Fractional Colouring and Precolouring Extension of Graphs

JAN VAN DEN HEUVEL

joint work with : Dan Král', Martin Kupec, Jean-Sébastien Sereni & Jan Volec

and with :

ANSHULLI & TOBIAS MÜLLER

Department of Mathematics London School of Economics and Political Science

Graph colouring and precolouring

G a graph

• chromatic number $\chi(G)$:

minimum k so that a vertex-colouring exists

general question :

what can we say if some vertices are already precoloured?

in particular: can $\chi(G)$ colours still be enough?

■ in general : **no**

Precolouring questions

next best questions :

- how many extra colours may be needed ?
- and what conditions on the precoloured vertices can make life easier?

Question (Thomassen, 1997)

■ *G* planar,

 $W \subseteq V(G)$, a set of vertices so that

distance between any two vertices in W is at least 100

can any 5-colouring of W

be extended to a 5-colouring of G?

The first answer

dist(W): minimum distance between any two vertices in W

Theorem (Albertson, 1998)

G any graph with chromatic number χ

 $W \subseteq V(G)$ with dist $(W) \ge 4$

 \implies any $(\chi + 1)$ -colouring of W

can be extended to a $(\chi + 1)$ -colouring of G

Fractional colouring

fractional *K*-colouring of graph *G* ($K \in \mathbb{R}_+$):

- every vertex v ∈ V is assigned a subset φ(v) ⊆ [0, K] so that:
 - every subset $\phi(v)$ has 'measure' 1
 - and $uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset$
- fractional chromatic number $\chi_F(G)$: $= \inf \{ K \ge 0 \mid G \text{ has a fractional } K \text{-colouring} \}$ $= \min \{ K \ge 0 \mid G \text{ has a fractional } K \text{-colouring} \}$

- **note**: we always have $\chi_F(G) \leq \chi(G)$
 - but the difference can be arbitrarily large
- $\blacksquare \chi_F(G) = 1 \iff G \text{ has no edges}$
 - $\chi_F(G) = 2 \iff G$ has edges and is bipartite
 - for all rational $K \ge 2$: there exist G with $\chi_F(G) = K$

Precolouring in the fractional world

- so now suppose that for some vertices $W \subseteq V(G)$, the vertices in W are already precoloured:
 - vertices $w \in W$ have been given some set $\phi(w)$ of measure 1
- when can this be extended to a fractional colouring of the whole graph G?
- in general we should expect to

require more than $\chi_F(G)$ colours

The set-up of the problem

• G a graph with fractional chromatic number $\chi_F \geq 2$

- $D \ge 3$ an integer
- $W \subseteq V(G)$ with dist $(W) \ge D$
- the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of measure 1
 - for some real $\alpha \ge 0$
 - and we want to extend that to a fractional colouring of the whole *G*, using colours from $[0, \chi_F + \alpha]$
- how large should α be to be sure this can be done?

A major part of the answer

A major part of the answer

• if $D \ge 4$ and $\chi_F \in \{2\} \cup [3,\infty)$

The picture for D = 3

The picture for D = 4

The picture for general $D \ge 4$

Almost the complete answer

so for $D \ge 4$, we know the full answer only if $\chi_F = 2$ or $\chi_F \ge 3$

• so what happens in the gap $2 < \chi_F < 3$?

the problem again :

- we have some $W \subseteq V(G)$ with $dist(W) \ge D$
- the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of measure 1
- and we want to extend that to a fractional colouring of the whole *G*, using colours from $[0, \chi_F + \alpha]$

 Theorem
 (vdH, Král', Kupec, Sereni & Volec, 2011)

 Image: for D = 4 we need :
 $\alpha \ge \frac{\sqrt{(\chi_F - 1)^2 + 4(\chi_F - 1)} - \chi_F + 1}{2}$, for $\chi_F \ge 3$

 Image: arrow arr

and these bounds are best possible

The full picture for D = 4

Almost the answer for D = 5

but we don't know if the bound for $2 \le \chi_F < 3$ is best possible

Fractional Colouring and Precolouring Extension of Graphs - ICGT, Grenoble - 3 July 2014

Almost the full picture for D = 5

Almost the answer for D = 6

and the bounds are best possible for $\chi_F \in \{2\} \cup [2\frac{1}{2}, \infty)$

Almost the full picture for D = 6

A new problem

- in all problems so far we assumed that the precoloured vertices and the extension can use the same set of available colours
- but what would happen if for the precolouring we can use a smaller colour set only ?
 - for integer colouring, this would make no difference (for distance $D \ge 4$)

(may need extra colours – one extra is always enough)

but for fractional precolouring one would expect a more gradual change

The set-up of the new problem

- $D \ge 3$ an integer
- $W \subseteq V(G)$ with dist $(W) \geq D$
- $L \ge 1$ a real number
- the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, L]$ with measure 1
 - and we want to extend that to a fractional colouring of the whole *G*, using colours from $[0, \chi_F + \alpha]$
- how large should α be to be sure this can be done?

The intuition for restricted fractional precolouring

- for L = 1, all precoloured vertices get 'colour' [0, 1)
 - a small α should be enough to complete the colouring
 - when we increase L

• the required α will increase as well

• until we reach $L = \chi_F + \alpha_{crit}$

```
• where \alpha_{crit} is the value so that:
precolouring with [0, \chi_F + \alpha_{crit}]
can be completed with colours from [0, \chi_F + \alpha_{crit}]
```

increasing *L* further,

doesn't require more than $[0, \chi_F + \alpha_{crit}]$ to complete

A first quarter of the answer

Theorem (vdH, Li & Müller, 2014+)

if $D \equiv 2 \mod 4$, then extension is always possible, provided α is at least:

$$L(\chi_F-1)$$
 if $1 \le L \le \chi_F + \alpha_{crit}$

 $lpha_{ ext{crit}}, ext{ if } L \geq \chi_F + lpha_{ ext{crit}}$

where α_{crit} is given by the first Král' el al. result

and these bounds are best possible for $\chi_F \in \{2\} \cup [3,\infty)$

The picture for D = 6 and $\chi_F = 4$

Fractional Colouring and Precolouring Extension of Graphs - ICGT, Grenoble - 3 July 2014

A next quarter of the answer

and these bounds are best possible for $\chi_F \in \{2\} \cup [3,\infty)$

The picture for D = 4 and $\chi_F = 4$

Fractional Colouring and Precolouring Extension of Graphs - ICGT, Grenoble - 3 July 2014

And the final half of the answer

Theorem (vdH, Li & Müller, 2014+)

if *D* is odd, then extension is always possible, provided α is at least:

lacksquare $lpha_{
m crit},$

for any $L \ge 1$

(i.e.: the bound doesn't depend on *L*)

for $\chi_F \in \{2\} \cup [3, \infty)$, the best possible value of α_{crit} is given by the first Král' el al. result

The end

Thank you for the attention !