Generalised Colouring Numbers of Graphs

applications, bounds, structural aspects, algorithms

JAN VAN DEN HEUVEL

Department of Mathematics London School of Economics and Political Science

The normal colouring number

Iet L be a linear ordering of the vertices of a graph G

for a vertex $y \in V(G)$, let S(L, y) be the set of neighbours u of y with $u <_L y$

then the **colouring number col(G)** is defined as

 $\operatorname{col}(G) = \min_{L} \max_{y \in V(G)} |S(L, y)| + 1$

greedily colouring from left to right gives: $\chi(G) \leq \operatorname{col}(G)$

Bounding the colouring number

- for a planar graph G with n vertices and m edges we know $m \leq 3n 6$
 - hence:
 - a planar graph G has a vertex of degree at most 5
 - there is an ordering *L* of the vertices of *G* such that for all vertices *y*: $|S(L, y)| \leq 5$

Corollary

G planar \implies col(G) \le 6

Generalising the colouring number

• the set S(L, y) can be defined as

"vertices $u <_L y$ for which there is an uy-path of length 1"

what would happen if we allow longer paths?

Generalising the colouring number

a strong uy-path has all internal vertices larger than y 11 let $S_r(L, y)$ be the set of vertices $u <_L y$ for which there exists a strong *uy*-path with length at most *r* then the strong r-colouring number $col_r(G)$ is defined as $\operatorname{col}_r(G) = \min_{L} \max_{y \in V(G)} |S_r(L, y)| + 1$

A simple application

acyclic chromatic number $\chi_a(G)$:

minimum number of colours needed to properly colour the vertices of G such that every cycle has at least 3 colours

Theorem (Kierstead & Yang, 2004)

 $\chi_a(G) \leq \operatorname{col}_2(G)$

Bounding the colouring numbers

- for a planar graph G with n vertices and m edges we know $m \leq 3n 6$
 - this is enough to prove:
 - there is an ordering *L* of the vertices of *G* such that for all $y \in V(G)$: $|S_1(L, y)| \leq 5$ and $|S_2(L, y)| \leq 14$

Corollary

- G planar \implies $col_2(G) \le 15$
- best possible bound: $col_2(G) \leq 8$

(Dvořák, Kabela & Kaiser, 2015)

A structural application

classes of graphs G with bounded expansion were introduced by Nešetřil & Ossona de Mendez in terms of "densities of shallow minors"

equivalent Definition (Zhu, 2009)

a class of graphs \mathcal{G} has **bounded expansion**:

there exists constants c_1, c_2, \ldots such that for every $G \in \mathcal{G}$ and every r we have $\operatorname{col}_r(G) \leq c_r$ we obviously have:

 $\operatorname{col}_1(G) \leq \operatorname{col}_2(G) \leq \operatorname{col}_3(G) \leq \ldots \leq \operatorname{col}_\infty(G)$

(where the " ∞ " means "any length strong path allowed")

Property (Grohe et al., 2014) $col_{\infty}(G) = tree-width(G) + 1$

 so the concept "class of graphs with bounded expansion" generalises "class of graphs with bounded tree-width"
(and "graphs with bounded genus", "graphs with forbidden minors", "graphs with bounded cop number", etc., etc.)

Theorem (Courcelle, 1990)

let *G* be a class of graphs with bounded tree-width

- then any graph property that can be described using monadic second-order logic is decidable for G ∈ G in linear time
- **Theorem** (Dvořák, Král' & Thomas, 2010)
 - let **G** be a class of graphs with bounded expansion
 - then any graph property that can be described using first-order logic is decidable for $G \in \mathcal{G}$ in linear time

Back to generalising the colouring number

• the set S(L, y) can be defined as

"vertices $u <_L y$ for which there is an uy-path of length 1"

what would happen if we allow longer paths?

- but several choices for such paths are possible
 - **strong paths** (leading to $col_r(G)$) is just one of them

The weak colouring number

a weak uy-path has all internal vertices larger than u

let W_r(L, y) be the set of vertices u <_L y for which there exists a weak uy-path of length at most r

then the weak *r*-colouring number $col_r(G)$ is defined as $wcol_r(G) = \min_{L} \max_{y \in V(G)} |W_r(L, y)| + 1$

Yet another generalisation: admissibility

- we use strong uy-paths again, so all internal vertices larger than y
 - let a_r(L, y) be the maximal size of a set of vertices u <_L y for which there exists strong uy-paths of length at most r, that are disjoint apart from all starting at y
- then the *r***-admissibility** $adm_r(G)$ is defined as

 $\operatorname{adm}_r(G) = \min_{L} \max_{y \in V(G)} a_r(L, y) + 1$

Some basic facts of these generalised colouring numbers

- by definition: $col(G) = col_1(G) = wcol_1(G) = adm_1(G)$
- obviously: $\operatorname{adm}_r(G) \leq \operatorname{col}_r(G) \leq \operatorname{wcol}_r(G)$
 - in fact, also: $\operatorname{wcol}_r(G) \leq (\operatorname{adm}_r(G))^r$ (Dvořák, 2013)
 - hence:

if one of col_r , $wcol_r$, adm_r is bounded on some class of graphs, then all are bounded on that class

in particular:
classes of bounded expansion can be defined using any of col_r, wcol_r, adm_r

Another application: colouring at a distance

vertex-colouring with k colours:

adjacent vertices must receive different colours

• chromatic number $\chi(G)$:

minimum k so that a vertex-colouring exists

now suppose we want vertices at larger distances (say, up to distance d) to receive different colours as well

can be modelled using the *d***-th power** *G***^{***d***} of a graph** :

- same vertex set as d
- edges between vertices with distance at most d in G

Powers of a graph

• easy:
$$d \ge 2 \implies \chi(G^d) \ge \Delta(G) + 1$$

($\Delta(G)$: maximum degree of G)

• so for most classes of graphs, $\chi(G^d)$ is not bounded

Theorem (Agnarsson & Halldórsson, 2003) there exist functions $C_d(\cdot)$ such that for all graphs *G* and all $d \ge 1$:

 $\chi(G^d) \leq C_d(\operatorname{col}(G)) \cdot \Delta(G)^{\lfloor d/2 \rfloor}$

A variant with exact distances

suppose we only want vertices at distance exactly *d* to have different colours

can be modelled using the exact distance graph $G^{[\sharp d]}$:

- same vertex set as G
- edges between vertices with distance exactly d in G

Exact distance graphs

Colouring at an exact distance

- for even d, for most classes of graphs the chromatic number $\chi(G^{[\sharp d]})$ is not bounded
- but for odd *d*, the situation is quite different

Theorem(Nešetřil & Ossona de Mendez, 2008)d odd, Ga class of graphs with bounded expansion

 $\implies \text{ there exists a constant } N \text{ such that:}$ $\chi(G^{[\sharp d]}) \leq N, \text{ for all } G \in \mathcal{G}$

A very, very special case

Corollary

there exists a constant *C* such that *G* planar $\implies \chi(G^{[\sharp 3]}) \leq C$

- proof of Nešetřil & Ossona de Mendez is long, complicated, and gives little idea what is going on
- until recently, best known bounds on C:

 $6 \leq C \leq 5 \cdot 2^{10,241}$

A very, very simple result

Theorem (vdH, Kierstead & Quiroz, 2016)

• $d \operatorname{odd}$, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d-1}(G)$

by being a bit more careful, we can prove: G planar $\implies \chi(G^{[\sharp 3]}) \le 143$

• we also constructed a planar H with $\chi(H^{[\sharp 3]}) = 7$

A very, very simple result

Theorem (vdH, Kierstead & Quiroz, 2016)

• d odd, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d-1}(G)$

• d even, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d}(G) \cdot \Delta(G)$

Thanks for your attention!

JAN VAN DEN HEUVEL

Department of Mathematics London School of Economics and Political Science

