)} \rho_k(G, v)$$

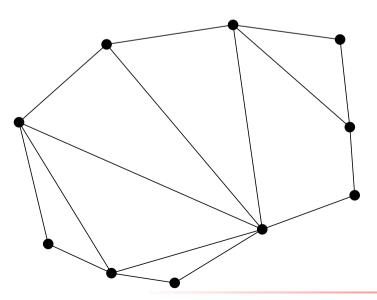


let's call that the firefighter number $ff(\mathcal{G})$ of the class \mathcal{G}

Theorem (Cai, Cheng, Verbin & Zhou, 2009+)

• G outerplanar, n vertices $\implies \rho_1(G) \ge 1 - O(\log n/n)$

outerplanar: can be drawn in the plane
 with all vertices on the outside face



Fire Containment in Planar Graphs - AMMCS-2011, 28 July 2011

Theorem (Cai, Cheng, Verbin & Zhou, 2009+)

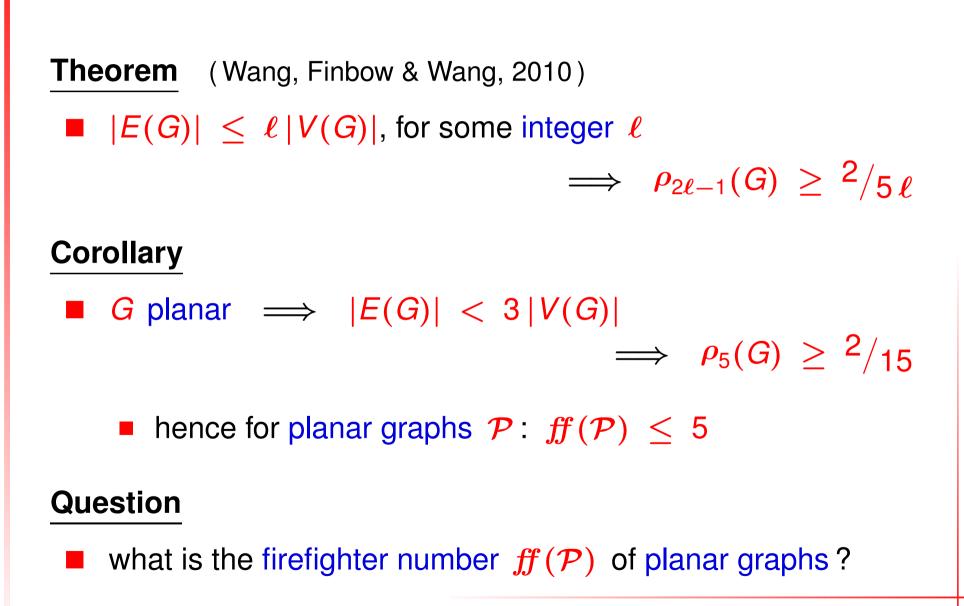
• G outerplanar, n vertices $\implies \rho_1(G) \ge 1 - O(\log n/n)$

outerplanar : can be drawn in the plane with all vertices on the outside face

• hence for outerplanar graphs \mathcal{OP} : $ff(\mathcal{OP}) = 1$

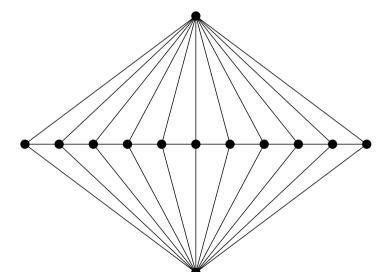
note that trees are outerplanar

The survival rate of some graph classes



The survival rate of planar graphs

Observation



The survival rate of planar graphs

Observation

• $ff(\mathcal{P}) \geq 2$

Theorem

• $ff(\mathcal{P}) \leq 4$

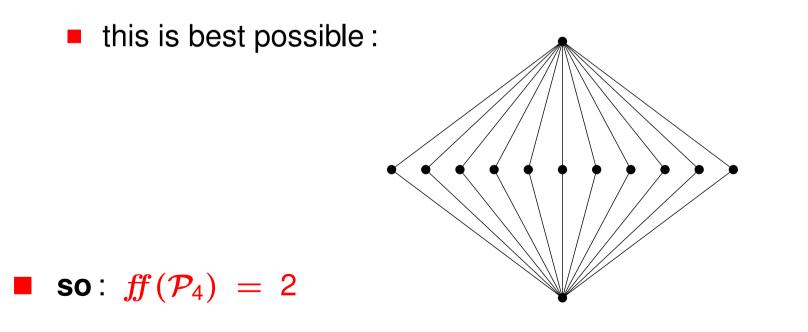
in fact, we can prove : $ff(\mathcal{P}) \leq "3 + \varepsilon"$

we need 4 firefighters in the first step only, for each following step we need only 3 firefighters

The survival rate of triangle-free planar graphs

Theorem

- G triangle-free planar $\implies \rho_2(G) \ge 1/238320$
 - so for triangle-free planar graphs \mathcal{P}_4 : $ff(\mathcal{P}_4) \leq 2$

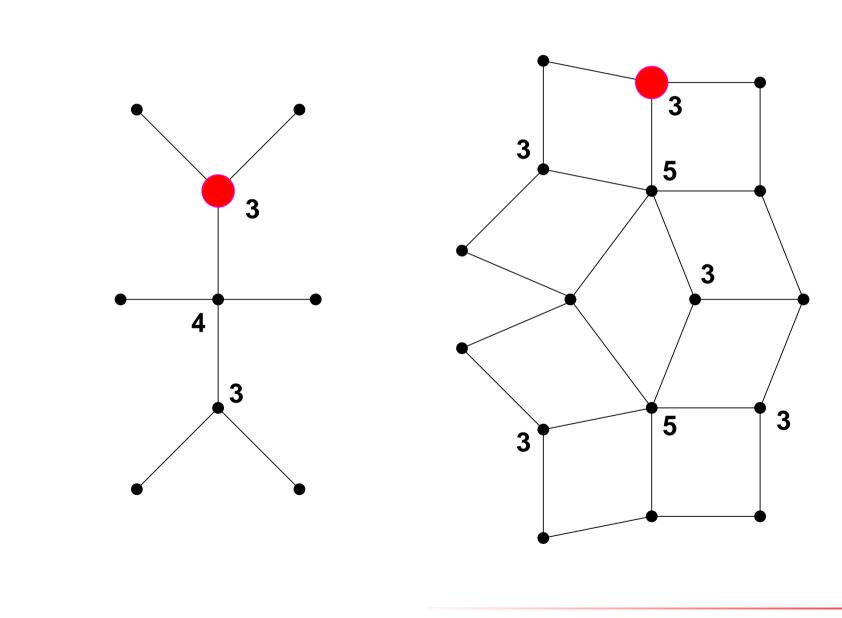


the proofs consist of two main steps :

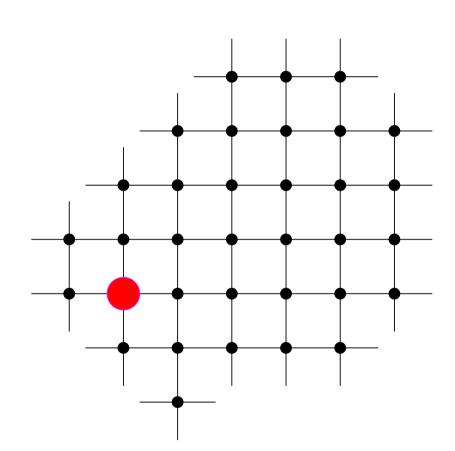
- find a collection of "defendable configurations"
 - a subgraph with a given vertex *v*, so that if the fire starts in *v*, only a finite number of vertices will be lost
- show that there is a constant α > 0,
 so that every graph G in the class
 has at least α · |V(G)| defendable configurations
 - uses the discharging method,

but in a non-standard way

Defendable configurations for **2** firefighters



And another defendable configuration for **2** firefighters



traditionally used to show that any planar graph :

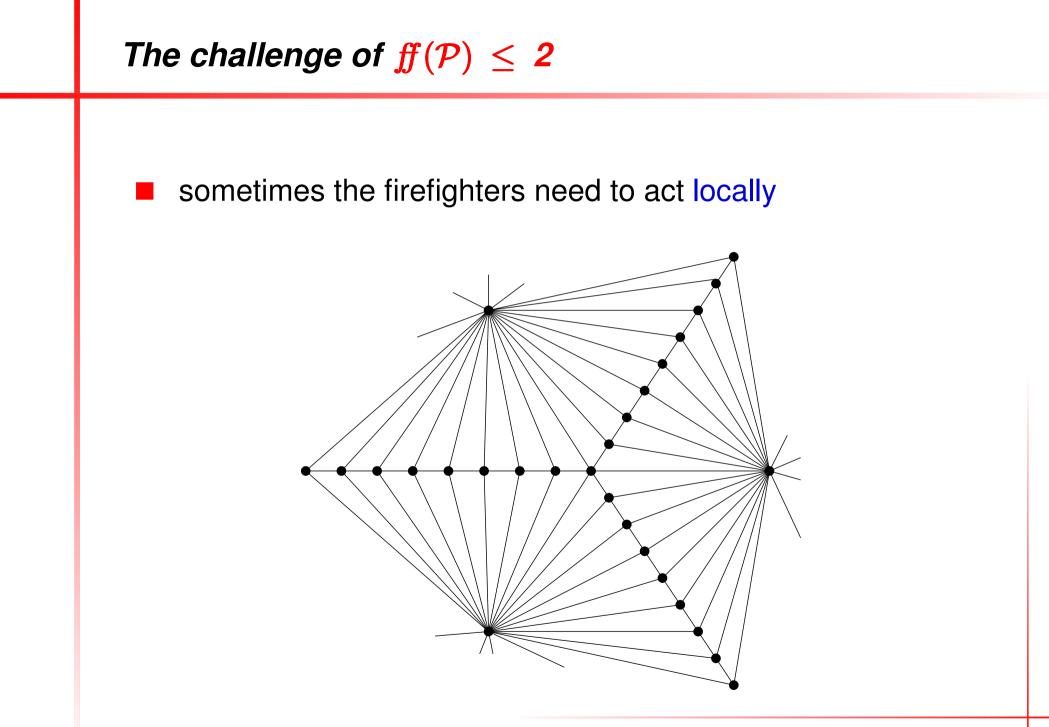
 contains at least one subgraph from a set of "good" configurations

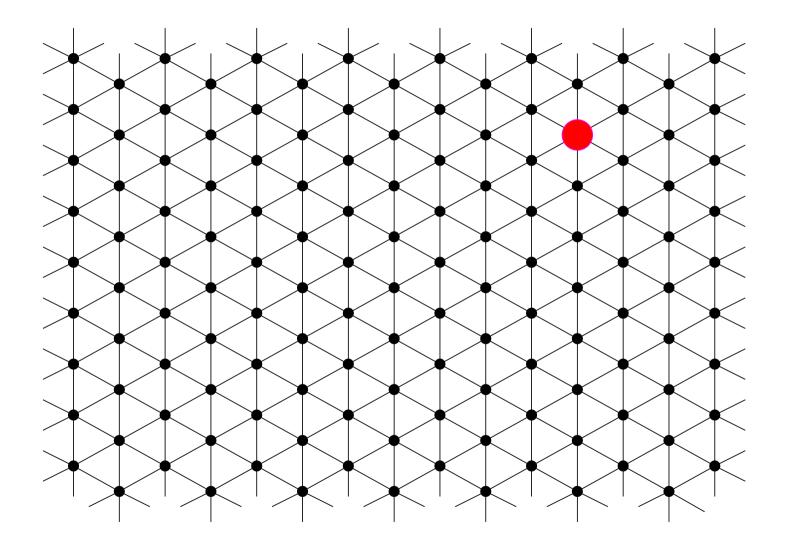
we needed to modify it to show that any planar graph :

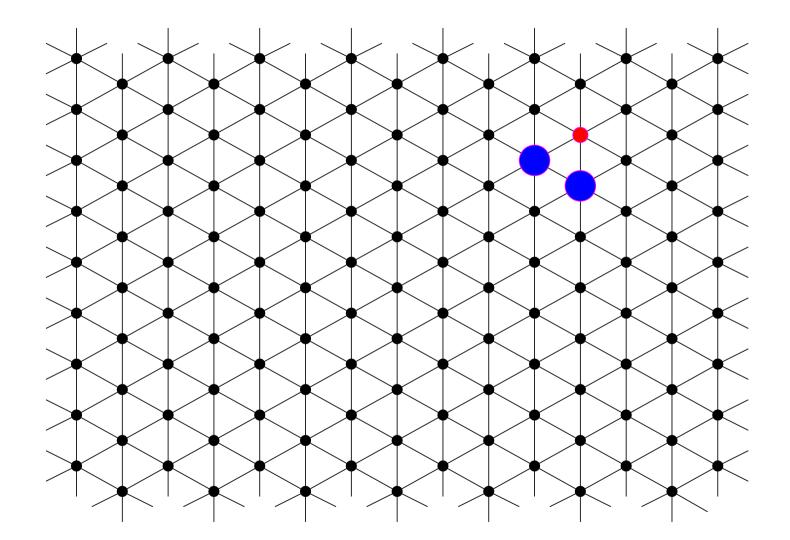
- contains many subgraphs (in fact, linearly many) from the set of defendable configurations
 - our techniques are not that different from the traditional method
 - but we need to be much more precise

The firefighter number of planar graphs

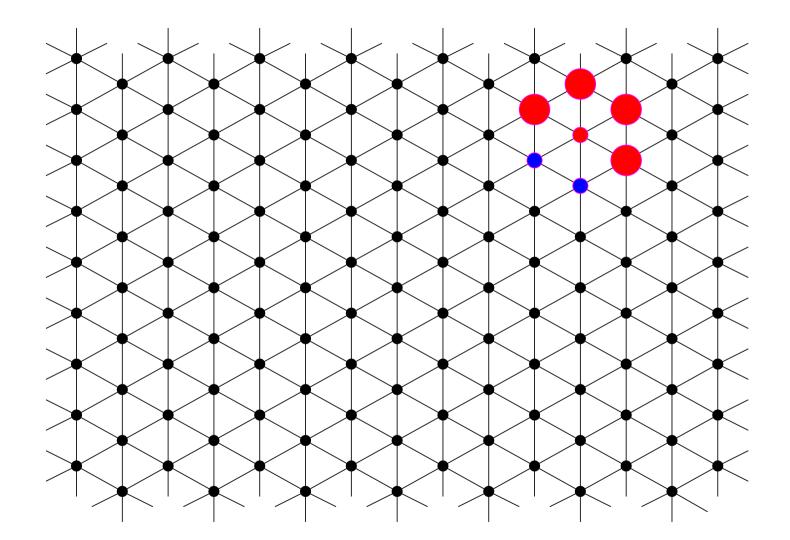
- so now we know: $2 \leq ff(\mathcal{P}) \leq 4$
- next step: prove that $ff(\mathcal{P}) \leq 3$
 - i.e., get rid of the extra firefighter needed in the first step
 - maybe possible to extend our proof, using some more careful ("messier") analysis
- I and then, can we go to : $ff(\mathcal{P}) = 2?$
 - very likely to need new ideas



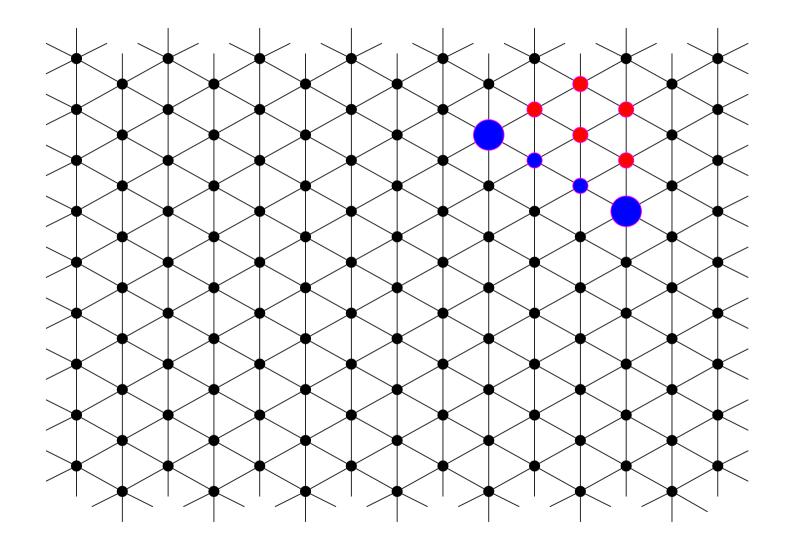




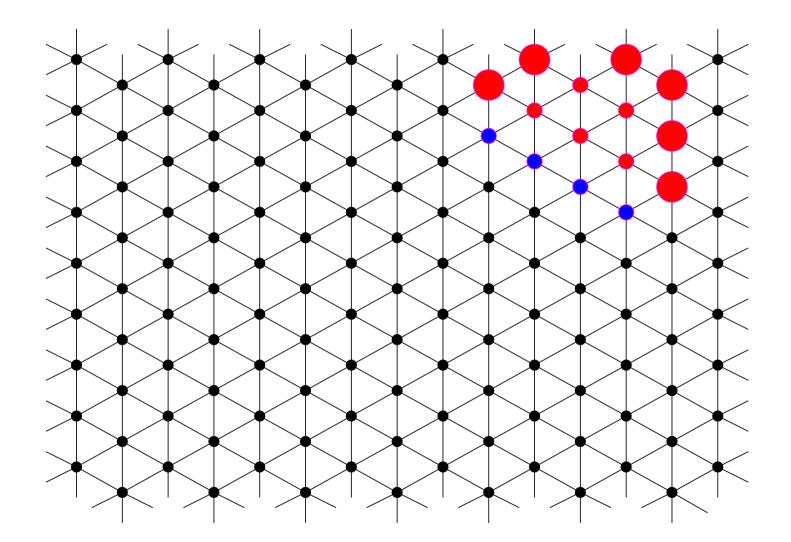
Iooks like a sensible start ...



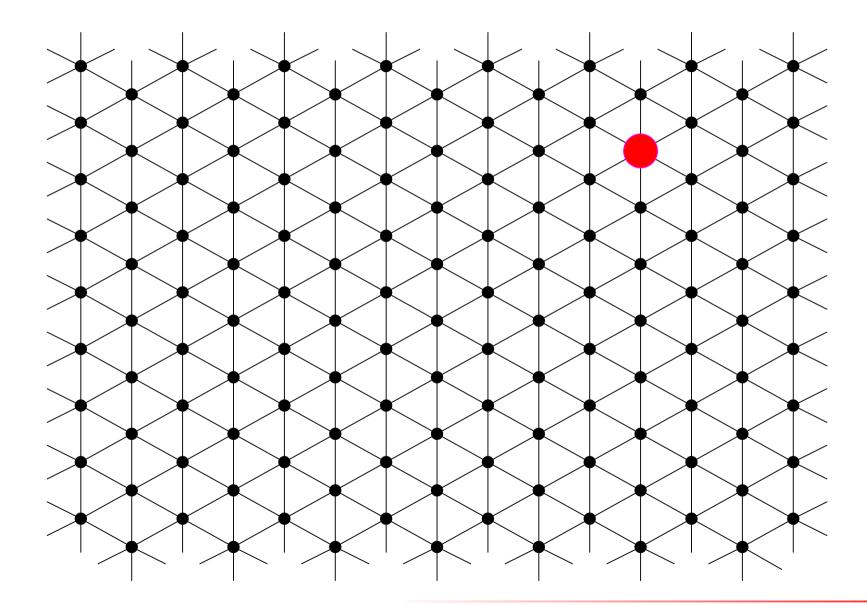
Iooks like a sensible start ...

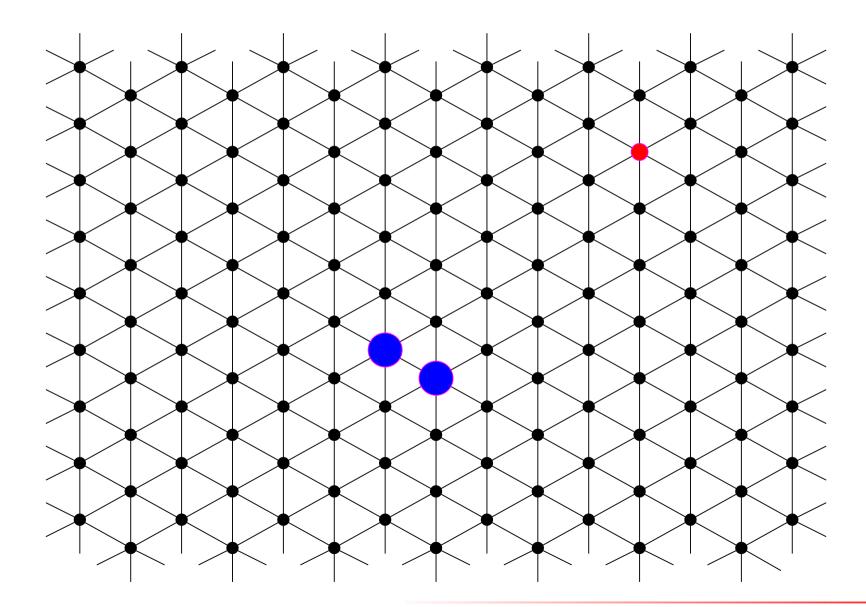


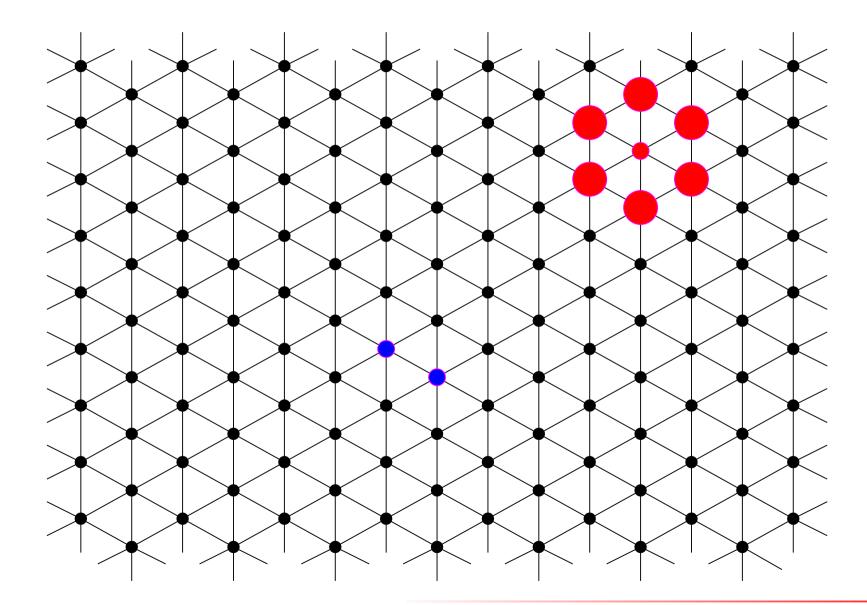
continue with that strategy ...

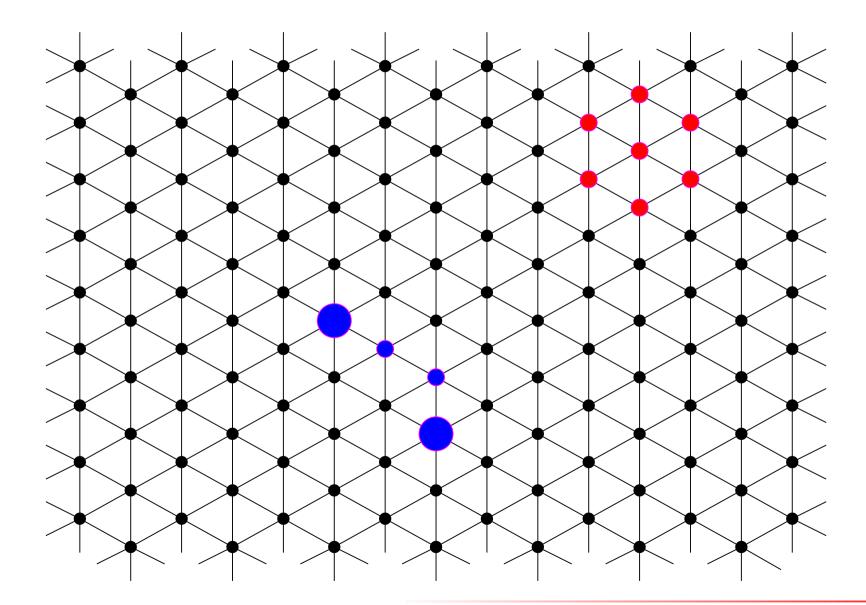


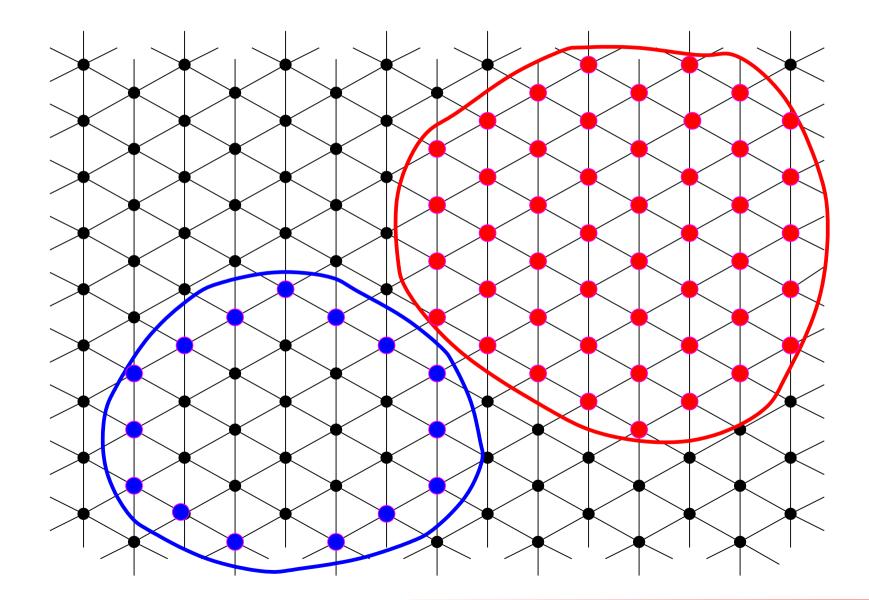
but what happens on the boundary ... ?



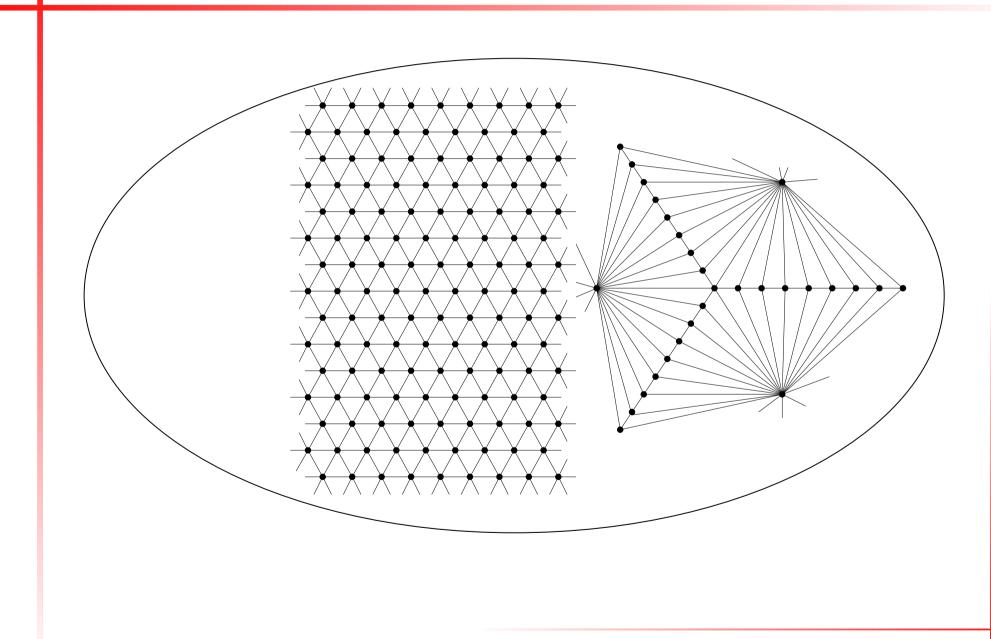








But what to do in general?



The firefighter number of planar graphs

- so now we know: $2 \leq ff(\mathcal{P}) \leq 4$
- next step: prove that $ff(\mathcal{P}) \leq 3$
 - i.e., get rid of the extra firefighter needed in the first step
 - maybe possible to extend our proof, using some more careful ("messier") analysis
- and then, can we go to : $ff(\mathcal{P}) = 2?$
 - very likely to need new ideas
 - and is it even true ... ?