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Graph colouring and pre-colouring

G a graph

chromatic number χ(G) :

minimum k so that a vertex-colouring exists

general question :

what can we say if some vertices are already pre-coloured ?

in particular : can χ(G) colours still be enough ?

in general : no
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Pre-colouring questions

next best questions :

how many extra colours may be needed ?

and what conditions on the pre-coloured vertices can make

life easier ?

Question ( Thomassen, 1997 )

G planar,

W ⊆ V(G), a set of vertices so that

distance between any two vertices in W is at least 100

can any 5-colouring of W

be extended to a 5-colouring of G ?
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The first answer

dist(W ) : minimum distance between any two vertices in W

Theorem ( Albertson, 1998 )

G any graph with chromatic number χ

W ⊆ V (G) with dist(W ) ≥ 4

=⇒ any (χ+1)-colouring of W

can be extended to a (χ+1)-colouring of G

Fractional Colouring and Pre-colouring Extension of Graphs – Nyborg, 1 – 4 November 2012



Some more answers

Theorem ( Albertson, 1998 )

G planar graph

W ⊆ V(G) with dist(W ) ≥ 3

=⇒ any 6-colouring of W

can be extended to a 6-colouring of G

Theorem

G any graph with chromatic number χ

W ⊆ V(G) with dist(W ) ≥ 3

=⇒ any (χ+χ)-colouring of W

can be extended to a (χ+χ)-colouring of G
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Fractional colouring

fractional K -colouring of graph G ( K ∈ R, K ≥ 0 ) :

every vertex v ∈ V is assigned a subset φ(v) ⊆ [0,K ]

so that :

every subset φ(v) has ‘measure’ 1

and uv ∈ E(G) =⇒ φ(u) ∩ φ(v) = ∅

fractional chromatic number χF (G) :

= inf {K ≥ 0 | G has a fractional K -colouring }

= min {K ≥ 0 | G has a fractional K -colouring }
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Fractional colouring

note : we always have χF(G) ≤ χ(G)

but the difference can be arbitrarily large

χF(G) = 1 ⇐⇒ G has no edges

χF(G) = 2 ⇐⇒ G has edges and is bipartite

for all rational K ≥ 2 : there exist G with χF(G) = K
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Pre-colouring in the fractional world

so now suppose that for some vertices W ⊆ V(G),

the vertices in W are already pre-coloured :

vertices w ∈ W have been given some set φ(w)

of measure 1

when can this be extended to a fractional colouring of the

whole graph G ?

in general we should expect to

require more than χF(G) colours
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The set-up of the problem

G a graph with fractional chromatic number χF ≥ 2

D ≥ 3 an integer

W ⊆ V(G) with dist(W ) ≥ D

the vertices w ∈ W

are pre-coloured with φ(w) ⊆ [0, χF + α]

for some real α ≥ 0

and we want to extend that to a fractional colouring of

the whole G, using colours from [0, χF + α]

how large should α be to make sure this can be done ?
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A major part of the answer

Theorem ( Král’, Krnc, Kupec, Lužar & Volec, 2011 )

extension is always possible, provided α is at least :

√

(⌊D/4⌋χF −1)2 + 4 ⌊D/4⌋ (χF −1) − ⌊D/4⌋χF + 1

2 ⌊D/4⌋
,

if D ≡ 0 mod 4

χF − 1

⌊D/4⌋χF

, if D ≡ 1 mod 4

√

(⌊D/4⌋χF)2 + 4 ⌊D/4⌋ (χF −1) − ⌊D/4⌋χF

2 ⌊D/4⌋
,

if D ≡ 2 mod 4

χF − 1

⌊D/4⌋χF + χF − 1
, if D ≡ 3 mod 4
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A major part of the answer

Theorem ( Král’, Krnc, Kupec, Lužar & Volec, 2011 )

moreover, these bounds on α are best possible,

if D = 3 and χF ≥ 2;

if D ≥ 4 and χF ∈ {2} ∪ [3,∞)
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A major part of the answer – best possible

in other words :

for all integers D ≥ 3,

all rational numbers χF ∈ {2} ∪ [3,∞),

and all α ≥ 0 failing the bound for that D and χF

there is a graph G with fractional chromatic number χF ,

a subset W ⊆ V (G) with dist(W ) ≥ D,

and a fractional pre-colouring φ(w) ⊆ [0, χF + α]

for w ∈ W

so that φ cannot be extended to a fractional colouring

of the whole G, using colours from [0, χF + α] only
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A major part of the answer

Theorem ( Král’, Krnc, Kupec, Lužar & Volec, 2011 )

extension is always possible, provided α is at least :

√

(⌊D/4⌋χF −1)2 + 4 ⌊D/4⌋ (χF −1) − ⌊D/4⌋χF + 1

2 ⌊D/4⌋
,

if D ≡ 0 mod 4

χF − 1

⌊D/4⌋χF

, if D ≡ 1 mod 4

√

(⌊D/4⌋χF)2 + 4 ⌊D/4⌋ (χF −1) − ⌊D/4⌋χF

2 ⌊D/4⌋
,

if D ≡ 2 mod 4

χF − 1

⌊D/4⌋χF + χF − 1
, if D ≡ 3 mod 4
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The picture for D = 3
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The picture for D = 4
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The picture for general D ≥ 4
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Almost the complete answer

so for D ≥ 4, we know the full answer

only if χF = 2 or χF ≥ 3

so what happens in the gap 2 < χF < 3 ?

the problem again :

we have some W ⊆ V (G) with dist(W ) ≥ D

the vertices w ∈ W are pre-coloured

with φ(w) ⊆ [0, χF + α] of ‘measure’ 1

and we want to extend that to a fractional colouring of

the whole G, using colours from [0, χF + α]
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The answer for D = 4

Theorem ( vdH, Král’, Kupec, Sereni & Volec, 2011 )

for D = 4 we need :

α ≥

√

(χF −1)2 + 4 (χF −1) − χF + 1

2
, for χF ≥ 3

α ≥

√

(χF −1)2 + 4 − χF + 1

2
, for 2 ≤ χF < 3

and these bounds are best possible
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The full picture for D = 4

2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

χF

α

Fractional Colouring and Pre-colouring Extension of Graphs – Nyborg, 1 – 4 November 2012



Almost the answer for D = 5

Theorem ( vdH, Král’, Kupec, Sereni & Volec, 2011 )

for D = 5 we need :

α ≥
χF − 1

χF

, for χF ≥ 3

α ≥
1

χF

, for 2 ≤ χF < 3

but we don’t know if the bound for 2 ≤ χF < 3 is best

possible
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Almost the full picture for D = 5
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Almost the answer for D = 6

Theorem ( vdH, Král’, Kupec, Sereni & Volec, 2011 )

for D = 6 we need :

α ≥

√

χ2
F + 4 (χF −1) − χF

2
, for χF ≥ 3

α ≥

√

χ2
F + 4 − χF

2
, for 21

2
≤ χF < 3

α ≥

√

χ2
F + 4/(χF −1) − χF

2
, for 2 ≤ χF < 21

2

and the bounds are best possible for χF ∈ {2} ∪ [21
2
,∞)
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Almost the full picture for D = 6
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And for D ≥ 7

for D ≥ 7 we have no further precise results

for 2 < χF < 3

but all indications are that it gets more and more

complicated when D gets larger

to understand the strange behaviour for 2 < χF < 3

we need to have a look at some aspects of the proof

and for that we need to have a further look

at fractional colouring first
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Fractional colouring again

fractional K -colouring of graph G :

assignment of subsets φ(v) ⊆ [0,K ] to v ∈ V so that :

every subset φ(v) has ‘measure’ 1

and uv ∈ E(G) =⇒ φ(u) ∩ φ(v) = ∅
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Alternative definition for fractional colouring

notation : [m] : the set {1, . . . ,m}
([m]

q

)

: the collection of q-subsets of [m]

(m, q)-colouring of graph G ( 1 ≤ q ≤ m ) :

every v ∈ V is assigned a subset ψ(v) ∈
([m]

q

)

,

so that :

uv ∈ E(G) =⇒ ψ(u) ∩ ψ(v) = ∅

and then : χF(G) = min
{ m

q

∣

∣

∣
G has an (m, q)-colouring

}
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And another definition

Kneser graph Kn(m, q) :

vertices : all of
([m]

q

)

, edge uv ⇐⇒ u ∩ v = ∅

G has an (m, q)-colouring

⇐⇒ there is a homomorphism G −→ Kn(m, q)

χF(G) = χF ⇐⇒ there exist m, q with χF =
m

q
,

so that there is a homomorphism G −→ Kn(m, q)

we can interpret this as just a

labelling of the vertices of G, using labels from
([m]

q

)
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Fractional colouring and Kneser graphs

so to understand fractional colouring,

we can use Kneser graphs

but we want to deal with pre-colouring

of vertex sets with a minimum distance D

for that we need to build more complicated graphs

in the rest of this talk we only look at the case D is even
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Armed Kneser graphs

given some m, q, D even, and an integer L

we start with a single Kn(m, q) as a base

out of the base we grow L disjoint arms,

each consisting of D/2 disjoint copies of Kn(m, q)

we link two consecutive copies of Kn(m, q) in each arm

as follows :

u1 in copy 1 and v2 in copy 2 :

u1 ∼ v2 ⇐⇒ uv is an edge in Kn(m, q)

t

t

t

t

✲
t

t

t

t

✑
✑
✑✑◗

◗
◗◗
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Armed Kneser graphs

base

([2], 0)

one arm of an armed Kneser graph

with m = 5, q = 2; D = 4
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Armed Kneser graphs

given some m, q, D even, and an integer L

we start with a single Kn(m, q) as a base

out of the base we grow L disjoint arms,

each consisting of D/2 disjoint copies of Kn(m, q)

we link two consecutive copies of Kn(m, q) in each arm

as follows :

u1 in copy 1 and v2 in copy 2 :

u1 ∼ v2 ⇐⇒ uv is an edge in Kn(m, q)

call the result the armed Kneser graph a-Kn(m, q;D, L)
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Armed Kneser graphs

the armed Kneser graph a-Kn(5, 2; 6, 4)
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Using armed Kneser graphs

now suppose we have a graph G with χF (G) = χF

so : G −→ Kn(m, q), for some m, q with
m

q
= χF

and a set W ⊆ V(G) with dist(W ) ≥ D

take the armed Kneser graph a-Kn(m, q;D, |W |)

with |W | arms

we will map G to this armed Kneser graph

using the labels given by the homomorphism

G −→ Kn(m, q)
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Using armed Kneser graphs

each w ∈ W gets its own arm

map w in the copy of Kn(m, q) at the end of its arm

map the neighbours of w in G

in the copy of Kn(m, q) one step closer to the base

map the neighbours of the neighbours of w in G

in the next copy ( closer to the base ) of Kn(m, q)

etc.

map all vertices at distance at least D/2 from w in G

in the base of the armed Kneser graph
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Using armed Kneser graphs

this mapping of G in the armed Kneser graph satisfies :

images of elements of W have distance D

a pre-colouring of W

gives a pre-colouring of the images of W

a fractional colouring of the armed Kneser graph

can be mapped back to a fractional colouring of G

in other words :

all aspects of fractional pre-colouring extensions of graphs

are determined by fractional pre-colouring extensions of

armed Kneser graphs !
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Pre-colouring extensions of armed Kneser graphs

suppose we have an armed Kneser graph

a-Kn(m, q; D, L)

and one pre-coloured vertex in the end of each arm
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Pre-colouring extensions of armed Kneser graphs

suppose we have an armed Kneser graph

a-Kn(m, q; D, L)

and one pre-coloured vertex in the end of each arm

in a fractional colouring extending that pre-colouring :

the base must ‘accommodate’ all arms

so will have to be given some ‘average’ colouring

so along the arms, the colouring extension must connect

the pre-coloured vertex in the end

with some ‘average’ colouring of the base
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Colouring along an arm of an armed Kneser graph

so consider an arm of an armed Kneser graph

with one pre-coloured vertex w ′ in its end

base

([2], 0)
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Colouring along an arm of an armed Kneser graph

so consider an arm of an armed Kneser graph

with one pre-coloured vertex w ′ in its end

the colouring along the arm is mostly determined by :

w ′ itself, in the end copy of Kn(m, q)

then by vertices in the 2 nd copy of Kn(m, q)

that are neighbours of w ′

and then by vertices in the 3 rd copy of Kn(m, q)

that are neighbours of neighbours of w ′

etc.
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Now things get interesting

w ′ is a vertex in Kn(m, q), i.e., a q-subset of [m]

its neighbours are the q-subsets of [m] disjoint from w ′

those neighbours together form a subgraph

that is isomorphic to the Kneser graph Kn(m − q, q)

for χF =
m

q
≥ 3 we have

χF

(

Kn(m − q, q)
)

=
m − q

q
= χF − 1

for 2 ≤ χF =
m

q
< 3,

Kn(m − q, q) has just isolated vertices

hence in those cases : χF

(

Kn(m − q, q)
)

= 1
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Now things get interesting

so for χF ≥ 3 we have

χF

(

set of neighbours of w ′
)

= χF − 1

while for 2 ≤ χF < 3 we have

χF

(

set of neighbours of w ′
)

= 1

this causes the difference between the two cases when

D = 4

( then the armed Kneser graph has arms of length 2,

with the set of neighbours of w ′ in the middle )
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And things get even more interesting

next consider the set of neighbours of neighbours of w ′

for χF =
m

q
≥ 3, this is the whole Kneser graph Kn(m, q)

for 2 ≤ χF =
m

q
< 21

2
,

this is again a collection of isolated vertices

but for 21
2
≤ χF =

m

q
< 3, it gets complicated

the structure is not a Kneser graph

its structure can vary even in cases where
m

q
=

m′

q′
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To summarise these findings

when colouring along an arm of an an armed Kneser graph :

for χF =
m

q
≥ 3, we are always dealing with structures

that are Kneser graphs itself

for 2 ≤ χF =
m

q
< 3, we have to consider structures

that are not Kneser graphs

we just seem to lack an understanding of the

internal structure of Kneser graphs

to deal with those latter cases in general
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