Generalised Colouring Numbers of Graphs

JAN VAN DEN HEUVEL

joint work with :

PATRICE OSSONA DE MENDEZ, DANIEL QUIROZ, ROMAN RABINOVICH & SEBASTIAN SIEBERTZ

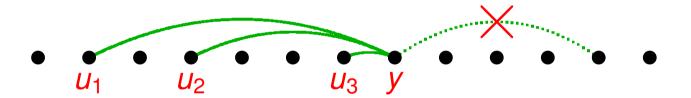
Department of Mathematics London School of Economics and Political Science

The normal colouring number

Iet L be a linear ordering of the vertices of a graph G

• for a vertex $y \in V(G)$,

let S(L, y) be the set of neighbours u of y with $u <_L y$



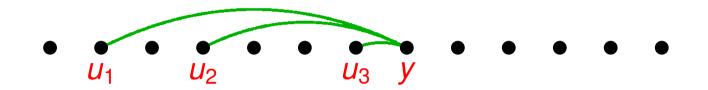
then the **colouring number col**(**G**) is defined as

 $\operatorname{col}(G) = \min_{L} \max_{y \in V(G)} |S(L, y)| + 1$

• colouring from left to right gives: $\chi(G) \leq \operatorname{col}(G)$

Generalising the colouring number

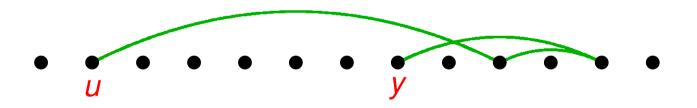
the set S(L, y) can be defined as "vertices $u <_L y$ for which there is an uy-path of length 1"



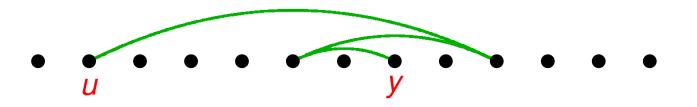
what would happen if we allow longer paths?

Generalising the colouring number

- the set S(L, y) can be defined as "vertices u <_L y for which there is an uy-path of length 1"
- what would happen if we allow longer paths ?
- a strong uy-path has all internal vertices larger than y

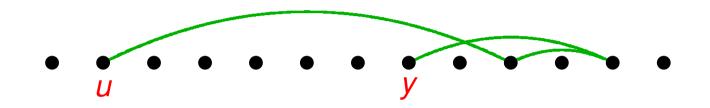


• a weak *uy*-path has all internal vertices larger than *u*



Strong generalised colouring numbers

a strong uy-path has all internal vertices larger than y



let S_r(L, y) be the set of vertices u <_L y for which there exists a strong uv-path of length at most r

then the strong *r*-colouring number $col_r(G)$ is defined as $col_r(G) = \min_{\substack{L \ v \in V(G)}} \max_{\substack{y \in V(G)}} |S_r(L, y)| + 1$

Weak generalised colouring numbers

a weak uy-path has all internal vertices larger than u



let W_r(L, y) be the set of vertices u <_L y for which there exists a weak uv-path of length at most r

then the weak *r*-colouring number wcol_r(*G*) is defined as wcol_r(*G*) = min max $_{L} |W_r(L, y)| + 1$

Basic facts of generalised colouring numbers

- introduced by Kierstead & Yang, 2004
- by definition: $col_1(G) = wcol_1(G) = col(G)$
- obviously: $\operatorname{col}_r(G) \leq \operatorname{wcol}_r(G)$
- but also: $\operatorname{wcol}_r(G) \leq (\operatorname{col}_r(G) 1)^r + 1$

(Proof: every weak path of length at most *r* is formed of at most *r* strong paths of length at most *r*.)

A simple application

• acyclic chromatic number $\chi_a(G)$:

minimum number of colours needed to properly colour the vertices of G such that every cycle has at least 3 colours

Theorem (Kierstead & Yang, 2004)

 $\chi_a(G) \leq \operatorname{col}_2(G)$

A simple application

Theorem (Kierstead & Yang, 2004) $\chi_a(G) \leq \operatorname{col}_2(G)$

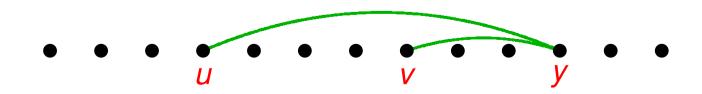
Proof

strong:

- take an ordering L that gives col₂(G)
- colour from left to right,

i.e. colour y different from all vertices in $S_2(L, y)$

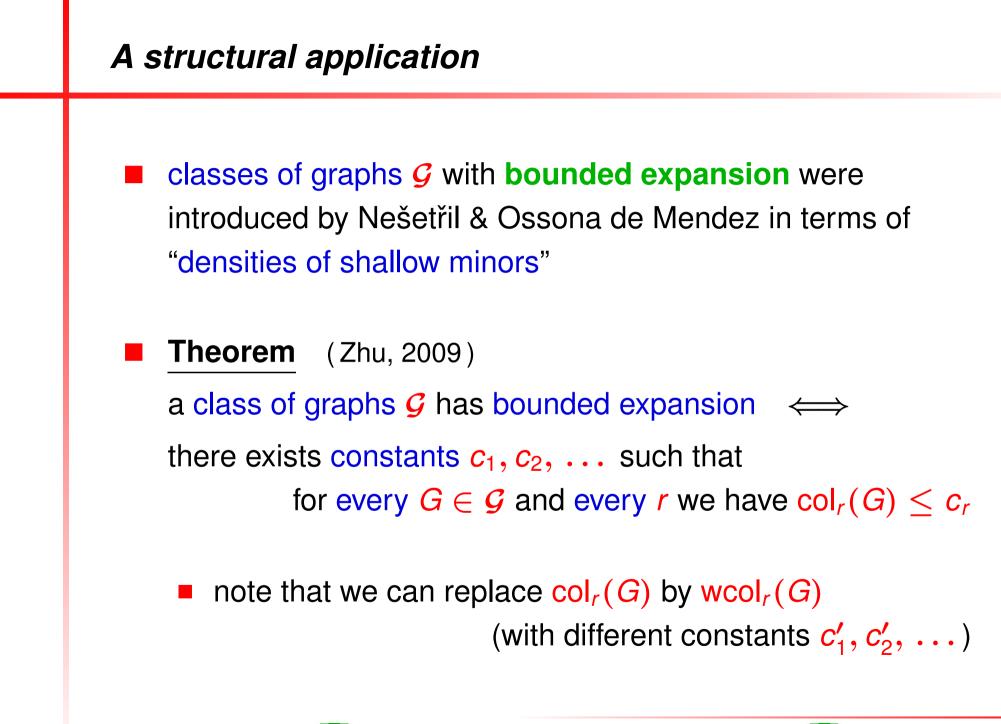
for any cycle C, look at the right-most vertex y of C and its two neighbours in C



weak:

. . . .

these 3 vertices must receive different colours



strong:

weak:

Further structural applications

we also obviously have:

 $\operatorname{wcol}_1(G) \leq \operatorname{wcol}_2(G) \leq \operatorname{wcol}_3(G) \leq \ldots \leq \operatorname{wcol}_\infty(G)$

(where the " ∞ " means "any length path allowed")

Property (Nešetřil & Ossona de Mendez, ~2005) $wcol_{\infty}(G) = tree-depth(G) + 1$

similarly: $\operatorname{col}_1(G) \le \operatorname{col}_2(G) \le \operatorname{col}_3(G) \le \ldots \le \operatorname{col}_\infty(G)$

Property (Grohe, Kreutzer, Rabinovich, Siebertz & Stavropoulos, 2014)

tree-width(G) + 1 = $col_{\infty}(G)$

strong:

weak:

.

Finding generalised colouring numbers the normal colouring number $col(G) = col_1(G) = wcol_1(G)$ can be found in polynomial time Theorem (Grohe, Kreutzer, Rabinovich, Siebertz & Stavropoulos, 2014) for any fixed r > 3, determining $col_r(G)$ and $wcol_r(G)$ is NP-complete Question • what is the complexity of determining $col_2(G)$ or

 $wcol_2(G)$?

strong:

weak: ••••

Bounds on generalised colouring numbers

- until recently, all known upper bounds for col_r(G) for specific graph classes were exponential: O(c^r); while those for wcol_r(G) were even worse: O(r^r)
- **Theorem** (vdH, Ossona de Mendez, Quiroz, Rabinovich & Siebertz, 2015+)

· · · · ·

weak:

G a graph without K_t -minor \implies

• $\operatorname{col}_r(G) \leq \binom{t}{2} \cdot (2r+1)$

• wcol_r(G)
$$\leq {\binom{t}{2}}^r \cdot (2r+1)$$

Generalised colouring numbers for planar graphs

- Theorem (vdH, Ossona de Mendez, Quiroz, Rabinovich & Siebertz, 2015+)
 - G planar \implies
 - $\bullet \operatorname{col}_r(G) \leq 5r+1$
 - $\operatorname{wcol}_r(G) \leq \mathcal{O}(r^5)$

- the bound $col_1(G) = col(G) \le 6$ is best possible
- for $\operatorname{col}_2(G)$:

strong:

- oldest bound: ≤ 761 (Chen & Schelp, 1993)
- best possible: <a> Solution (Dvořák, Kabela & Kaiser, 2015)

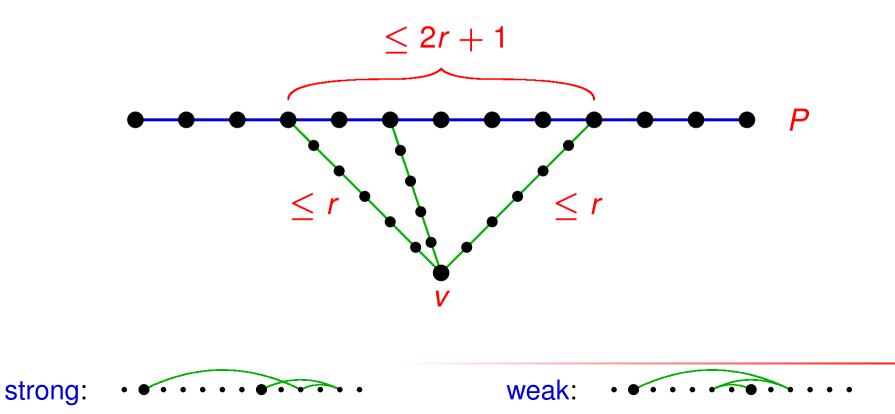
.

weak:

About the proofs

the main idea of the proofs is the following:

if P is a shortest path in G, then for any vertex v:
 the number of vertices on P at distance at most r from v
 is at most 2r + 1



About the proofs

- if P is a shortest path in G, then for any vertex v:
 the number of vertices on P at distance at most r from v is at most 2r + 1
- for planar or K_t-minor free graphs, there are separators consisting of a bounded number m of shortest paths
 - these m paths form the first part of the ordering L
 - every *y* outside these paths has at most $m \cdot (2r + 1)$ vertices within distance *r* on these paths
 - repeat the procedure for each of the components of the separator (cue: frantic handwaving)

weak:

.

And that's it for today ...

Thanks for listening!