Fractional Colouring and Precolouring Extension of Graphs

JAN VAN DEN HEUVEL

joint work with: DAN KRÁL', MARTIN KUPEC,

JEAN-SÉBASTIEN SERENI & JAN VOLEC

and with:

ANSHULLI & TOBIAS MÜLLER

Department of Mathematics

London School of Economics and Political Science

The basics of graph colouring

- vertex-colouring with k colours:
 adjacent vertices must receive different colours
- **chromatic number** $\chi(G)$:

 minimum k so that a vertex-colouring exists

general question:

- what can we say if some vertices are already precoloured?
- in particular: are $\chi(G)$ colours still enough?
 - not in general

Precolouring questions

next best questions:

- how many extra colours may be needed?
- and what conditions on the precoloured vertices can make life easier?

Question (Thomassen, 1997)

- G planar,
 - $W \subseteq V(G)$ a set of vertices such that distance between any two vertices in W is at least 100
 - can any 5-colouring of W

be extended to a 5-colouring of *G*?

The first answer

 \blacksquare dist(W): minimum distance between any two vertices in W

```
Theorem (Albertson, 1998)
```

 \blacksquare G any graph with chromatic number χ

```
W \subseteq V(G) with dist(W) \ge 4
```

 \implies any $(\chi+1)$ -colouring of W

can be extended to a $(\chi+1)$ -colouring of G

Some more answers

Theorem (easy)

 \blacksquare G any graph with chromatic number χ

$$W \subseteq V(G)$$
 with $dist(W) \ge 3$

$$\implies$$
 any $(\chi + \chi)$ -colouring of W

can be extended to a $(\chi + \chi)$ -colouring of G

Theorem (Albertson, 1998)

G planar graph

$$W \subseteq V(G)$$
 with $dist(W) \ge 3$

 \implies any 6-colouring of W

can be extended to a 6-colouring of G

A different kind of colouring

- **fractional** K-colouring of graph G $(K \in \mathbb{R}_+)$:
 - every vertex $v \in V$ is assigned a subset $\phi(v) \subseteq [0, K]$ so that:
 - every subset $\phi(v)$ has 'measure' 1
 - and $uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset$
- **I** fractional chromatic number $\chi_F(G)$:
 - = $\inf \{ K \ge 0 \mid G \text{ has a fractional } K\text{-colouring } \}$
 - $= \min \{ K \ge 0 \mid G \text{ has a fractional } K\text{-colouring } \}$

Fractional colouring

- **note**: we always have $\chi_F(G) \leq \chi(G)$
 - the difference can be arbitrarily large
- \blacksquare $\chi_F(G) = 1 \iff G$ has no edges
 - $\chi_F(G) = 2 \iff G$ has edges and is bipartite
 - for all rational $K \geq 2$: there exist G with $\chi_F(G) = K$

Precolouring in the fractional world

- so now suppose that for some vertices $W \subseteq V(G)$, the vertices in W are already precoloured:
 - vertices $w \in W$ have been given some set $\phi(w)$ of measure 1
- when can this be extended to a fractional colouring of the whole graph G?
- in general we should expect to require more than $\chi_F(G)$ colours

The set-up of the problem

- \blacksquare G a graph with fractional chromatic number $\chi_F \geq 2$
 - $D \ge 3$ an integer
 - $W \subseteq V(G)$ with $dist(W) \ge D$
- the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of measure 1
 - for some real $\alpha \geq 0$
 - and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
- **how large** should α be to guarantee this can be done?

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar & Volec, 2011)

 \blacksquare extension is always possible, provided α is at least:

$$\frac{\sqrt{\left(\left\lfloor\frac{1}{4}D\right\rfloor\chi_F+1\right)^2-4\left\lfloor\frac{1}{4}D\right\rfloor}-\left\lfloor\frac{1}{4}D\right\rfloor\chi_F+1}{2\left\lfloor\frac{1}{4}D\right\rfloor},$$
 if $D\equiv 0 \bmod 4$

$$\frac{\sqrt{\left(\left\lfloor\frac{1}{4}D\right\rfloor\chi_F+2\right)^2-4\left(\left\lfloor\frac{1}{4}D\right\rfloor+1\right)-\left\lfloor\frac{1}{4}D\right\rfloor\chi_F}}{2\left\lfloor\frac{1}{4}D\right\rfloor},$$
if $D\equiv 2 \mod 4$

A major part of the answer

Theorem (Král', Krnc, Kupec, Lužar & Volec, 2011)

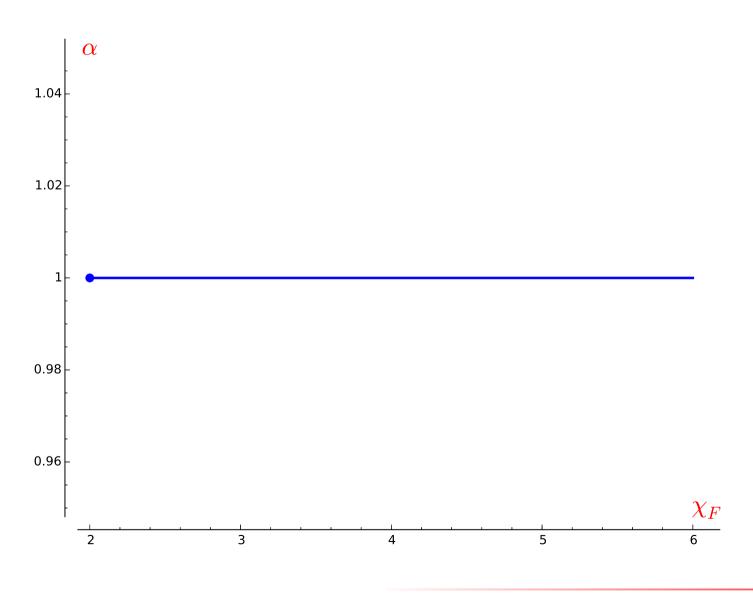
- \blacksquare moreover, these bounds on α are best possible,
 - if D = 3;
 - if $D \ge 4$ and $\chi_F \in \{2\} \cup [3, \infty)$

A major part of the answer – best possible

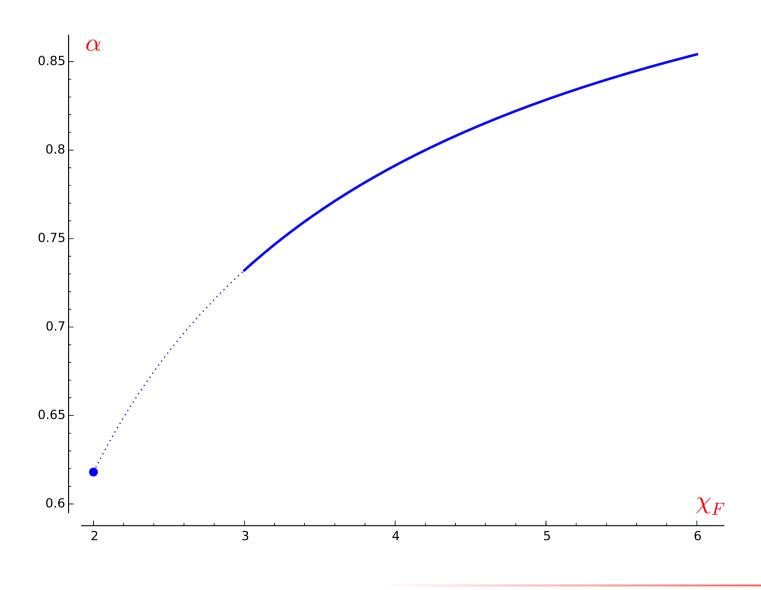
in other words:

- for all integers $D \geq 3$, all rational numbers $\chi_F \in \{2\} \cup [3, \infty)$, all $\alpha \geq 0$ failing the bound for that D and χ_F
- there is a graph G with fractional chromatic number χ_F , a subset $W \subseteq V(G)$ with $\operatorname{dist}(W) \geq D$, and a fractional precolouring $\phi(w) \subseteq [0, \chi_F + \alpha]$ for $w \in W$
- such that ϕ cannot be extended to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$ only

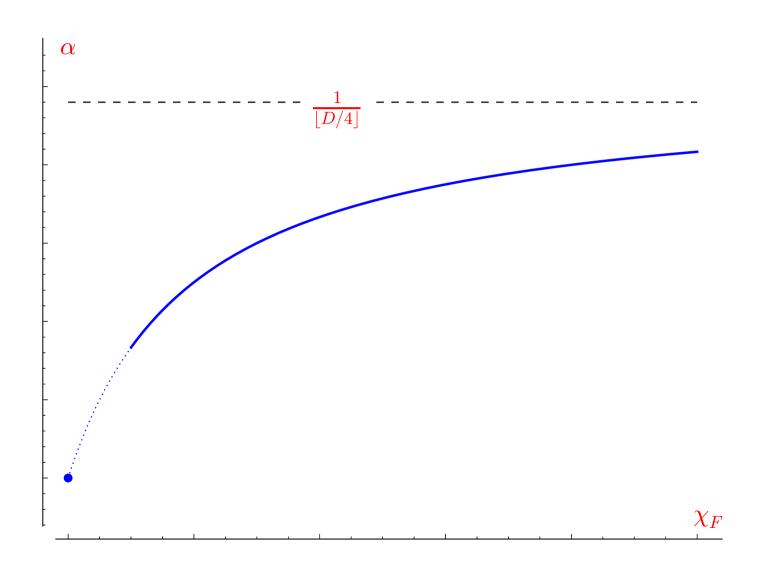
The picture for D = 3



The picture for D=4



The picture for general $D \ge 4$



Almost the complete answer

- so for $D \ge 4$, we know the full answer only if $\chi_F = 2$ or $\chi_F \ge 3$
 - so what happens in the gap $2 < \chi_F < 3$?
- the problem again :
 - we have some $W \subseteq V(G)$ with $dist(W) \ge D$
 - the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, \chi_F + \alpha]$ of measure 1
 - and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$

The answer for D = 4

Theorem (vdH, Král', Kupec, Sereni & Volec, 2014)

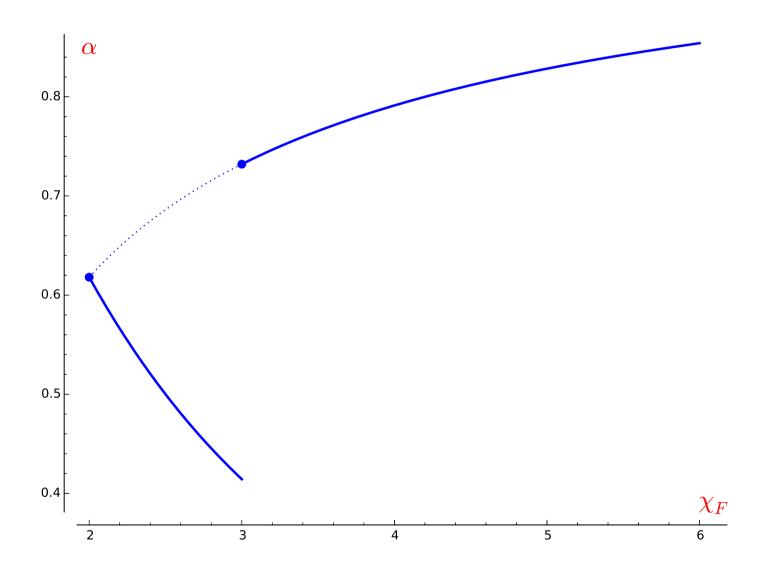
 \blacksquare for D=4 we need:

•
$$\alpha \ge \frac{\sqrt{(\chi_F - 1)^2 + 4(\chi_F - 1)} - \chi_F + 1}{2}$$
, for $\chi_F \ge 3$

•
$$\alpha \ge \frac{\sqrt{(\chi_F - 1)^2 + 4} - \chi_F + 1}{2}$$
, for $2 \le \chi_F < 3$

and these bounds are best possible

The full picture for D=4



Almost the answer for D = 5

Theorem (vdH, Král', Kupec, Sereni & Volec, 2014)

for D = 5 we need:

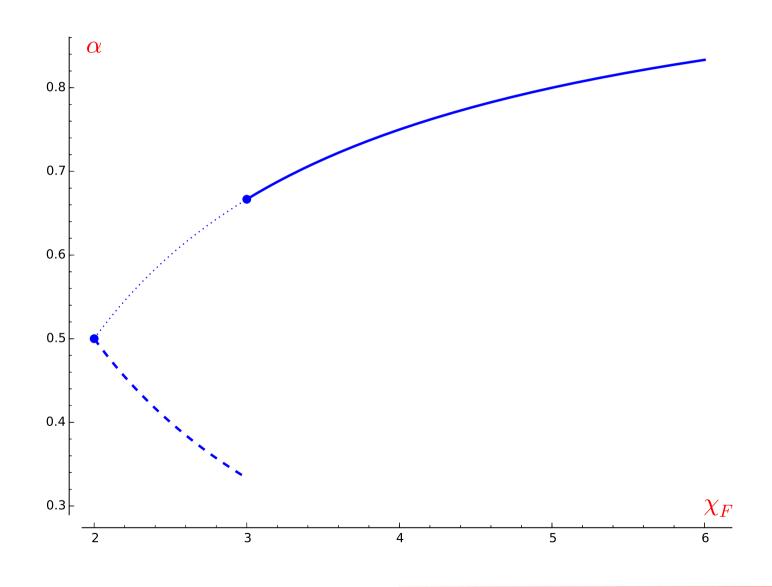
$$\quad \blacksquare \ \ \alpha \geq \frac{\chi_F - 1}{\chi_F},$$

for
$$\chi_F \geq 3$$

for
$$2 \le \chi_F < 3$$

but we don't know if the bound for $2 \le \chi_F < 3$ is best possible

Almost the full picture for D = 5



Almost the answer for D = 6

Theorem (vdH, Král', Kupec, Sereni & Volec, 2014)

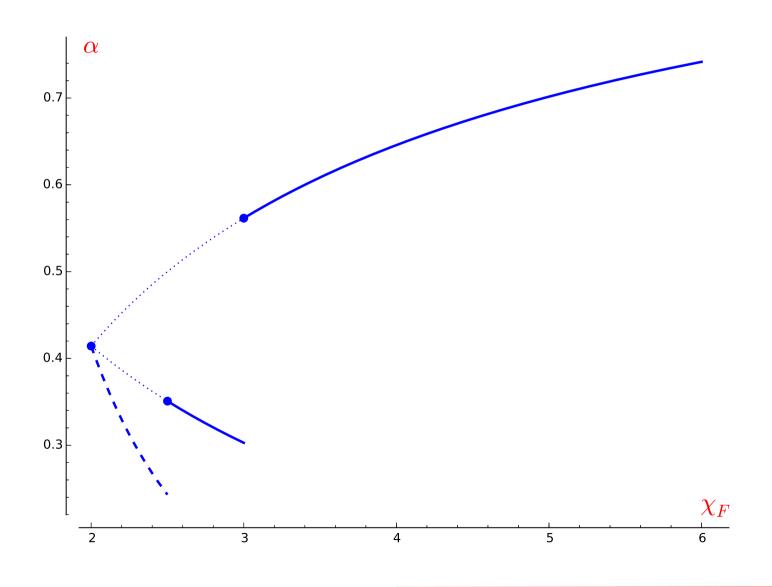
 \blacksquare for D=6 we need:

$$\bullet \quad \alpha \geq \frac{\sqrt{\chi_F^2 + 4 - \chi_F}}{2}, \qquad \qquad \text{for } 2\frac{1}{2} \leq \chi_F < 3$$

•
$$\alpha \geq \frac{\sqrt{\chi_F^2 + 4/(\chi_F - 1)} - \chi_F}{2}$$
, for $2 \leq \chi_F < 2\frac{1}{2}$

■ and the bounds are best possible for $\chi_F \in \{2\} \cup [2\frac{1}{2}, \infty)$

Almost the full picture for D = 6



And for $D \ge 7$

for $D \ge 7$ we have no further precise results

for
$$2 < \chi_F < 3$$

but all indications are that it gets more and more complicated when D gets larger

A new problem

- in all problems so far we assumed that the precoloured vertices and the extension can use the same set of available colours
- but what would happen if for the precolouring we can use a smaller colour set only?
 - for integer colouring, this would make no difference (for distance $D \ge 4$) (may need extra colours but 1 extra is always enough)
 - but for fractional precolouring one would expect a more gradual change

The set-up of the new problem

- \blacksquare G a graph with fractional chromatic number $\chi_F \geq 2$
 - $D \ge 3$ an integer
 - $W \subseteq V(G)$ with $dist(W) \ge D$
 - $L \ge 1$ a real number
- the vertices $w \in W$ are precoloured with $\phi(w) \subseteq [0, L]$ of measure 1
 - and we want to extend that to a fractional colouring of the whole G, using colours from $[0, \chi_F + \alpha]$
- **how large** should α be to guarantee this can be done?

The intuition for restricted fractional precolouring

- for L = 1, all precoloured vertices get 'colour' [0, 1)
 - \blacksquare a small α should be enough to complete the colouring
- when we increase L
 - the required α will increase as well
- \blacksquare until we reach $L = \chi_F + \alpha_{crit}$
 - where α_{crit} is the value so that: precolouring with $[0, \chi_F + \alpha_{\text{crit}}]$ can be completed with colours from $[0, \chi_F + \alpha_{\text{crit}}]$
- increasing L further, doesn't require more than $[0, \chi_F + \alpha_{crit}]$ to complete

A first quarter of the answer

Theorem (vdH, Li & Müller, 2014+)

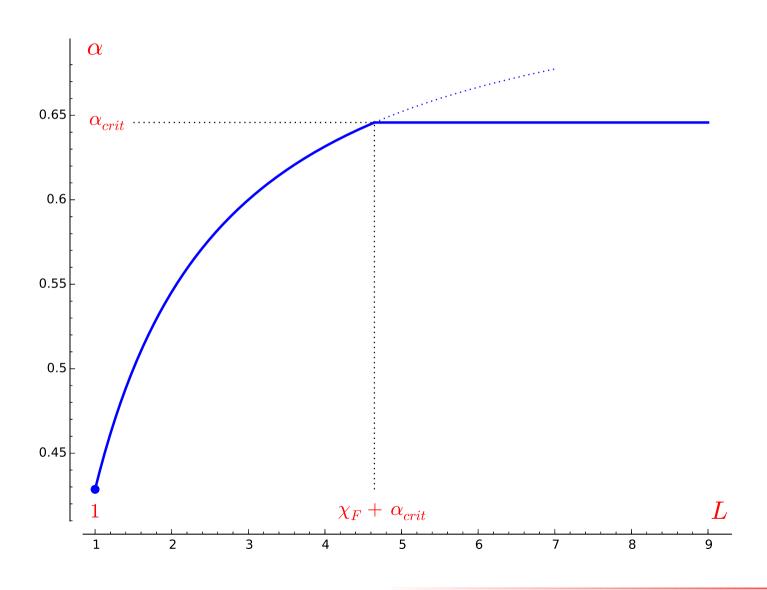
if $D \equiv 2 \mod 4$, then extension is always possible, provided α is at least:

$$\frac{L(\chi_F - 1)}{L\left\lfloor \frac{1}{4}D\right\rfloor \chi_F + \chi_F - 1}, \quad \text{if } 1 \le L \le \chi_F + \alpha_{\text{crit}}$$

lacksquare $lpha_{
m crit},$

- if $L \geq \chi_F + \alpha_{\text{crit}}$
- where α_{crit} is given by the first Král' el al. results
- \blacksquare and these bounds are best possible for $\chi_F \in \{2\} \cup [3, \infty)$

The picture for D = 6 and $\chi_F = 4$



A next quarter of the answer

Theorem (vdH, Li & Müller, 2014+)

- if $D \equiv 0 \mod 4$, then extension is always possible, provided α is at least:

if
$$1 \leq L \leq \chi_F$$

$$\frac{L-1}{\left\lfloor \frac{1}{4}D\right\rfloor L},$$

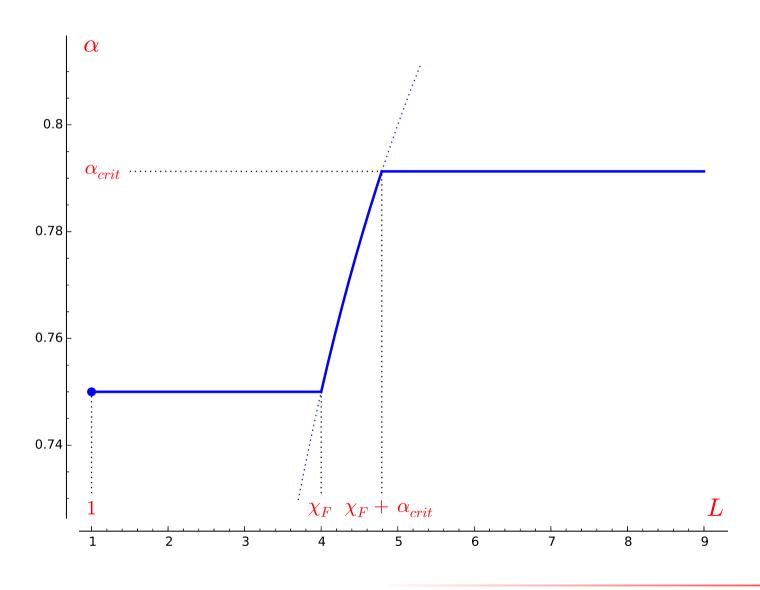
if
$$\chi_F \leq L \leq \chi_F + \alpha_{\rm crit}$$

$$lacksquare$$
 $lpha_{
m crit},$

if
$$L > \chi_F + \alpha_{\rm crit}$$

- where α_{crit} is given by the first Král' el al. result
- and these bounds are best possible for $\chi_F \in \{2\} \cup [3, \infty)$

The picture for D = 4 and $\chi_F = 4$



And the final half of the answer

```
Theorem (vdH, Li & Müller, 2014+)
```

- if D is odd, then extension is always possible, provided α is at least:
 - lacksquare $lpha_{
 m crit},$ for any $L\geq 1$

(i.e.: the bound doesn't depend on L)

for $\chi_F \in \{2\} \cup [3, \infty)$, the best possible value of α_{crit} is given by the first Král' el al. result

Why all this strange behaviour?

- although we don't understand all the behaviour in those results
- the strange behaviour for $2 < \chi_F < 3$ can be explained by some aspects of the proof
 - for that we need to have a further look at fractional colouring first

Fractional colouring again

- fractional K-colouring of graph G:
 - **assignment of subsets** $\phi(v) \subseteq [0, K]$ to $v \in V$ so that :
 - every subset $\phi(v)$ has 'measure' 1
 - and $uv \in E(G) \implies \phi(u) \cap \phi(v) = \emptyset$

Alternative definition for fractional colouring

- notation: [m]: the set $\{1, \ldots, m\}$ $\binom{[m]}{q}$: the collection of q-subsets of [m]
- **(m, q)-colouring** of graph G $(1 \le q \le m)$:
 - every $v \in V$ is assigned a subset $\psi(v) \in {[m] \choose q}$, so that:
 - $uv \in E(G) \implies \psi(u) \cap \psi(v) = \emptyset$
- and then: $\chi_F(G) = \min \left\{ \frac{m}{q} \mid G \text{ has an } (m,q)\text{-colouring} \right\}$

And another definition

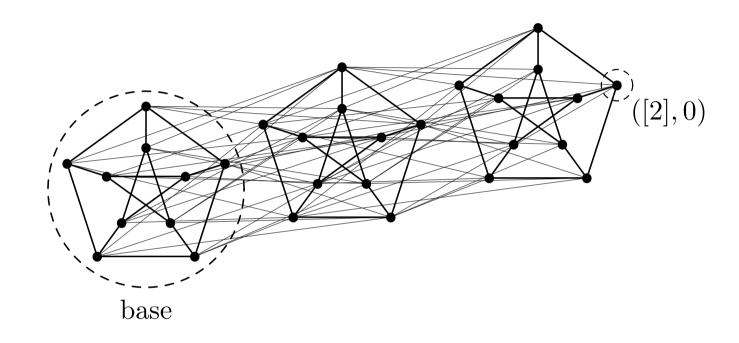
- Kneser graph Kn(m, q):
 - vertices: all of $\binom{[m]}{q}$, edge $uv \iff u \cap v = \emptyset$
- G has an (m, q)-colouring \iff there is a homomorphism $G \longrightarrow Kn(m, q)$
- $\chi_F(G) = \frac{m}{q} \iff \frac{m}{q} \text{ is minimal, so that}$ there is a homomorphism $G \longrightarrow Kn(m,q)$
 - we can interpret this as just a labelling of the vertices of G, using labels from $\binom{[m]}{q}$

Fractional colouring and Kneser graphs

- so to understand fractional colouring,we can use Kneser graphs
- but we want to deal with precolouring of vertex sets with a minimum distance D
 - for that we need to build more complicated graphs
- \blacksquare in the rest of this talk we only look at the case D is even

- \blacksquare given some m, q, D even, and an integer M
 - we start with a single Kn(m, q) as a base
 - out of the base we grow M disjoint arms, each consisting of D/2 disjoint copies of Kn(m,q)
 - we link two consecutive copies of Kn(m, q) in each arm as follows:
 - u_1 in copy 1 and v_2 in copy 2:

$$u_1 \sim v_2 \iff uv$$
 is an edge in $Kn(m,q)$



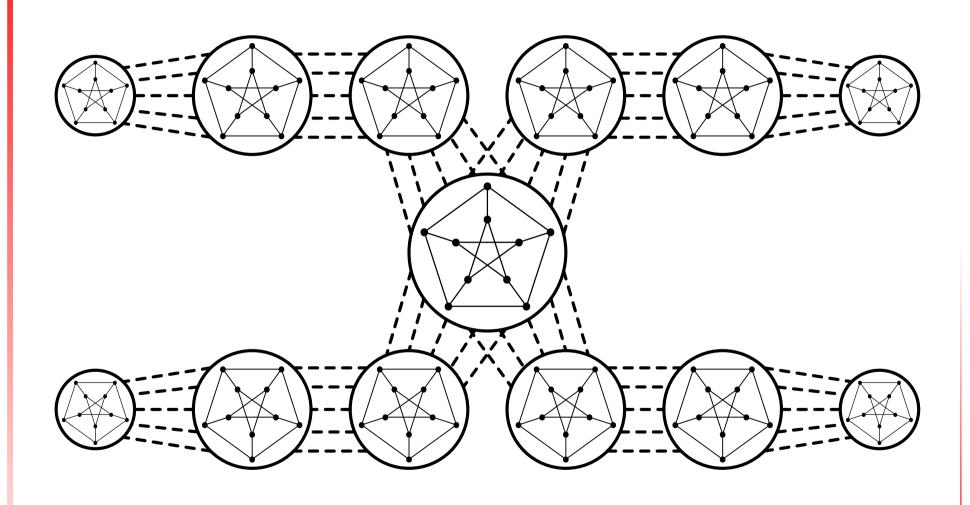
one arm of an armed Kneser graph

with
$$m = 5$$
, $q = 2$; $D = 4$

- \blacksquare given some m, q, D even, and an integer M
 - we start with a single Kn(m, q) as a base
 - out of the base we grow M disjoint arms, each consisting of D/2 disjoint copies of Kn(m, q)
 - we link two consecutive copies of Kn(m, q) in each arm as follows:
 - u_1 in copy 1 and v_2 in copy 2:

 $u_1 \sim v_2 \iff uv \text{ is an edge in } Kn(m,q)$

 \blacksquare call the result the armed Kneser graph a-Kn(m, q; D, M)



the armed Kneser graph a-Kn(5, 2; 6, 4)

Using armed Kneser graphs

now suppose we have a graph G with $\chi_F(G) = \chi_F$

so:
$$G \longrightarrow Kn(m,q)$$
, for some m,q with $\frac{m}{q} = \chi_F$

- and a set $W \subseteq V(G)$ with $dist(W) \ge D$
- take the armed Kneser graph a-Kn(m, q; D, |W|) with |W| arms
- we will map G to this armed Kneser graph
 - using the labels given by the homomorphism

$$G \longrightarrow Kn(m,q)$$

Using armed Kneser graphs

- \blacksquare each $w \in W$ gets its own arm
 - \blacksquare map w in the copy of Kn(m, q) at the end of its arm
 - map the neighbours of w in G in the copy of Kn(m, q) one step closer to the base
 - map the neighbours of the neighbours of w in G in the next copy (closer to the base) of Kn(m, q)
 - etc.
- map all vertices at distance at least D/2 from W in G in the base of the armed Kneser graph

Using armed Kneser graphs

- this mapping of G in the armed Kneser graph satisfies:
 - images of elements of W have distance D
 - a precolouring of W
 - gives a precolouring of the images of W

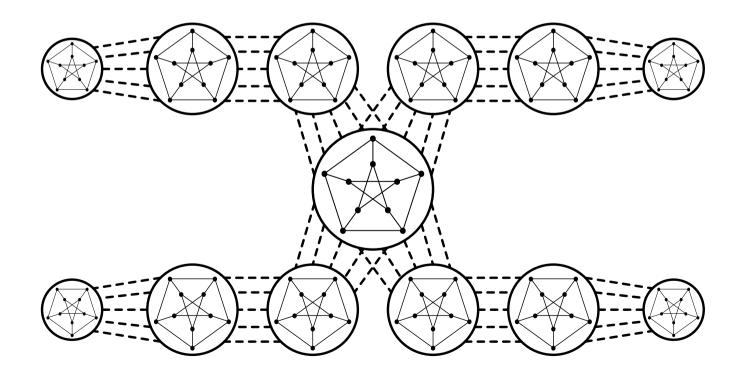
- but also:
 - a fractional colouring of the armed Kneser graph
 can be mapped back to a fractional colouring of G

in other words:

all aspects of fractional precolouring extensions of graphs are determined by fractional precolouring extensions of armed Kneser graphs!

Precolouring extensions of armed Kneser graphs

- suppose we have an armed Kneser graph
 a-Kn(m, q; D, M)
 - and one precoloured vertex in the end of each arm

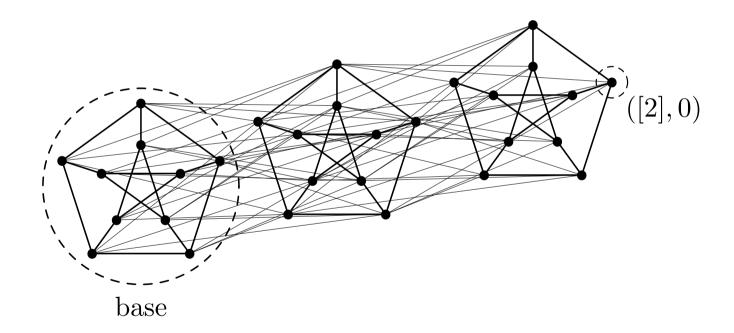


Precolouring extensions of armed Kneser graphs

- suppose we have an armed Kneser graph
 a-Kn(m, q; D, M)
 - and one precoloured vertex in the end of each arm
- in a fractional colouring extending that precolouring:
 - the base must 'accommodate' all arms
 - so will have to be given some 'average' colouring
 - so along the arms, the colouring extension must connect
 - the precoloured vertex in the end
 - with some 'average' colouring of the base

Colouring along an arm of an armed Kneser graph

- so consider an arm of an armed Kneser graph
 - with one precoloured vertex w' in its end



Colouring along an arm of an armed Kneser graph

- so consider an arm of an armed Kneser graph
 - with one precoloured vertex w' in its end
- the colouring along the arm is mostly determined by:
 - w' itself, in the end copy of Kn(m, q)
 - then by vertices in the 2nd copy of Kn(m, q)
 that are neighbours of w'
 - and then by vertices in the 3rd copy of Kn(m, q)
 that are neighbours of neighbours of w'
 - etc.

Now things get interesting

- \blacksquare w' is a vertex in Kn(m,q), i.e., a q-subset of [m]
- its neighbours are the q-subsets of [m] disjoint from w'
 - those neighbours together form a subgraph that is isomorphic to the Kneser graph Kn(m-q,q)
- for $\chi_F = \frac{m}{q} \ge 3$ we have $\chi_F \big(Kn(m-q,q) \big) = \frac{m-q}{q} = \chi_F 1$
- for $2 \le \chi_F = \frac{m}{q} < 3$, Kn(m-q,q) has just isolated vertices
 - hence in those cases: $\chi_F(Kn(m-q,q)) = 1$

Now things get interesting

- so for $\chi_F \geq 3$ we have
 - χ_F (set of neighbours of w') = $\chi_F 1$
- while for $2 \le \chi_F < 3$ we have
 - χ_F (set of neighbours of w') = 1
- this causes the difference between the two cases when

$$D=4$$

(then the armed Kneser graph has arms of length 2, with the set of neighbours of w' in the middle)

And things get even more interesting

- \blacksquare next consider the set of neighbours of neighbours of w'
- for $\chi_F = \frac{m}{q} \ge 3$, this is the whole Kneser graph Kn(m,q)
- for $2 \le \chi_F = \frac{m}{q} < 2\frac{1}{2}$,

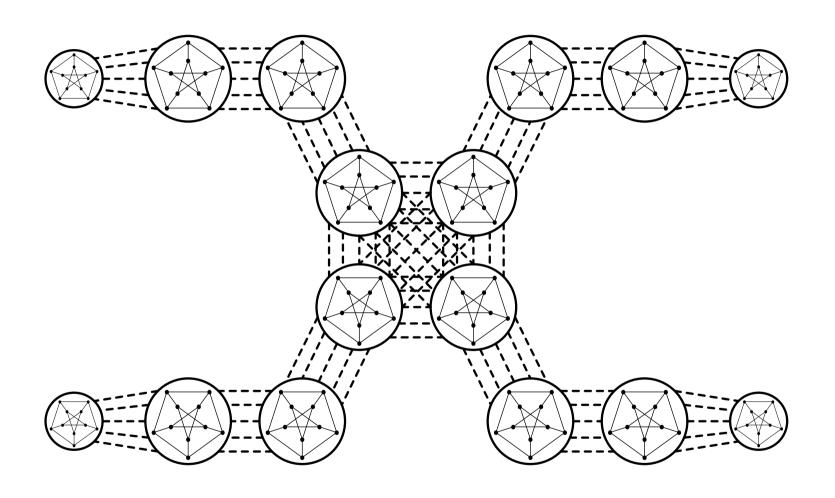
this is again a collection of isolated vertices

- but for $2\frac{1}{2} \le \chi_F = \frac{m}{q} < 3$, it gets complicated
 - the structure is not a Kneser graph
 - its structure can vary even in cases where $\frac{m}{q} = \frac{m'}{q'}$

To summarise these findings

- when colouring along an arm of an an armed Kneser graph:
 - for $\chi_F = \frac{m}{q} \ge 3$, we are always dealing with structures that are Kneser graphs itself
 - for $2 \le \chi_F = \frac{m}{q} < 3$, we encounter structures that are not Kneser graphs
- we just seem to lack an understanding of the internal structure of Kneser graphs to deal with those latter cases in general

The end



Thank you for the attention!