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Graph colouring and precolouring

G a graph

chromatic number χ(G) :

minimum k so that a vertex-colouring exists

general question :

what can we say if some vertices are already precoloured ?

in particular : can χ(G) colours still be enough ?

in general : no
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Precolouring questions

next best questions :

how many extra colours may be needed ?

and what conditions on the precoloured vertices can make

life easier ?

Question ( Thomassen, 1997 )

G planar,

W ⊆ V(G), a set of vertices so that

distance between any two vertices in W is at least 100

can any 5-colouring of W

be extended to a 5-colouring of G ?
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The first answer

dist(W ) : minimum distance between any two vertices in W

Theorem ( Albertson, 1998 )

G any graph with chromatic number χ

W ⊆ V(G) with dist(W ) ≥ 4

=⇒ any (χ+1)-colouring of W

can be extended to a (χ+1)-colouring of G
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Fractional colouring

fractional K -colouring of graph G ( K ∈ RRRRRRRRR+ ) :

every vertex v ∈ V is assigned a subset φ(v) ⊆ [0,K ]

so that :

every subset φ(v) has ‘measure’ 1

and uv ∈ E(G) =⇒ φ(u) ∩ φ(v) = ∅

fractional chromatic number χF (G) :

= inf {K ≥ 0 | G has a fractional K -colouring }

= min {K ≥ 0 | G has a fractional K -colouring }
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Fractional colouring

note : we always have χ
F(G) ≤ χ(G)

but the difference can be arbitrarily large

χ
F(G) = 1 ⇐⇒ G has no edges

χ
F(G) = 2 ⇐⇒ G has edges and is bipartite

for all rational K ≥ 2 : there exist G with χ
F(G) = K
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Precolouring in the fractional world

so now suppose that for some vertices W ⊆ V(G),

the vertices in W are already precoloured :

vertices w ∈ W have been given some set φ(w)

of measure 1

when can this be extended to a fractional colouring of the

whole graph G ?

in general we should expect to

require more than χ
F(G) colours
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The set-up of the problem

G a graph with fractional chromatic number χ
F ≥ 2

D ≥ 3 an integer

W ⊆ V(G) with dist(W ) ≥ D

the vertices w ∈ W

are precoloured with φ(w) ⊆ [0, χF + α] of measure 1

for some real α ≥ 0

and we want to extend that to a fractional colouring of

the whole G, using colours from [0, χF + α]

how large should α be to be sure this can be done ?
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A major part of the answer

Theorem ( Král’, Krnc, Kupec, Lužar & Volec, 2011 )
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A major part of the answer

Theorem ( Král’, Krnc, Kupec, Lužar & Volec, 2011 )

moreover, these bounds on α are best possible,

if D = 3 and χ
F ≥ 2;

if D ≥ 4 and χ
F ∈ {2} ∪ [3,∞)
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The picture for D = 3
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The picture for D = 4
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The picture for general D ≥ 4
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Almost the complete answer

so for D ≥ 4, we know the full answer

only if χ
F = 2 or χ

F ≥ 3

so what happens in the gap 2 < χ
F < 3 ?

the problem again :

we have some W ⊆ V (G) with dist(W ) ≥ D

the vertices w ∈ W are precoloured

with φ(w) ⊆ [0, χF + α] of measure 1

and we want to extend that to a fractional colouring of

the whole G, using colours from [0, χF + α]
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The answer for D = 4

Theorem ( vdH, Král’, Kupec, Sereni & Volec, 2011 )

for D = 4 we need :
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The full picture for D = 4
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Almost the answer for D = 5

Theorem ( vdH, Král’, Kupec, Sereni & Volec, 2011 )

for D = 5 we need :
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χ
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χ
F
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F ≥ 3
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1
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F < 3

but we don’t know if the bound for 2 ≤ χ
F < 3 is best

possible
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Almost the full picture for D = 5
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Almost the answer for D = 6

Theorem ( vdH, Král’, Kupec, Sereni & Volec, 2011 )

for D = 6 we need :
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Almost the full picture for D = 6
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And for D ≥ 7

for D ≥ 7 we have no further precise results

for 2 < χ
F < 3

but all indications are that it gets more and more

complicated when D gets larger
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A new problem

in all problems so far we assumed that

the precoloured vertices and the extension

can use the same set of available colours

but what would happen if

for the precolouring we can use a smaller colour set only ?

for integer colouring, this would make no difference

( for distance D ≥ 4 )

( may need extra colours – one extra is always enough )

but for fractional precolouring one would expect a more

gradual change
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The set-up of the new problem

G a graph with fractional chromatic number χ
F ≥ 2

D ≥ 3 an integer

W ⊆ V(G) with dist(W ) ≥ D

L ≥ 1 a real number

the vertices w ∈ W

are precoloured with φ(w) ⊆ [0, L] with measure 1

and we want to extend that to a fractional colouring of

the whole G, using colours from [0, χF + α]

how large should α be to be sure this can be done ?
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The intuition for restricted fractional precolouring

for L = 1, all precoloured vertices get ‘colour’ [0, 1)

a small α should be enough to complete the colouring

when we increase L

the required α will increase as well

until we reach L = χ
F + αcrit

where αcrit is the value so that :

precolouring with [0, χF + αcrit]

can be completed with colours from [0, χF + αcrit]

increasing L further,

doesn’t require more than [0, χF + αcrit] to complete
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A first quarter of the answer

Theorem ( vdH, Li & Müller, 2014+ )

if D ≡ 2 mod 4, then extension is always possible,

provided α is at least :
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where αcrit is given by the first Král’ el al. result

and these bounds are best possible for χ
F ∈ {2} ∪ [3,∞)
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The picture for D = 6 and χF = 4
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A next quarter of the answer

Theorem ( vdH, Li & Müller, 2014+ )

if D ≡ 0 mod 4, then extension is always possible,

provided α is at least :
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and these bounds are best possible for χ
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The picture for D = 4 and χF = 4
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And the final half of the answer

Theorem ( vdH, Li & Müller, 2014+ )

if D is odd, then extension is always possible,

provided α is at least :

αcrit, for any L ≥ 1

( i.e.: the bound doesn’t depend on L )

for χ
F ∈ {2} ∪ [3,∞), the best possible value of αcrit

is given by the first Král’ el al. result
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The end

Thank you for the attention !
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