Fractional Colouring and Precolouring Extension of Graphs

JAN VAN DEN HEUVEL

joint work with: DAN KRÁL’, MARTIN KUPEC,
JEAN-SÉBASTIEN SERENI & JAN VOLEC

and with: ANSHUI LI & TOBIAS MÜLLER

Department of Mathematics
London School of Economics and Political Science
Graph colouring and precolouring

- G a graph
- chromatic number $\chi(G)$:
 - minimum k so that a vertex-colouring exists

general question:

- what can we say if some vertices are already precoloured?
- in particular: can $\chi(G)$ colours still be enough?

- in general: no
Precolouring questions

next best questions:
- how many extra colours may be needed?
- and what conditions on the precoloured vertices can make life easier?

Question (Thomassen, 1997)
- G planar,

 $W \subseteq V(G)$, a set of vertices so that distance between any two vertices in W is at least 100

 can any 5-colouring of W be extended to a 5-colouring of G?
The first answer

- \(\text{dist}(W) \): minimum distance between any two vertices in \(W \)

Theorem (Albertson, 1998)

- \(G \) any graph with chromatic number \(\chi \)

 \(W \subseteq V(G) \) with \(\text{dist}(W) \geq 4 \)

 \(\implies \) any \((\chi+1) \)-colouring of \(W \)

 can be extended to a \((\chi+1) \)-colouring of \(G \)
Fractional colouring

- **fractional** \(K \)-**colouring** of graph \(G \) \(\ (K \in \mathbb{R}_+) \):
 - every vertex \(v \in V \) is assigned a subset \(\phi(v) \subseteq [0, K] \) so that:
 - every subset \(\phi(v) \) has ‘measure’ 1
 - and \(uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset \)

- fractional chromatic number \(\chi_F(G) \):

 \[
 = \inf \{ K \geq 0 \mid G \text{ has a fractional } K\text{-colouring} \}
 \]

 \[
 = \min \{ K \geq 0 \mid G \text{ has a fractional } K\text{-colouring} \}
 \]
Fractional colouring

- **note:** we always have $\chi_F(G) \leq \chi(G)$
 - but the **difference** can be **arbitrarily large**

- $\chi_F(G) = 1 \iff G$ has no edges
- $\chi_F(G) = 2 \iff G$ has edges and is **bipartite**

- for all rational $K \geq 2$: there exist G with $\chi_F(G) = K$
Precolouring in the fractional world

- so now suppose that for some vertices $W \subseteq V(G)$, the vertices in W are already precoloured:
 - vertices $w \in W$ have been given some set $\phi(w)$ of measure 1

- when can this be extended to a fractional colouring of the whole graph G?

- in general we should expect to require more than $\chi_F(G)$ colours
The set-up of the problem

- G a graph with fractional chromatic number $\chi_F \geq 2$
- $D \geq 3$ an integer
- $W \subseteq V(G)$ with $\text{dist}(W) \geq D$
- The vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of measure 1
 - for some real $\alpha \geq 0$
- and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
- how large should α be to be sure this can be done?
A major part of the answer

Theorem (Král’, Krnc, Kupec, Lužar & Volec, 2011)

extension is always possible, provided \(\alpha \) is at least:

\[
\sqrt{\left(\left\lfloor \frac{1}{4}D \right\rfloor \chi_F + 1\right)^2 - 4 \left\lfloor \frac{1}{4}D \right\rfloor - \frac{1}{4}D \chi_F + 1} - \frac{\chi_F - 1}{\left\lfloor \frac{1}{4}D \right\rfloor \chi_F},
\]

if \(D \equiv 0 \mod 4 \),

\[
\frac{\chi_F - 1}{\left\lfloor \frac{1}{4}D \right\rfloor \chi_F},
\]

if \(D \equiv 1 \mod 4 \),

\[
\sqrt{\left(\left\lfloor \frac{1}{4}D \right\rfloor \chi_F + 2\right)^2 - 4 \left(\left\lfloor \frac{1}{4}D \right\rfloor + 1\right) - \frac{1}{4}D \chi_F} - \frac{\chi_F - 1}{\left\lfloor \frac{1}{4}D \right\rfloor \chi_F + \chi_F - 1},
\]

if \(D \equiv 2 \mod 4 \),

\[
\frac{\chi_F - 1}{\left\lfloor \frac{1}{4}D \right\rfloor \chi_F + \chi_F - 1},
\]

if \(D \equiv 3 \mod 4 \).
A major part of the answer

Theorem (Král’, Krnc, Kupec, Lužar & Volec, 2011)

- moreover, these bounds on α are best possible,
 - if $D = 3$ and $\chi_F \geq 2$;
 - if $D \geq 4$ and $\chi_F \in \{2\} \cup [3, \infty)$
The picture for $D = 3$
The picture for $D = 4$
The picture for general $D \geq 4$
Almost the complete answer

- so for $D \geq 4$, we know the full answer only if $\chi_F = 2$ or $\chi_F \geq 3$

- so what happens in the gap $2 < \chi_F < 3$?

- the problem again:
 - we have some $W \subseteq V(G)$ with $\text{dist}(W) \geq D$
 - the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of measure 1

- and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
The answer for $D = 4$

Theorem (vdH, Král’, Kupec, Sereni & Volec, 2011)

- for $D = 4$ we need:

 $\alpha \geq \frac{\sqrt{(\chi_F - 1)^2 + 4(\chi_F - 1) - \chi_F + 1}}{2}$, for $\chi_F \geq 3$

 $\alpha \geq \frac{\sqrt{(\chi_F - 1)^2 + 4 - \chi_F + 1}}{2}$, for $2 \leq \chi_F < 3$

- and these bounds are best possible
The full picture for $D = 4$
Almost the answer for $D = 5$

Theorem (vdH, Král’, Kupec, Sereni & Volec, 2011)

- for $D = 5$ we need:
 - $\alpha \geq \frac{\chi_F - 1}{\chi_F}$, for $\chi_F \geq 3$
 - $\alpha \geq \frac{1}{\chi_F}$, for $2 \leq \chi_F < 3$

- but we don’t know if the bound for $2 \leq \chi_F < 3$ is best possible
Almost the full picture for $D = 5$
Almost the answer for $D = 6$

Theorem (vdH, Král’, Kupec, Sereni & Volec, 2011)

- for $D = 6$ we need:

 - $\alpha \geq \frac{\chi_F^2 + 4(\chi_F - 1) - \chi_F}{2}$, for $\chi_F \geq 3$

 - $\alpha \geq \frac{\sqrt{\chi_F^2 + 4} - \chi_F}{2}$, for $2 \frac{1}{2} \leq \chi_F < 3$

 - $\alpha \geq \frac{\sqrt{\chi_F^2 + 4/(\chi_F - 1)} - \chi_F}{2}$, for $2 \leq \chi_F < 2 \frac{1}{2}$

- and the bounds are best possible for $\chi_F \in \{2\} \cup [2 \frac{1}{2}, \infty)$
Almost the full picture for $D = 6$
And for $D \geq 7$

- for $D \geq 7$ we have no further precise results

- but all indications are that it gets more and more complicated when D gets larger

for $2 < \chi_F < 3$
A new problem

- in all problems so far we assumed that the precoloured vertices and the extension can use the same set of available colours

- but what would happen if for the precolouring we can use a smaller colour set only?
 - for integer colouring, this would make no difference (for distance $D \geq 4$)
 (may need extra colours – one extra is always enough)
 - but for fractional precolouring one would expect a more gradual change
The set-up of the new problem

- G a graph with fractional chromatic number $\chi_F \geq 2$
- $D \geq 3$ an integer
- $W \subseteq V(G)$ with $\text{dist}(W) \geq D$
- $L \geq 1$ a real number
- the vertices $w \in W$
 are precoloured with $\phi(w) \subseteq [0, L]$ with measure 1
- and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
- how large should α be to be sure this can be done?
The intuition for restricted fractional precolouring

- for $L = 1$, all precoloured vertices get ‘colour’ $[0, 1)$
 - a small α should be enough to complete the colouring
- when we increase L
 - the required α will increase as well
- until we reach $L = \chi_F + \alpha_{\text{crit}}$
 - where α_{crit} is the value so that:
 - precolouring with $[0, \chi_F + \alpha_{\text{crit}}]$ can be completed with colours from $[0, \chi_F + \alpha_{\text{crit}}]$
- increasing L further,
 - doesn’t require more than $[0, \chi_F + \alpha_{\text{crit}}]$ to complete
A first quarter of the answer

Theorem (vdH, Li & Müller, 2014+)

- If $D \equiv 2 \text{ mod } 4$, then extension is always possible, provided α is at least:

 $\frac{L(\chi_F - 1)}{L \left\lfloor \frac{1}{4}D \right\rfloor \chi_F + \chi_F - 1}$,
 if $1 \leq L \leq \chi_F + \alpha_{\text{crit}}$

- α_{crit},
 if $L \geq \chi_F + \alpha_{\text{crit}}$

- Where α_{crit} is given by the first Král’ el al. result

- And these bounds are best possible for $\chi_F \in \{2\} \cup [3, \infty)$
The picture for $D = 6$ and $\chi_F = 4$
A next quarter of the answer

Theorem (vdH, Li & Müller, 2014+)

- If \(D \equiv 0 \mod 4 \), then extension is always possible, provided \(\alpha \) is at least:
 - \(\frac{\chi_F - 1}{\left\lfloor \frac{1}{4} D \right\rfloor} \chi_F \), if \(1 \leq L \leq \chi_F \)
 - \(\frac{L - 1}{\left\lfloor \frac{1}{4} D \right\rfloor} L \), if \(\chi_F \leq L \leq \chi_F + \alpha_{\text{crit}} \)
 - \(\alpha_{\text{crit}} \), if \(L \geq \chi_F + \alpha_{\text{crit}} \)

- Where \(\alpha_{\text{crit}} \) is given by the first Král’ et al. result

- And these bounds are best possible for \(\chi_F \in \{2\} \cup [3, \infty) \)
The picture for $D = 4$ and $\chi_F = 4$
And the final half of the answer

Theorem (vdH, Li & Müller, 2014+)

- if D is odd, then extension is always possible, provided α is at least:
 - α_{crit}, for any $L \geq 1$

 (i.e.: the bound doesn't depend on L)

- for $\chi_F \in \{2\} \cup [3, \infty)$, the best possible value of α_{crit} is given by the first Král’ el al. result
The end

Thank you for the attention!