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Recolouring planar bipartite graphs

Input : a planar, bipartite graph G,

and two proper 4-colourings of G

Question: can we change one 4-colouring to the other one,

by recolouring 1 vertex at the time,

while always maintaining a proper 4-colouring?

no, not always:
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But what if . . .

what if we would be able to recolour with Kempe chains?

i.e., for any two colours c1, c2, we can swap the colours on

any (c1, c2)-coloured component
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✲ etc. ✲ to any 4-colouring of the cube!
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The two kinds of reconfiguration problems

A-TO-B-PATH

Input : some collection of feasible configurations,

some collection of allowed transformations,

and two feasible configurations A,B

Question: can we go from A to B by a sequence of

transformations, so that each intermediate

configuration is feasible as well?

PATH-BETWEEN-ALL-PAIRS

Input : some collection of feasible configurations,

and some collection of allowed transformations

Question: is it possible to do the above for any two feasible

configurations A,B?
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The complexity classes we need

P: Polynomial-Time

if you are clever, you can find the answer in polynomial time
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

if the answer is “yes” and you are lucky,

you can discover the “yes” in polynomial time
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

if you are clever, you can find the answer

using a polynomial amount of memory
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

NPSPACE: Non-Deterministic Polynomial-Space

if the answer is “yes” and you are lucky, you can

discover the “yes” using a polynomial amount of memory
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

NPSPACE: Non-Deterministic Polynomial-Space

(there really should be a class Constant, for problems that can be

solved by algorithms like “print(“yes”)” or “print(“no”)”)
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

NPSPACE: Non-Deterministic Polynomial-Space

easy: P ⊆ NP ⊆ PSPACE ⊆ NPSPACE

and in fact: PSPACE = NPSPACE (Savitch, 1970)
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How to describe a problem?

when being given a particular reconfiguration problem, we don’t

expect to being told an exhaustive list of all feasible configurations

and/or an exhaustive list of all related pairs

instead we assume we are told:

a “description” of all feasible configurations,

and a “description” of the allowed transformations
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How to describe a problem?

when being given a particular reconfiguration problem, we don’t

expect to being told an exhaustive list of all feasible configurations

and/or an exhaustive list of all related pairs

i.e., we assume the input is in the form of two algorithms to decide

if a possible configuration is feasible,

and if a possible transformation is allowed

and we assume these algorithms give the correct answer

in polynomial time
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The complexity of all reconfiguration problems

Under these assumptions

A-TO-B-PATH and PATH-BETWEEN-ALL-PAIRS are in NPSPACE

(and hence in PSPACE)

suppose we want to decide if we can go from A to B

starting from A, “guess” a next configuration A1

check that A1 is feasible

check that going from A to A1 is an allowed transformation

if A1 is a valid next configuration,

“forget” A and replace it by A1

repeat those steps until the target configuration B is reached
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Reconfiguration of satisfiability problems

consider some Boolean formula with n variables

e.g.: ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2)

whose set of satisfying assignments is

{ (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1) }

the allowed transformation is: change one bit x i at the time

natural questions:

is the set of all satisfying assignments connected?

given two satisfying assignments, can you go from one to the

other?
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Reconfiguration of satisfiability problems

for a Boolean formula ϕ, the set of satisfying assignments

is an induced subgraph of the n-dimensional hypercube

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2)

corresponds to:
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Deciding satisfiability problems

Schaefer (1978) considered “types” of Boolean formulas that can

be defined using certain logical relations

depending on what logical relations are allowed:

the decision problem whether or not a Boolean formula is

satisfiable is always either in P or NP-complete
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Deciding satisfiability problems

Schaefer (1978) considered “types” of Boolean formulas that can

be defined using certain logical relations

Gopalan, Kolaitis, Maneva & Papadimitriou (2009)

tried to use the same set-up to prove results on:

given the type of logical relations allowed

what is the complexity of deciding A-TO-B-PATH for two

satisfying assignments of some Boolean formula?

and what is the complexity of PATH-BETWEEN-ALL-PAIRS

(i.e., when is the set of satisfying assignments a connected

subgraph of the hypercube)?
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Reconfiguration of satisfiability problems

Theorem (Gopalan, Kolaitis, Maneva & Papadimitriou, 2009)

for Boolean formulas formed from some fixed set of logical relations:

A-TO-B-PATH for two satisfying assignments of some Boolean

formula is either in P or PSPACE-complete

the boundary between the two classes is different from the

boundary between P and NP-complete for satisfiability
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Reconfiguration of satisfiability problems

Theorem (Gopalan, Kolaitis, Maneva & Papadimitriou, 2009)

for Boolean formulas formed from some fixed set of logical relations:

A-TO-B-PATH for two satisfying assignments of some Boolean

formula is either in P or PSPACE-complete

for the cases that A-TO-B-PATH is PSPACE-complete,

PATH-BETWEEN-ALL-PAIRS is also PSPACE-complete

in the cases that A-TO-B-PATH is in P,

PATH-BETWEEN-ALL-PAIRS can be in P, in coNP, or

coNP-complete

the boundaries between the classes are far from clear
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Reconfiguration of graph colourings

we consider proper colourings using a fixed number of colours

and we are allowed to recolour one vertex at the time

example: the structure of 3-colourings of K 3
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Reconfiguration of graph colourings

K-COLOUR-A-TO-B-PATH

Input : a graph G,

and two k-colourings A and B of G

Question: can we go from A to B

by recolouring one vertex at the time,

always maintaining a proper k-colouring?

K-COLOUR-PATH-BETWEEN-ALL-PAIRS

Input : a graph G

Question: can we go between any two k-colourings

in the manner above?
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Reconfiguration of graph colourings

Recall

if k = 2, then deciding if a graph is k -colourable is in P

if k ≥ 3, then deciding if a graph is k -colourable is NP-complete

Theorem

if k = 2, 3, then K-COLOUR-A-TO-B-PATH is in P

(Cereceda, vdH & Johnson, 2011)

if k ≥ 4, then K-COLOUR-A-TO-B-PATH is PSPACE-complete

(Bonsma, Cereceda, 2009)
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Reconfiguration of graph colourings

Completely trivial

restricted to bipartite, planar graphs:

for any k ≥ 2, deciding if a graph is k-colourable is in Constant:

print(“yes”)
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Reconfiguration of graph colourings

Completely trivial

restricted to bipartite, planar graphs:

for any k ≥ 2, deciding if a graph is k-colourable is in Constant

Theorem

restricted to bipartite, planar graphs:

if k = 2, 3, then K-COLOUR-A-TO-B-PATH is in P

(Cereceda, vdH & Johnson, 2011)

if k = 4, then K-COLOUR-A-TO-B-PATH is PSPACE-complete

(Bonsma, Cereceda, 2009)

if k ≥ 5, then K-COLOUR-A-TO-B-PATH is in Constant (“yes”)
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Reconfiguration of graph colourings

Theorem

restricted to bipartite graphs:

if k = 2, then K-COLOUR-PATH-BETWEEN-ALL-PAIRS is in P:

if no edges then print(“yes”), else print(“no”)

if k = 3,

then K-COLOUR-PATH-BETWEEN-ALL-PAIRS is coNP-complete

(Cereceda, vdH & Johnson, 2009)

if k ≥ 4, then the complexity of

K-COLOUR-PATH-BETWEEN-ALL-PAIRS is unknown
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Reconfiguration of graph colourings

Theorem

restricted to bipartite, planar graphs:

if k = 3,

then K-COLOUR-PATH-BETWEEN-ALL-PAIRS is in P

(Cereceda, vdH & Johnson, 2009)

if k = 4, then the complexity of

K-COLOUR-PATH-BETWEEN-ALL-PAIRS is unknown

if k ≥ 5,

then K-COLOUR-PATH-BETWEEN-ALL-PAIRS is in Constant:

print(“yes”)

The Complexity of Change – 24th BCC, 5 July 2013



Reconfiguration with Kempe chains

a Kempe chain transformation of a k-colouring of a graph involves:

for two colours c1, c2,

swap the colours on a (c1, c2)-coloured component

Theorem (Burton Jr. & Henley, 1997; many times since then)

if G is bipartite, then for any k : any two k-colourings

are connected by Kempe chain transformations
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Reconfiguration with Kempe chains

a Kempe chain transformation of a k-colouring of a graph involves:

for two colours c1, c2,

swap the colours on a (c1, c2)-coloured component

not true if G is not bipartite:
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Reconfiguration with Kempe chains

we know some classes of graphs whose k-colourings are

connected using Kempe chains

example:

planar graphs with k = 5 (best possible, not true for k = 4)

(Meyniel, 1978)

but no results are known about the complexity of deciding this

when it is not always “yes”,

not even for specific graph classes

the same holds for the “path between colourings” version of the

decision problem
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Sliding token puzzles

we can interpret the 15-puzzle as a problem

involving moving tokens on a given graph:

❧15 ❧8 ❧7 ❧5

✉ ❧6 ❧4 ❧14

❧9 ❧11 ❧1 ❧10

❧13 ❧2 ❧3 ❧12

✲

❧15 ❧8 ❧7 ❧5

✉❧6 ❧4 ❧14

❧9 ❧11 ❧1 ❧10

❧13 ❧2 ❧3 ❧12
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Sliding token puzzles

so what happens if we would play this on other graphs?

for a given graph G on n vertices,

define puz(G) as the graph that has:

nodes: all possible placements of n − 1 tokens on G

adjacency: sliding one token along an edge of G

to an empty vertex

and our standard decision problems become:

are two token configurations in one component of puz(G)?

is puz(G) connected?
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Sliding token puzzles

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

G is a cycle on n ≥ 4 vertices

(then puz(G) has (n − 2)! components)

G is bipartite different from a cycle

(then puz(G) has 2 components)

G is the exceptional graph Θ0 (puz(Θ0) has 6 components)
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Generalised sliding token puzzles

what would happen if:

we have fewer than n − 1 tokens (i.e., more empty vertices)?

and/or not all tokens are the same?

so suppose we have a set (k1, k2, . . . , kp) of labelled tokens

meaning: k1 tokens with label 1, k2 tokens with label 2, etc.

tokens with the same label are indistinguishable

we can assume that k1 ≥ k2 ≥ · · · ≥ kp

and their sum is at most n − 1

the corresponding graph of all token configurations on G is

denoted by puz(G; k1, . . . , kp)
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013+)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

G is the exceptional graph Θ0 with token set (2, 2, 2),

(2, 2, 1, 1), (2, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1)

s s
s s s
s s

❚❚ ✔✔
✔✔ ❚❚
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013+)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

G is the exceptional graph Θ0 with some bad token sets

G has connectivity one, p ≥ 2 and there is a “separating path

preventing tokens from moving between blocks”
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Generalised sliding token puzzles

“separating paths” in graphs of connectivity one:
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Generalised sliding token puzzles

we can also characterise:

given a graph G, token set (k1, . . . , kp),

and two token configurations on G,

are the two configurations in the same component of

puz(G; k1, . . . , kp)?

so recognising connectivity properties of puz(G; k1, . . . , kp) is

easy

so can we say something about the number of steps we would

need?
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The length of sliding token paths

SHORTEST-A-TO-B-TOKEN-MOVES

Input : a graph G, a token set (k1, . . . , kp),

two token configurations A and B on G,

and a positive integer N

Question: can we go from A to B in at most N steps?

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n − 1 different tokens,

SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete
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The length of sliding token paths

Theorem

restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P

sketch of proof

let U = {u1, . . . , uq} be the vertices containing a token in

configuration A

and V = {v1, . . . , vq} is that set for configuration B

form a complete bipartite graph with bipartation U ∪ V

give each edge u iv j a weight w i j equal to the length of the

shortest path from ui to v j in G
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The length of sliding token paths

sketch of proof

let U = {u1, . . . , uq} be the vertices containing a token in

configuration A

and V = {v1, . . . , vq} is that set for configuration B

form a complete bipartite graph with bipartation U ∪ V

give each edge u iv j a weight w i j equal to the length of the

shortest path from ui to v j in G

find a matching M of minimum weight in the bipartite graph,

say it has total weight W

then you can from A to B in exactly W steps (and not fewer!)

although not necessarily by the paths indicated by M !
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The length of sliding token paths

all tokens different:

SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete

all tokens the same:

SHORTEST-A-TO-B-TOKEN-MOVES is in P

so when does the complexity change?

Theorem (vdH & Trakultraipruk, 2013+)

restricted to the case that there is just one special token

and all others are the same:

SHORTEST-A-TO-B-TOKEN-MOVES is already NP-complete
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The length of sliding token paths

the proof uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT is NP-complete

Robot Motion problems on graphs are sliding token problems,

with some special tokens (the robots)

that have to end in specified positions

all other tokens are just obstacles

and it is not important where those are at the end
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A final puzzle: Rush Hour

RUSH-HOUR

Input : some rectangular board,

a configuration of cars on that board,

and one special car

Question: is it possible to get the special car moving?

Theorem

RUSH-HOUR is PSPACE-complete (Flake & Baum, 2002)

RUSH-HOUR remains PSPACE-complete

even if all cars have length two (Tromp & Cilibrasi, 2005)
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How to prove a decision problem is PSPACE-complete?

standard method:

reduction to the basic PSPACE-complete problem:

QUANTIFIED-SAT:

∀x1 ∃y1 ∀x2 ∃y2 · · · ∀xn ∃yn ϕ(x1, y1, . . . , xn, yn)

for some Boolean formula ϕ(x1, y1, . . . , xn, yn)

Hearn & Demain (2005) developed an approach

that is often much easier to use

first step: show that a QUANTIFIED-SAT formula can be

represented by certain logical circuits
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NCL machines

a Non-Deterministic Constraint Logic machine

has the following elements:

it is an undirected graph,

with non-negative weights on the vertices and edges

a feasible configuration is an orientation of the edges,

such that for each vertex:

the sum of the incoming edge-weights

is at least the weight of the vertex

a move is reversing the orientation of an edge

(making sure the new configuration is still feasible)
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NCL machines

NCL-CONFIGURATION-TO-EDGE

Input : an NCL machine, a feasible configuration,

and a special edge of the underlying graph

Question: is there a sequence of moves

that reverses the orientation of the special edge?

Theorem (Hearn & Demaine, 2005)

NCL-CONFIGURATION-TO-EDGE is PSPACE-complete
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NCL machines

Theorem (Hearn & Demaine, 2005)

NCL-CONFIGURATION-TO-EDGE is PSPACE-complete

even when restricted to NCL machines in which:

the underlying graph is planar,

all vertices have degree three,

all vertices have weight 1 or 2,

all edges have weight 1
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Restricted NCL machines

all vertices have weight 1 or 2,

all edges have weight 1

vertices with weight 1 give an OR-like behaviour:

❥1PP
PPPPq

✏✏✏✮
✏✏✏

✲
A

B

C
1

1
1

edge C can only go outwards, if at least one of A,B goes inwards
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Restricted NCL machines

all vertices have weight 1 or 2,

all edges have weight 1

vertices with weight 1 give an OR-like behaviour

vertices with weight 2 give an AND-like behaviour:

❥2PP
PPPPq

✏✏
✏✏✏✏✶

✲
A

B

C
1

1
1

edge C can only go outwards, if both A,B go inwards

The Complexity of Change – 24th BCC, 5 July 2013



Restricted NCL machines

all vertices have weight 1 or 2,

all edges have weight 1

vertices with weight 1 give an OR-like behaviour

vertices with weight 2 give an AND-like behaviour:

with some care,

with these elements we can build any logical circuit

and that way prove that the restricted

NCL-CONFIGURATION-TO-EDGE is PSPACE-complete
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Back to Rush Hour

an OR-like collection of cars:

C can only move in, if at least one of A, B moves out

an AND-like collection of cars:

C can only move in, if both A and B move out
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Back to Rush Hour

and then combine it all in big tableaus:
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A final open problem

RUSH-HOUR is PSPACE-complete,

even if all cars have length two

what is the complexity if all cars have length one?

i.e., each car is a 1 × 1 block,

but can move in only one direction

✻

❄

or ✛ ✲
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Can you move your city car out of the garage?

your

car
✲✛✻ ✻ ✻ ✻

❄ ❄ ❄ ❄

✲✛ ✻ ✻
❄ ❄

✲ ✲✛ ✛

✻

✻

✻

❄

❄

❄
✲ ✲✛ ✛ ✻

❄

✻
❄

✲ ✲✛ ✛

✲ ✲ ✲✛ ✛ ✛ ✻

✻

❄

❄
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