Fractional Colouring and Pre-colouring Extension of Graphs

Jan van den Heuvel

joint work with :
Dan Král', Martin Kupec,
Jean-Sébastien Sereni \& Jan Volec

Department of Mathematics
London School of Economics and Political Science

Graph colouring and pre-colouring

- G a graph
- chromatic number $\chi(\mathbb{G})$:

$$
\text { minimum } k \text { so that a vertex-colouring exists }
$$

general question :

■ what can we say if some vertices are already pre-coloured ?
■ in particular: can $\chi(G)$ colours still be enough ?

- in general: no

Pre-colouring questions

next best questions :

■ how many extra colours may be needed?
■ and what conditions on the pre-coloured vertices can make life easier?

Question (Thomassen, 1997)

- G planar,
$W \subseteq V(G)$, a set of vertices so that distance between any two vertices in W is at least 100
- can any 5 -colouring of W
be extended to a 5-colouring of G ?

The first answer

■ $\operatorname{dist}(W)$: minimum distance between any two vertices in W

Theorem (Albertson, 1998)
■ G any graph with chromatic number χ
$W \subseteq V(G)$ with $\operatorname{dist}(W) \geq 4$
\Longrightarrow any $(\chi+1)$-colouring of W
can be extended to a $(\chi+1)$-colouring of G

Some more answers

Theorem (Albertson, 1998)

- G planar graph
$W \subseteq V(G)$ with $\operatorname{dist}(W) \geq 3$
\Longrightarrow any 6-colouring of W
can be extended to a 6-colouring of G

Theorem

■ G any graph with chromatic number χ
$W \subseteq V(G)$ with $\operatorname{dist}(W) \geq 3$
\Longrightarrow any $(\chi+\chi)$-colouring of W
can be extended to a $(\chi+\chi)$-colouring of G

Fractional colouring

■ fractional K-colouring of graph $G(K \in \mathbf{R}, K \geq 0)$:

- every vertex $v \in V$ is assigned a subset $\phi(v) \subseteq[0, K]$ so that:
- every subset $\phi(v)$ has 'measure' 1
- and $u v \in E(G) \Longrightarrow \phi(u) \cap \phi(v)=\varnothing$

■ fractional chromatic number $\chi_{F}(G)$:
$=\inf \{K \geq 0 \mid G$ has a fractional K-colouring $\}$
$=\min \{K \geq 0 \mid G$ has a fractional K-colouring $\}$

Fractional colouring

■ note: we always have $\chi_{F}(G) \leq \chi(G)$

- but the difference can be arbitrarily large
- $\chi_{F}(G)=1 \Longleftrightarrow G$ has no edges
- $\chi_{F}(G)=2 \Longleftrightarrow G$ has edges and is bipartite
- for all rational $K \geq 2$: there exist G with $\chi_{F}(G)=K$

Pre-colouring in the fractional world

- so now suppose that for some vertices $W \subseteq V(G)$, the vertices in W are already pre-coloured:
- vertices $w \in W$ have been given some set $\phi(w)$
of measure 1
- when can this be extended to a fractional colouring of the whole graph G ?

■ in general we should expect to
require more than $\chi_{F}(G)$ colours

The set-up of the problem

- - G a graph with fractional chromatic number $\chi_{F} \geq 2$
- $D \geq 3$ an integer
- $W \subseteq V(G)$ with $\operatorname{dist}(W) \geq D$
- - the vertices $w \in W$

$$
\text { are pre-coloured with } \phi(w) \subseteq\left[0, \chi_{F}+\alpha\right]
$$

- for some real $\alpha \geq 0$
- and we want to extend that to a fractional colouring of the whole G, using colours from $\left[0, \chi_{F}+\alpha\right]$

■ how large should α be to make sure this can be done?

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar \& Volec, 2011)
■ extension is always possible, provided α is at least:

- $\frac{\sqrt{\left(\lfloor D / 4\rfloor \chi_{F}-1\right)^{2}+4\lfloor D / 4\rfloor\left(\chi_{F}-1\right)}-\lfloor D / 4\rfloor \chi_{F}+1}{2\lfloor D / 4\rfloor}$ if $D \equiv 0 \bmod 4$,
- $\frac{\chi_{F}-1}{\lfloor D / 4\rfloor \chi_{F}}, \quad$ if $D \equiv 1 \bmod 4$
- $\frac{\sqrt{\left(\lfloor D / 4\rfloor \chi_{F}\right)^{2}+4\lfloor D / 4\rfloor\left(\chi_{F}-1\right)}-\lfloor D / 4\rfloor \chi_{F}}{2\lfloor D / 4\rfloor}$,
if $D \equiv 2 \bmod 4$
- $\frac{\chi_{F}-1}{\lfloor D / 4\rfloor \chi_{F}+\chi_{F}-1}$,
if $D \equiv 3 \bmod 4$

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar \& Volec, 2011)
■ moreover, these bounds on α are best possible,

- if $D=3$ and $\chi_{F} \geq 2$;
- if $D \geq 4$ and $\chi_{F} \in\{2\} \cup[3, \infty)$

A major part of the answer - best possible

■ in other words :

- for all integers $D \geq 3$,
all rational numbers $\chi_{F} \in\{2\} \cup[3, \infty)$, and all $\alpha \geq 0$ failing the bound for that D and χ_{F}
- there is a graph G with fractional chromatic number χ_{F}, a subset $W \subseteq V(G)$ with $\operatorname{dist}(W) \geq D$, and a fractional pre-colouring $\phi(w) \subseteq\left[0, \chi_{F}+\alpha\right]$ for $w \in W$
- so that ϕ cannot be extended to a fractional colouring of the whole G, using colours from $\left[0, \chi_{F}+\alpha\right]$ only

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar \& Volec, 2011)
■ extension is always possible, provided α is at least:

- $\frac{\sqrt{\left(\lfloor D / 4\rfloor \chi_{F}-1\right)^{2}+4\lfloor D / 4\rfloor\left(\chi_{F}-1\right)}-\lfloor D / 4\rfloor \chi_{F}+1}{2\lfloor D / 4\rfloor}$ if $D \equiv 0 \bmod 4$,
- $\frac{\chi_{F}-1}{\lfloor D / 4\rfloor \chi_{F}}, \quad$ if $D \equiv 1 \bmod 4$
- $\frac{\sqrt{\left(\lfloor D / 4\rfloor \chi_{F}\right)^{2}+4\lfloor D / 4\rfloor\left(\chi_{F}-1\right)}-\lfloor D / 4\rfloor \chi_{F}}{2\lfloor D / 4\rfloor}$,
if $D \equiv 2 \bmod 4$
- $\frac{\chi_{F}-1}{\lfloor D / 4\rfloor \chi_{F}+\chi_{F}-1}$,
if $D \equiv 3 \bmod 4$

The picture for $D=3$

The picture for $D=4$

Fractional Colouring and Pre-colouring Extension of Graphs - Nyborg, 1-4 November 2012

The picture for general $D \geq 4$

Almost the complete answer

- so for $D \geq 4$, we know the full answer
only if $\chi_{F}=2$ or $\chi_{F} \geq 3$
- so what happens in the gap $2<\chi_{F}<3$?
- the problem again:
- we have some $W \subseteq V(G)$ with $\operatorname{dist}(W) \geq D$
- the vertices $w \in W$ are pre-coloured

$$
\text { with } \phi(w) \subseteq\left[0, \chi_{F}+\alpha\right] \text { of 'measure' } 1
$$

- and we want to extend that to a fractional colouring of the whole G, using colours from $\left[0, \chi_{F}+\alpha\right]$

The answer for $D=4$

Theorem (vdH, Král', Kupec, Sereni \& Volec, 2011)
■ for $D=4$ we need:

- $\alpha \geq \frac{\sqrt{\left(\chi_{F}-1\right)^{2}+4\left(\chi_{F}-1\right)}-\chi_{F}+1}{2}$, for $\chi_{F} \geq 3$
- $\alpha \geq \frac{\sqrt{\left(\chi_{F}-1\right)^{2}+4}-\chi_{F}+1}{2}, \quad$ for $2 \leq \chi_{F}<3$

■ and these bounds are best possible

The full picture for $D=4$

Almost the answer for $D=5$

Theorem (vdH, Král', Kupec, Sereni \& Volec, 2011)
■ for $D=5$ we need:

- $\alpha \geq \frac{\chi_{F}-1}{\chi_{F}}$,
for $\chi_{F} \geq 3$
- $\alpha \geq \frac{1}{\chi_{F}}$,

$$
\text { for } 2 \leq \chi_{F}<3
$$

■ but we don't know if the bound for $2 \leq \chi_{F}<3$ is best possible

Almost the full picture for $D=5$

Almost the answer for $\mathrm{D}=\mathbf{6}$

Theorem (vdH, Král', Kupec, Sereni \& Volec, 2011)
■ for $D=6$ we need:

$$
\begin{array}{ll}
\alpha \geq \frac{\sqrt{\chi_{F}^{2}+4\left(\chi_{F}-1\right)}-\chi_{F}}{2}, & \text { for } \chi_{F} \geq 3 \\
\text { - } \alpha \geq \frac{\sqrt{\chi_{F}^{2}+4}-\chi_{F}}{2}, & \text { for } 2 \frac{1}{2} \leq \chi_{F}<3 \\
\alpha \geq \frac{\sqrt{\chi_{F}^{2}+4 /\left(\chi_{F}-1\right)}-\chi_{F}}{2}, & \text { for } 2 \leq \chi_{F}<2 \frac{1}{2}
\end{array}
$$

- and the bounds are best possible for $\chi_{F} \in\{2\} \cup\left[2 \frac{1}{2}, \infty\right)$

Almost the full picture for $D=6$

And for $D \geq 7$

- for $D \geq 7$ we have no further precise results

$$
\text { for } 2<\chi_{F}<3
$$

- but all indications are that it gets more and more complicated when D gets larger

■ to understand the strange behaviour for $2<\chi_{F}<3$ we need to have a look at some aspects of the proof

- and for that we need to have a further look at fractional colouring first

Fractional colouring again

■ fractional K-colouring of graph G :

- assignment of subsets $\phi(v) \subseteq[0, K]$ to $v \in V$ so that :
- every subset $\phi(v)$ has 'measure' 1
- and $u v \in E(G) \Longrightarrow \phi(u) \cap \phi(v)=\varnothing$

Alternative definition for fractional colouring

■ notation: [m] : the set $\{1, \ldots, m\}$

$$
\binom{[m]}{q}: \text { the collection of } q \text {-subsets of }[m]
$$

■ $(\boldsymbol{m}, \boldsymbol{q})$-colouring of graph $G(1 \leq q \leq m)$:

- every $v \in V$ is assigned a subset $\psi(v) \in\binom{[m]}{q}$, so that :
- $u v \in E(G) \Longrightarrow \psi(u) \cap \psi(v)=\varnothing$

■ and then: $\chi_{F}(G)=\min \left\{\left.\frac{m}{q} \right\rvert\, G\right.$ has an (m, q)-colouring $\}$

And another definition

■ Kneser graph $\operatorname{Kn}(\boldsymbol{m}, \boldsymbol{q})$:

- vertices: all of $\binom{[m]}{q}$, edge $u v \Longleftrightarrow u \cap v=\varnothing$
- G has an (m, q)-colouring
\Longleftrightarrow there is a homomorphism $G \longrightarrow K n(m, q)$
■ $\chi_{F}(G)=\chi_{F} \Longleftrightarrow$ there exist m, q with $\chi_{F}=\frac{m}{q}$, so that there is a homomorphism $G \longrightarrow K n(m, q)$
- we can interpret this as just a
labelling of the vertices of G, using labels from $\binom{[m]}{q}$

Fractional colouring and Kneser graphs

- so to understand fractional colouring,
we can use Kneser graphs

■ but we want to deal with pre-colouring of vertex sets with a minimum distance D

- for that we need to build more complicated graphs

■ in the rest of this talk we only look at the case D is even

Armed Kneser graphs

- given some m, q, D even, and an integer L
- we start with a single $K n(m, q)$ as a base
- out of the base we grow L disjoint arms, each consisting of $D / 2$ disjoint copies of $K n(m, q)$
- we link two consecutive copies of $K n(m, q)$ in each arm as follows :
- u_{1} in copy 1 and v_{2} in copy 2 :
$u_{1} \sim v_{2} \Longleftrightarrow u v$ is an edge in $K n(m, q)$

Armed Kneser graphs

Armed Kneser graphs

- given some m, q, D even, and an integer L
- we start with a single $K n(m, q)$ as a base
- out of the base we grow L disjoint arms, each consisting of $D / 2$ disjoint copies of $K n(m, q)$
- we link two consecutive copies of $K n(m, q)$ in each arm as follows:
- u_{1} in copy 1 and v_{2} in copy 2 :

$$
u_{1} \sim v_{2} \Longleftrightarrow u v \text { is an edge in } K n(m, q)
$$

- call the result the armed Kneser graph a-Kn(m, $\boldsymbol{q} ; \mathbf{D}, \mathbf{L})$

Armed Kneser graphs

Using armed Kneser graphs

- ■ now suppose we have a graph G with $\chi_{F}(G)=\chi_{F}$

$$
\text { so: } \quad G \longrightarrow K n(m, q) \text {, for some } m, q \text { with } \frac{m}{q}=\chi_{F}
$$

- and a set $W \subseteq V(G)$ with $\operatorname{dist}(W) \geq D$

■ take the armed Kneser graph a-Kn(m, $q ; D,|W|)$ with $|W|$ arms

■ we will map G to this armed Kneser graph

- using the labels given by the homomorphism

$$
G \longrightarrow K n(m, q)
$$

Using armed Kneser graphs

■ each $w \in W$ gets its own arm

- map w in the copy of $K n(m, q)$ at the end of its arm
- map the neighbours of w in G
in the copy of $K n(m, q)$ one step closer to the base
- map the neighbours of the neighbours of w in G
in the next copy (closer to the base) of $K n(m, q)$
- etc.
- map all vertices at distance at least $D / 2$ from w in G in the base of the armed Kneser graph

Using armed Kneser graphs

■ this mapping of G in the armed Kneser graph satisfies:

- images of elements of W have distance D
- a pre-colouring of W gives a pre-colouring of the images of W
- a fractional colouring of the armed Kneser graph can be mapped back to a fractional colouring of G
in other words :
■ all aspects of fractional pre-colouring extensions of graphs are determined by fractional pre-colouring extensions of armed Kneser graphs!

Pre-colouring extensions of armed Kneser graphs

- - suppose we have an armed Kneser graph

$$
a-K n(m, q ; D, L)
$$

- and one pre-coloured vertex in the end of each arm

Pre-colouring extensions of armed Kneser graphs

- - suppose we have an armed Kneser graph

$$
a-K n(m, q ; D, L)
$$

- and one pre-coloured vertex in the end of each arm

■ in a fractional colouring extending that pre-colouring:

- the base must 'accommodate' all arms
- so will have to be given some 'average’ colouring
- so along the arms, the colouring extension must connect
- the pre-coloured vertex in the end
- with some 'average' colouring of the base

Colouring along an arm of an armed Kneser graph

■ so consider an arm of an armed Kneser graph

- with one pre-coloured vertex w^{\prime} in its end

Colouring along an arm of an armed Kneser graph

- so consider an arm of an armed Kneser graph
- with one pre-coloured vertex w^{\prime} in its end
- the colouring along the arm is mostly determined by:
- w^{\prime} itself, in the end copy of $\operatorname{Kn}(m, q)$
- then by vertices in the 2 nd copy of $K n(m, q)$ that are neighbours of w^{\prime}
- and then by vertices in the 3 rd copy of $K n(m, q)$ that are neighbours of neighbours of w^{\prime}
- etc.

Now things get interesting

■ w^{\prime} is a vertex in $K n(m, q)$, i.e., a q-subset of [m]
■ its neighbours are the q-subsets of $[m]$ disjoint from w^{\prime}

- those neighbours together form a subgraph that is isomorphic to the Kneser graph $K n(m-q, q)$

■ for $\chi_{F}=\frac{m}{q} \geq 3$ we have

$$
\chi_{F}(K n(m-q, q))=\frac{m-q}{q}=\chi_{F}-1
$$

■ for $2 \leq \chi_{F}=\frac{m}{q}<3$,
$K n(m-q, q)$ has just isolated vertices

- hence in those cases: $\quad \chi_{F}(K n(m-q, q))=1$

Now things get interesting

■ so for $\chi_{F} \geq 3$ we have

$$
\chi_{F}\left(\text { set of neighbours of } w^{\prime}\right)=\chi_{F}-1
$$

■ while for $2 \leq \chi_{F}<3$ we have

$$
\chi_{F}\left(\text { set of neighbours of } w^{\prime}\right)=1
$$

- this causes the difference between the two cases when $D=4$
(then the armed Kneser graph has arms of length 2, with the set of neighbours of w^{\prime} in the middle)

And things get even more interesting

■ next consider the set of neighbours of neighbours of w^{\prime}
■ for $\chi_{F}=\frac{m}{q} \geq 3$, this is the whole Kneser graph $\operatorname{Kn}(m, q)$

- for $2 \leq \chi_{F}=\frac{m}{q}<2 \frac{1}{2}$,
this is again a collection of isolated vertices
- but for $2 \frac{1}{2} \leq \chi_{F}=\frac{m}{q}<3$, it gets complicated
- the structure is not a Kneser graph
- its structure can vary even in cases where $\frac{m}{q}=\frac{m^{\prime}}{q^{\prime}}$

To summarise these findings

■ when colouring along an arm of an an armed Kneser graph :

- for $\chi_{F}=\frac{m}{q} \geq 3$, we are always dealing with structures that are Kneser graphs itself
- for $2 \leq \chi_{F}=\frac{m}{q}<3$, we have to consider structures that are not Kneser graphs
- we just seem to lack an understanding of the internal structure of Kneser graphs to deal with those latter cases in general

