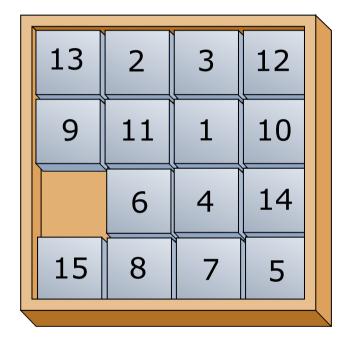
The Complexity of Change

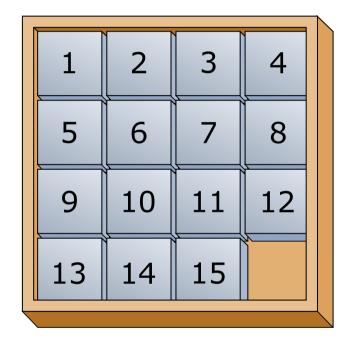
JAN VAN DEN HEUVEL

UQ, Brisbane, 26 July 2016

Department of Mathematics London School of Economics and Political Science

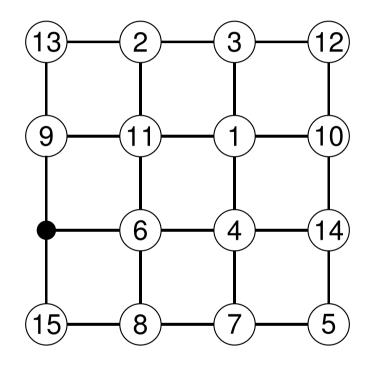
A classical puzzle: the 15-Puzzle

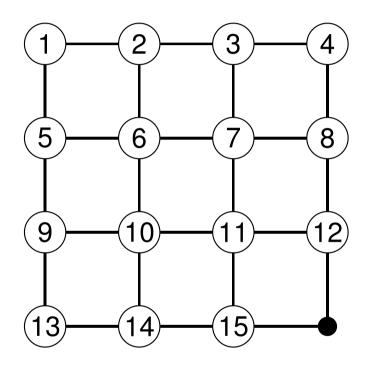




can you always solve it?

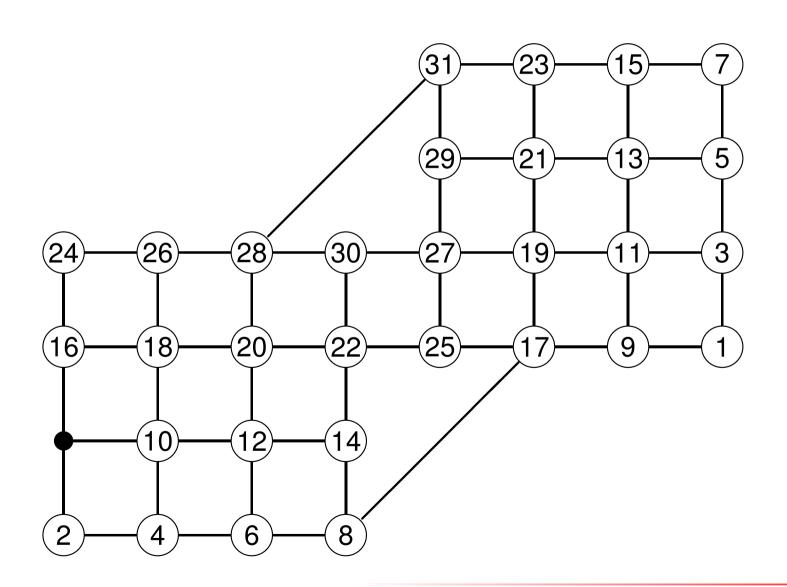
Another way to look at the 15-Puzzle



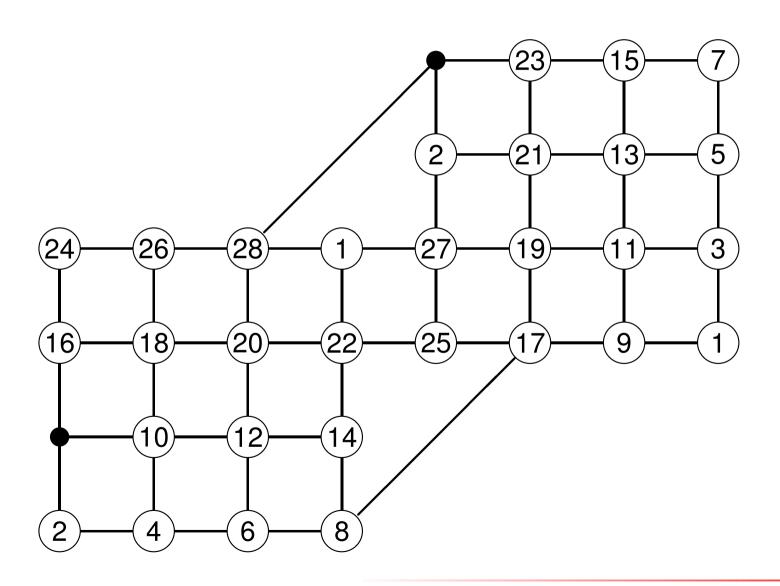


- we slide labelled tokens on some graph
- and want to go from one configuration to another one

What if we would play on a different graph?



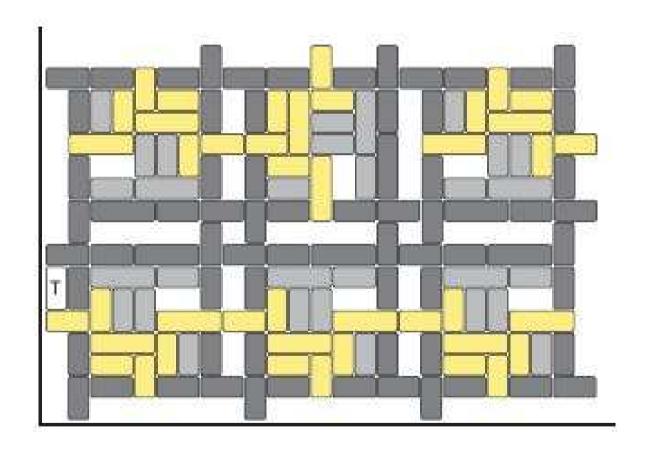
And maybe more empty spaces and/or repeated tokens?



Another moving items game: Rush Hour[™]

can you free the red car?

And we can make that more challenging ...

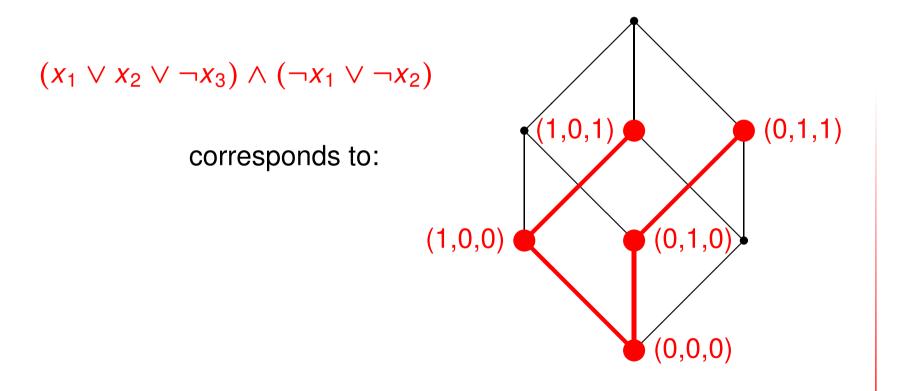


can you make any move with car T?

- consider some Boolean formula with *n* variables
 - e.g.: $\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$ whose set of satisfying assignments is $\{(F, F, F), (F, T, F), (F, T, T), (T, F, F), (T, F, T)\}$ which we write as $\{(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)\}$

- consider some Boolean formula with n variables
 - e.g.: $\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$ whose set of satisfying assignments is $\{(0,0,0), (0,1,0), (0,1,1), (1,0,0), (1,0,1)\}$
- \blacksquare the allowed transformation is: change one bit x_i at the time
- natural questions:
 - is the set of all satisfying assignments connected?
 - given two satisfying assignments, can you go from one to the other, changing one bit at the time?

for a Boolean formula φ , the set of satisfying assignments is an induced subgraph of the *n*-dimensional hypercube



One more example: recolouring planar graphs

Input: a planar graph G,

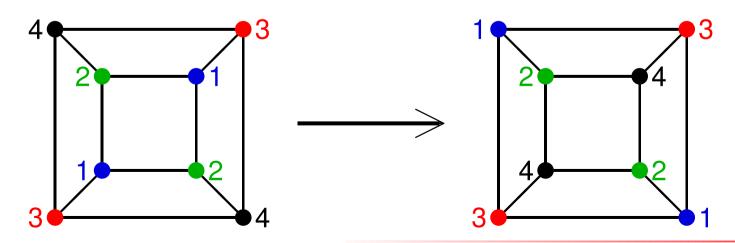
and two proper 4-colourings of G

Question: can we change one 4-colouring to the other one,

by recolouring one vertex at the time,

while always maintaining a proper 4-colouring?

sometimes we can:



One more example: recolouring planar graphs

Input: a planar graph G,

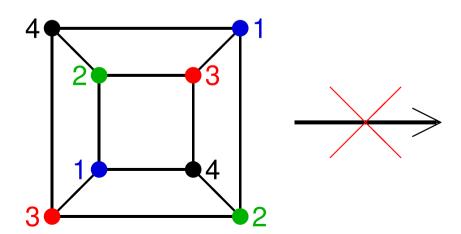
and two proper 4-colourings of G

Question: can we change one 4-colouring to the other one,

by recolouring one vertex at the time,

while always maintaining a proper 4-colouring?

but not always:



Connections

single-vertex recolouring of graph colourings is

- related to work in <u>theoretical physics</u> on
 Glauber dynamics
 of the *k*-state anti-ferromagnetic Potts model at zero temperature
- related to work in theoretical computer science on
 - Markov chain Monte Carlo methods for generating random k-colourings
 - Markov chain Monte Carlo methods
 for approximately counting the number of k-colourings

The Markov chain for k-colourings

define the Markov chain $\mathcal{M}(G; k)$ as follows:

- \blacksquare the states are all k-colourings of G
- **transitions** from a state (= colouring) α :
 - choose a vertex v uniformly at random
 - choose a colour $c \in \{1, \dots, k\}$ uniformly at random
 - try to recolour vertex v with colour c
 - if it remains a proper colouring:
 - \implies make this new k-colouring the new state
 - lacktriangle otherwise: the state remains the same colouring lpha

A bit of Markov chain theory

- the chain $\mathcal{M}(G; k)$ is aperiodic (since $Prob(\alpha, \alpha) > 0$)
- the chain is irreducible \iff all k-colourings are connected via single-vertex recolourings
- hence if all k-colourings are connected:
 - \blacksquare $\mathcal{M}(G; k)$ is ergodic
 - with the unique stationary distribution $\pi \equiv 1/_{\# k\text{-colourings}}$
 - which means: starting at some k-colouring α , walking through the Markov chain long enough, the final state can be any k-colouring

with (almost) equal probability

The main interests for today

how easy or hard is it to decide questions about the connectedness of configurations with certain allowed transformations?

in other words:

what is the (computational) complexity of these decision problems?

The two kinds of reconfiguration problems

■ A-TO-B-PATH

Input: some collection of feasible configurations,

some collection of allowed transformations,

and two feasible configurations A, B

Question: can we go from A to B by a sequence of

transformations, so that each intermediate

configuration is feasible as well?

■ PATH-BETWEEN-ALL-PAIRS

Input: some collection of feasible configurations,

and some collection of allowed transformations

Question: is it possible to do the above for any two feasible

configurations A, B?

A crash course in complexity theory

- classical complexity theory studies the resources
 - time = number of steps and/or
 - amount of memory

needed to solve a decision problem for a given input in terms of the length of the input (in some encoding)

- P: Polynomial-Time
 - if you are clever, you can find the answer in polynomial time

- P: Polynomial-Time
- NP: Non-Deterministic Polynomial-Time
 - if the answer is "yes" and you are lucky, you can discover the "yes" in polynomial time

- P: Polynomial-Time
- **NP**: Non-Deterministic Polynomial-Time
- **coNP**: complement of Non-Deterministic Polynomial-Time
 - if the answer is "no" and you are lucky, you can discover the "no" in polynomial time

- P: Polynomial-Time
- **NP**: Non-Deterministic Polynomial-Time
- **coNP**: complement of Non-Deterministic Polynomial-Time
- **PSPACE**: Polynomial-Space
 - if you are clever, you can find the answer using a polynomial amount of memory

- P: Polynomial-Time
- **NP**: Non-Deterministic Polynomial-Time
- **coNP**: complement of Non-Deterministic Polynomial-Time
- **PSPACE**: Polynomial-Space
- NPSPACE: Non-Deterministic Polynomial-Space
 - if the answer is "yes" and you are lucky, you can discover the "yes" using a polynomial amount of memory

- **P**: Polynomial-Time
- NP: Non-Deterministic Polynomial-Time
- **coNP**: complement of Non-Deterministic Polynomial-Time
- **PSPACE**: Polynomial-Space
- **NPSPACE**: Non-Deterministic Polynomial-Space
- lacktriangledown easy: $P \subseteq \frac{NP}{coNP} \subseteq PSPACE \subseteq NPSPACE$
- and in fact: **PSPACE** = **NPSPACE** (Savitch, 1970)

- P: Polynomial-Time
- **NP**: Non-Deterministic Polynomial-Time
- **coNP**: complement of Non-Deterministic Polynomial-Time
- **PSPACE**: Polynomial-Space
- **NPSPACE**: Non-Deterministic Polynomial-Space
- finally:
 - a problem is complete in a class if it is the "hardest type" of problems in that class

How to describe a problem?

- when being given a particular reconfiguration problem, we don't expect to being told an exhaustive list of all feasible configurations and/or an exhaustive list of all related pairs
 - since then the input would be so large that almost any algorithm would be in P
- instead we assume we are told:
 - a "description" of all feasible configurations,
 - and a "description" of the allowed transformations

How to describe a problem?

- when being given a particular reconfiguration problem, we don't expect to being told an exhaustive list of all feasible configurations and/or an exhaustive list of all related pairs
 - since then the input would be so large that almost any algorithm would be in P

hence:

- we assume the input is in the form of two algorithms to decide
 - if a possible configuration is feasible,
 - and if a possible transformation is allowed
- and we assume these algorithms give the correct answer in polynomial time

The complexity of all reconfiguration problems

under these assumptions

A-TO-B-PATH and PATH-BETWEEN-ALL-PAIRS are in **NPSPACE** (and hence in **PSPACE**)

- suppose we want to decide if we can go from A to B
 - starting from A, "guess" a next configuration A₁
 - check that A₁ is feasible
 - check that going from A to A₁ is an allowed transformation
 - if A₁ is a valid next configuration,
 "forget" A and replace it by A₁
 - repeat those steps until the target configuration B is reached

Deciding satisfiability problems

- Schaefer (1978) considered "types" of Boolean formulas that can be defined using certain logical relations
- depending on what logical relations are allowed:
 - the decision problem whether or not a Boolean formula is satisfiable is always either in P or NP-complete

Deciding satisfiability problems

- Schaefer (1978) considered "types" of Boolean formulas that can be defined using certain logical relations
- Gopalan, Kolaitis, Maneva & Papadimitriou (2009) tried to use the same set-up to prove results on:
 - given the type of logical relations allowed
 - what is the complexity of deciding A-TO-B-PATH for two satisfying assignments of some Boolean formula?
 - and what is the complexity of PATH-BETWEEN-ALL-PAIRS

 (i.e. when is the set of satisfying assignments a connected subgraph of the hypercube)?

Theorem (Gopalan, Kolaitis, Maneva & Papadimitriou, 2009) for Boolean formulas formed from some fixed set of logical relations:

- A-TO-B-PATH for two satisfying assignments of some Boolean formula is either in P or PSPACE-complete
- for the cases that A-TO-B-PATH is **PSPACE-complete**:
 - PATH-BETWEEN-ALL-PAIRS is also **PSPACE-complete**
- in the cases that A-TO-B-PATH is in P:
 - PATH-BETWEEN-ALL-PAIRS can be in P, in coNP, or coNP-complete
 - the boundaries between the classes are far from clear

k-Colour- α **-To-** β **-Path**

Input: a graph *G*,

and two k-colourings α and β of G

Question: can we go from α to β

by recolouring one vertex at the time,

always maintaining a proper *k*-colouring?

■ k-Colour-Path-Between-All-Pairs

Input: a graph G

Question: can we go between any two k-colourings of G

in the manner above?

Recall

- if k=2, then deciding if a graph is k-colourable is in **P**
 - a 2-colourable graph is also called bipartite

- Arr if $k \ge 3$, then deciding if a graph is k-colourable is **NP-complete**
 - this means that if $k \ge 3$, for k-Colour-Path-Between-All-Pairs we already have a problem to check if at least one colouring exists!

Recall

- \blacksquare if k = 2, then deciding if a graph is k-colourable is in \blacksquare
- \blacksquare if $k \ge 3$, then deciding if a graph is k-colourable is **NP-complete**

Theorem

- if k = 2, 3, then k-Colour- α -To- β -Path is in **P** (Cereceda, vdH & Johnson, 2011)
- if $k \ge 4$, then k-Colour- α -To- β -Path is **PSPACE-complete** (Bonsma, Cereceda, 2009)

Completely trivial

restricted to bipartite, planar graphs:

for any $k \geq 2$, deciding if a graph is k-colourable is in **P**

Theorem

restricted to bipartite, planar graphs:

- if k = 2, 3, then k-Colour- α -To- β -Path is in **P** (Cereceda, vdH & Johnson, 2011)
- if k = 4, then k-Colour- α -To- β -Path is **PSPACE-complete** (Bonsma, Cereceda, 2009)
- if $k \ge 5$, then k-Colour- α -To- β -Path is in P ("print(yes)")

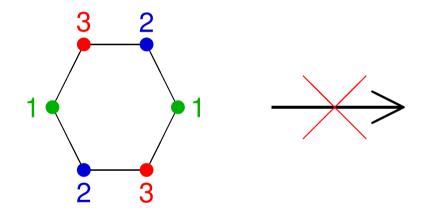
Theorem

restricted to bipartite graphs:

- if k = 2, then k-Colour-Path-Between-All-Pairs is in P:
 if no edges then print(yes), else print(no)
- if k = 3, then k-Colour-Path-Between-All-Pairs is **coNP-complete** (Cereceda, vdH & Johnson, 2009)
- if $k \ge 4$, then the complexity of k-Colour-Path-Between-All-Pairs is unknown

The case k = 3 for bipartite graphs

the smallest bipartite graph for which not all 3-colourings are connected is the 6-cycle C_6 :

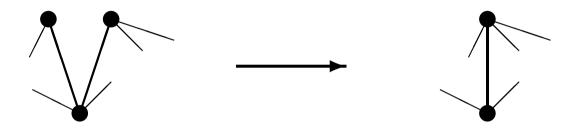


Theorem (Cereceda, vdH & Johnson, 2011)

- *G* is a bipartite graph:
- not all 3-colourings are connected \iff G "contains C_6 "

Folding

fold of two vertices at distance 2:



 \blacksquare G foldable to H: sequence of folds changes G to H

Theorem (Cook & Evans, 1979)

G a connected graph:

 \blacksquare min { $k \mid G$ can be coloured with k colours }

= $\min \{ k \mid G \text{ is foldable to complete graph } K_k \}$

Folding and 3-colouring

- **fold** of two vertices at distance 2:
- G foldable to H: sequence of folds changes G to H

Theorem (Cereceda, vdH & Johnson, 2011)

G a connected, bipartite graph:

- not all 3-colourings are connected \iff G is foldable to C_6
- \blacksquare deciding if G is foldable to C_6 is **NP-complete**

Reconfiguration of graph colourings

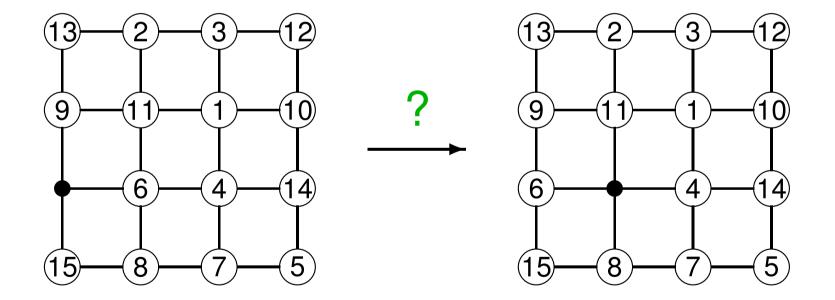
Theorem

restricted to bipartite, planar graphs:

- if k = 2, 3, then k-Colour-Path-Between-All-Pairs is in **P** (Cereceda, vdH & Johnson, 2009)
- if k = 4, then the complexity of k-Colour-Path-Between-All-Pairs is unknown
- if $k \ge 5$, then k-Colour-Path-Between-All-Pairs is in **P**: "print(yes)"

Sliding token puzzles

as seen already, we can interpret the 15-puzzle as a problem involving moving tokens on a given graph:



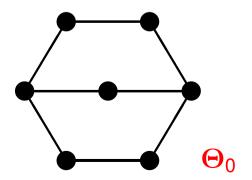
Sliding token puzzles

- so what happens if we would play this on other graphs?
- for a given graph G on n vertices, define puz(G) as the graph that has:
 - **nodes**: all possible placements of n-1 tokens on G
 - adjacency: sliding one token along an edge of G
 to an empty vertex
- and our standard decision problems become:
 - \blacksquare are two token configurations in one component of puz(G)?
 - is puz(*G*) connected?

Sliding token puzzles

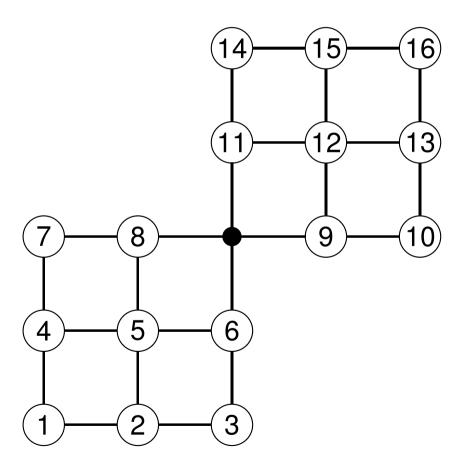
Theorem (Wilson, 1974)

- \blacksquare if G is a 2-connected graph, then puz(G) is connected, except if:
 - G is a cycle on $n \ge 4$ vertices (then puz(G) has (n-2)! components)
 - G is bipartite different from a cycle
 (then puz(G) has 2 components)
 - \blacksquare G is the exceptional graph Θ_0 (puz(Θ_0) has 6 components)



Why does Wilson only consider 2-connected graphs?

 \blacksquare since puz(G) is never connected if G has connectivity below 2:



- what would happen if:
 - \blacksquare we have fewer than n-1 tokens (i.e. more empty vertices)?
 - and/or not all tokens are the same?
- so suppose we have a set (k_1, k_2, \dots, k_p) of labelled tokens
 - \blacksquare meaning: k_1 tokens with label 1, k_2 tokens with label 2, etc.
 - tokens with the same label are indistinguishable
 - we can assume that $k_1 \ge k_2 \ge \cdots \ge k_p$ and their sum is at most n-1
- the corresponding graph of all token configurations on G is denoted by $puz(G; k_1, \ldots, k_p)$

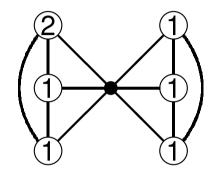
Theorem (Brightwell, vdH & Trakultraipruk, 2013)

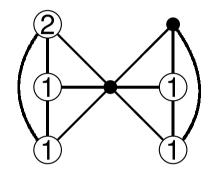
- G a graph on n vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - \blacksquare G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - G is the exceptional graph Θ_0 with token set (2,2,2), (2,2,1,1), (2,1,1,1,1) or (1,1,1,1,1)

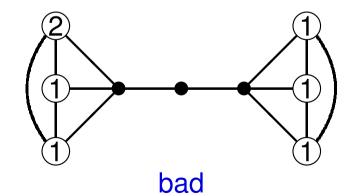
Theorem (Brightwell, vdH & Trakultraipruk, 2013)

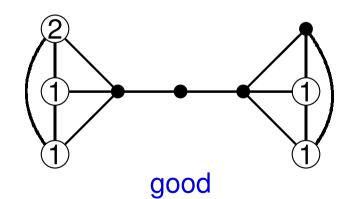
- G a graph on n vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - \blacksquare G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - lacksquare is the exceptional graph Θ_0 with some "bad" token sets
 - G has connectivity 1, $p \ge 2$ and there is a "separating path preventing tokens from moving between blocks"

"separating paths" in graphs of connectivity one:









- we can also characterise:
 - given a graph G, token set (k_1, \ldots, k_p) , and two token configurations on G,
 - are the two configurations in the same component of $puz(G; k_1, ..., k_p)$?
- so recognising connectivity properties of $puz(G; k_1, ..., k_p)$ is easy
- so can we say something about the number of steps we would need?

The length of sliding token paths

■ SHORTEST-A-TO-B-TOKEN-MOVES

Input: a graph G, a token set (k_1, \ldots, k_p) ,

two token configurations A and B on G,

and a positive integer N

Question: can we go from A to B in at most N steps?

The length of sliding token paths

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n-1 different tokens, SHORTEST-A-TO-B-TOKEN-MOVES is **NP-complete**

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

■ restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P

Theorem (vdH & Trakultraipruk, 2013)

restricted to the case that there is just one special token and all others are the same:

SHORTEST-A-TO-B-TOKEN-MOVES is already NP-complete

Robot motion

the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

- Shortest-Robot-Motion-with-One-Robot is **NP-complete**
- Robot Motion problems on graphs are sliding token problems,
 - with some special tokens (the robots)
 - that have to end in specified positions
 - all other tokens are just obstacles
 - and it is not important where those are at the end

A final puzzle: Rush Hour[™]

■ Rush-Hour

Input: some rectangular board,

a configuration of cars on that board,

and one special car

Question: is it possible to get the special car moving?

A final puzzle: Rush Hour[™]

Rush-Hour

Input: some rectangular board,

a configuration of cars on that board,

and one special car

Question: is it possible to get the special car moving?

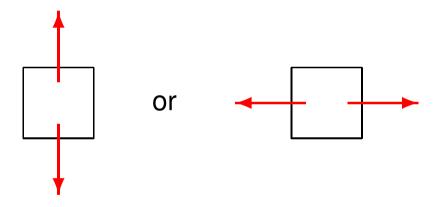
Theorem

RUSH-HOUR is **PSPACE-complete** (Flake & Baum, 2002)

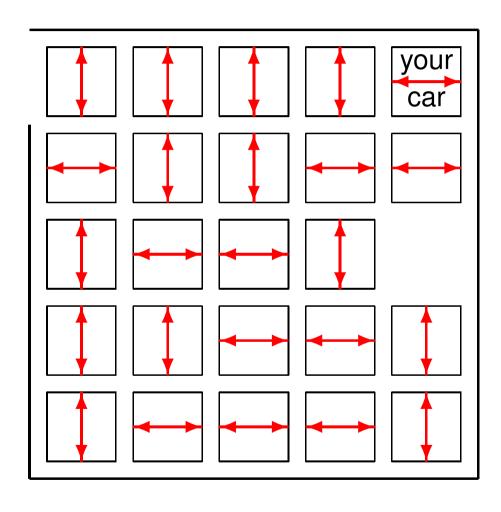
RUSH-HOUR remains PSPACE-complete
 even if all cars have length two (Tromp & Cilibrasi, 2005)

A final puzzle: Rush Hour[™]

- what is the complexity if all cars have length one?
 - i.e. each car is a 1 × 1 block,but can move in only one direction



Can you move your city car out of the garage?



How to prove a decision problem is PSPACE-complete?

standard method:

reduction to the basic PSPACE-complete problem:

QUANTIFIED-SAT:

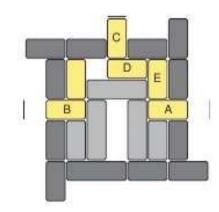
$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \forall x_n \exists y_n \varphi(x_1, y_1, \dots, x_n, y_n)$$

for some Boolean formula $\varphi(x_1, y_1, \dots, x_n, y_n)$

- Hearn & Demaine (2005) developed an approach that is often much easier to use
 - main idea: show that a QUANTIFIED-SAT formula can be represented by certain logical circuits

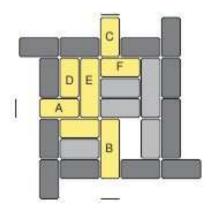
Logical Gates in Rush Hour

an OR-like collection of cars:



C can only move in, if at least one of A, B moves out

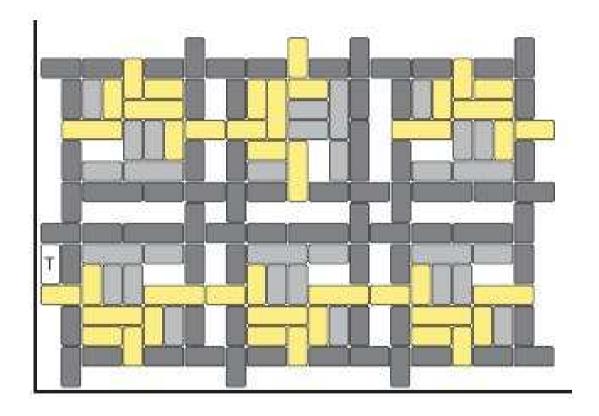
an AND-like collection of cars:



C can only move in, if both A and B move out

Logical Gates in Rush Hour

and then combine it all in big tableaux:



But what to do with small cars?

