Generalisations of the 15-Puzzle (Sliding Tokens on Graphs)

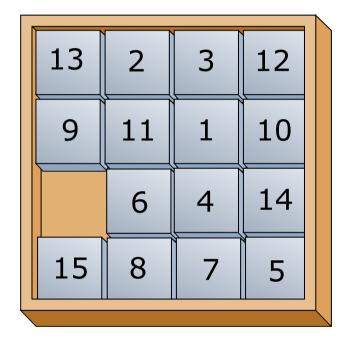
JAN VAN DEN HEUVEL

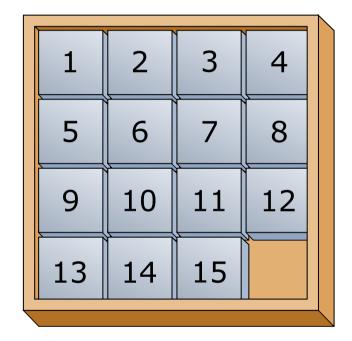
BIRS, Banff, 26 January 2017

Department of Mathematics

London School of Economics and Political Science

A classical puzzle: the 15-Puzzle

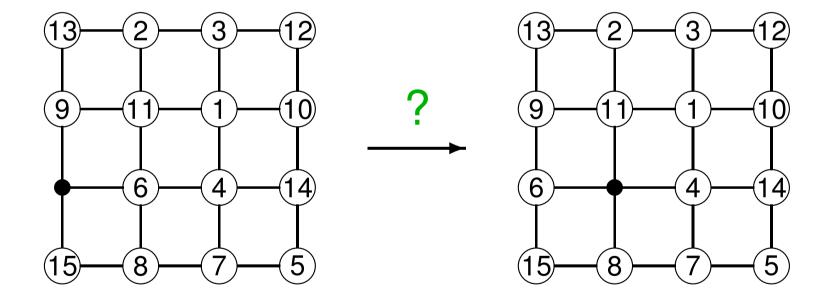




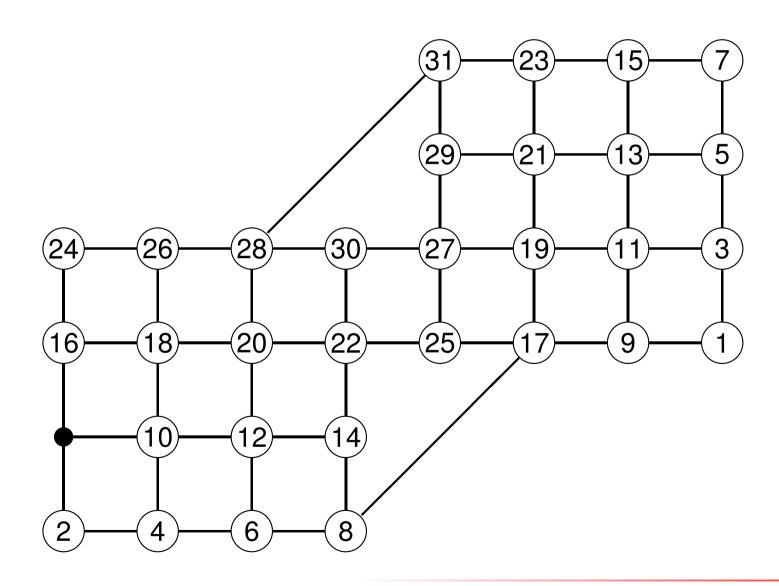
can you always solve it?

Sliding token puzzles

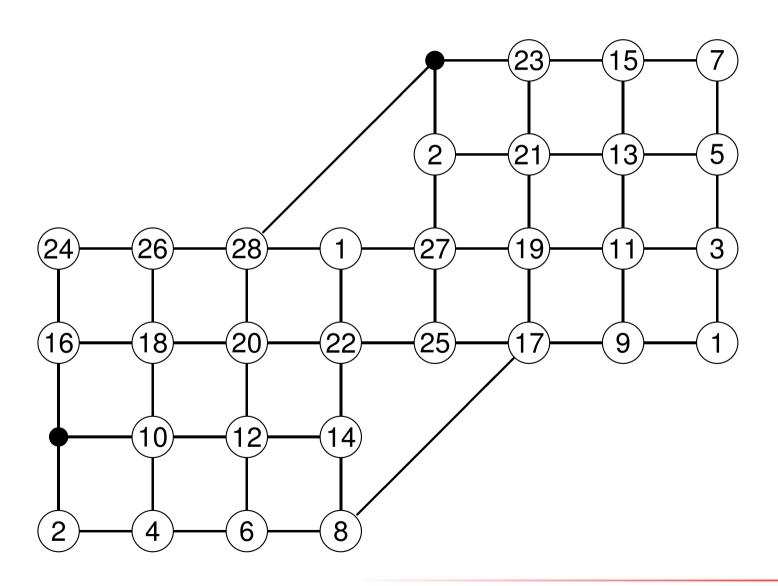
we can interpret the 15-puzzle as a problem involving moving tokens on a given graph:



What if we would play on a different graph?



And maybe more empty spaces and/or repeated tokens?



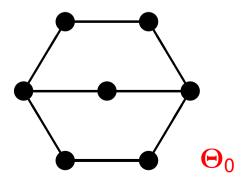
Sliding token puzzles

- for a given graph *G* on *n* vertices, define **puz**(*G*) as the graph that has:
 - nodes: all possible placements of n-1 different tokens on G
 - adjacency: sliding one token along an edge of G
 to an empty vertex
- and our standard decision problems become:
 - \blacksquare are two token configurations in one component of puz(G)?
 - is puz(*G*) connected?

Sliding token puzzles

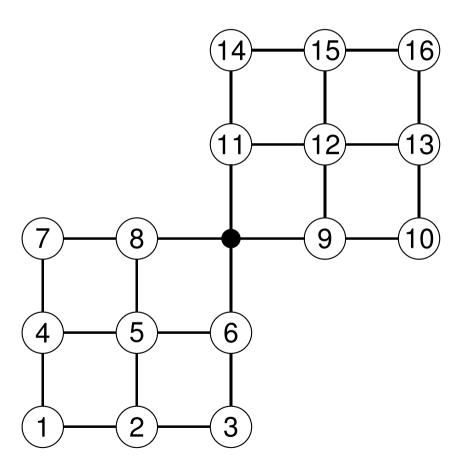
Theorem (Wilson, 1974)

- \blacksquare if G is a 2-connected graph, then puz(G) is connected, except if:
 - G is a cycle on $n \ge 4$ vertices (then puz(G) has (n-2)! components)
 - G is bipartite different from a cycle
 (then puz(G) has 2 components)
 - \blacksquare G is the exceptional graph Θ_0 (puz(Θ_0) has 6 components)



Why does Wilson only consider 2-connected graphs?

 \blacksquare since puz(G) is never connected if G has connectivity below 2:



- what would happen if:
 - \blacksquare we have fewer than n-1 tokens (i.e. more empty vertices)?
 - and/or not all tokens are the same?
- so suppose we have a set (k_1, k_2, \dots, k_p) of labelled tokens
 - \blacksquare meaning: k_1 tokens with label 1, k_2 tokens with label 2, etc.
 - tokens with the same label are indistinguishable
 - we can assume that $k_1 \ge k_2 \ge \cdots \ge k_p$ and their sum is at most n-1
- the corresponding graph of all token configurations on G is denoted by $puz(G; k_1, \ldots, k_p)$

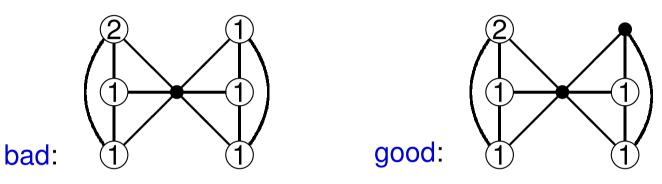
Theorem (Brightwell, vdH & Trakultraipruk, 2013)

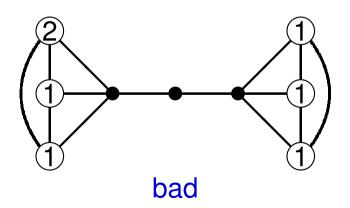
- G a graph on n vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - \blacksquare G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - G is the exceptional graph Θ_0 with token set (2,2,2), (2,2,1,1), (2,1,1,1,1) or (1,1,1,1,1)

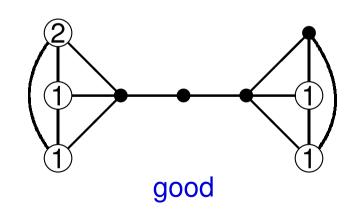
Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- G a graph on n vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - \blacksquare G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - lacksquare is the exceptional graph Θ_0 with some "bad" token sets
 - G has connectivity 1, $p \ge 2$ and there is a "separating path preventing tokens from moving between blocks"

"separating paths" in graphs of connectivity one:







- we can also characterise:
 - given a graph G, token set (k_1, \ldots, k_p) , and two token configurations on G,
 - are the two configurations in the same component of $puz(G; k_1, ..., k_p)$?
- so recognising connectivity properties of $puz(G; k_1, ..., k_p)$ is easy
- can we say something about the number of steps we would need?

The length of sliding token paths

■ SHORTEST-A-TO-B-TOKEN-MOVES

Input: a graph G, a token set (k_1, \ldots, k_p) ,

two token configurations A and B on G,

and a positive integer N

Question: can we go from A to B in at most N steps?

The length of sliding token paths

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n-1 different tokens, SHORTEST-A-TO-B-TOKEN-MOVES is **NP-complete**

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

■ restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P

Theorem (vdH & Trakultraipruk, 2013)

restricted to the case that there is just one special token and all others are the same:

SHORTEST-A-TO-B-TOKEN-MOVES is already NP-complete

Robot motion

the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

- Shortest-Robot-Motion-with-One-Robot is **NP-complete**
- Robot Motion problems on graphs are sliding token problems,
 - with some special tokens (the robots)
 - that have to end in specified positions
 - all other tokens are just obstacles
 - and it is not important where those are at the end