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A classical puzzle: the 15-Puzzle
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can you always solve it?
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Another way to look at the 15-Puzzle

♥15 ♥8 ♥7 ♥5

✈ ♥6 ♥4 ♥14

♥9 ♥11 ♥1 ♥10

♥13 ♥2 ♥3 ♥12

♥13 ♥14 ♥15 ✈

♥9 ♥10 ♥11 ♥12

♥5 ♥6 ♥7 ♥8

♥1 ♥2 ♥3 ♥4

we slide labelled tokens on some graph

and want to go from one configuration to another one
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What if we would play on a different graph?
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And maybe more empty spaces and/or repeated tokens?
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Another moving items game: Rush Hour
TM

can you free the red car?
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And we can make that more challenging . . .

can you make any move with car T?
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Reconfiguration of satisfiability problems

consider some Boolean formula with n variables

e.g.: ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)

whose set of satisfying assignments is

{ (F , F , F), (F , T , F), (F , T , T ), (T , F , F), (T , F , T ) }

which we write as

{ (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1) }
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Reconfiguration of satisfiability problems

consider some Boolean formula with n variables

e.g.: ϕ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)

whose set of satisfying assignments is

{ (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1) }

the allowed transformation is: change one bit x i at the time

natural questions:

given two satisfying assignments, can you go from one to the

other, changing one bit at the time?

is the set of all satisfying assignments connected?
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Reconfiguration of satisfiability problems

for a Boolean formula ϕ, the set of satisfying assignments

is an induced subgraph of the n-dimensional hypercube

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)

corresponds to:
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One more example: recolouring planar graphs

Input : a planar graph G,

and two proper 4-colourings of G

Question: can we change one 4-colouring to the other one,

by recolouring one vertex at the time,

while always maintaining a proper 4-colouring?

sometimes we can:
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One more example: recolouring planar graphs

Input : a planar graph G,

and two proper 4-colourings of G

Question: can we change one 4-colouring to the other one,

by recolouring one vertex at the time,

while always maintaining a proper 4-colouring?

but not always:
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Connections

single-vertex recolouring of graph k -colourings is

related to work in theoretical physics on

Glauber dynamics

of the k -state anti-ferromagnetic Potts model at zero temperature

related to work in theoretical computer science on

Markov chain Monte Carlo methods

for generating random k -colourings

Markov chain Monte Carlo methods

for approximately counting the number of k -colourings
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The Markov chain for k-colourings

define the Markov chain M(G; k) as follows :

the states are all k -colourings of G

transitions from a state (= colouring) α:

choose a vertex v uniformly at random

choose a colour c ∈ {1, . . . , k} uniformly at random

try to recolour vertex v with colour c

if it remains a proper colouring:

=⇒ make this new k -colouring the new state

otherwise: the state remains the same colouring α
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A bit of Markov chain theory

the chain M(G; k) is aperiodic (since Prob(α,α) > 0)

the chain M(G; k) is time-reversible

(since Prob(α, β) = Prob(β, α) for all α, β)

the chain M(G; k) is irreducible ⇐⇒

all k -colourings are connected via single-vertex recolourings

hence if all k -colourings are connected:

M(G; k) is ergodic

with the unique stationary distribution π ≡ 1
/

# k -colourings

The Complexity of Change – Arizona State University, 2 February 2017



A bit of Markov chain theory

this means:

starting at some k -colouring α,

walking through the Markov chain long enough,

the final state can be any k -colouring,

with (almost) equal probability

in other words:

we can sample k -colourings almost uniformly at random

this allows:

finding out how an “average” k -colouring looks like

approximately counting the number of k -colourings
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The main interests for today

how easy or hard is it to decide questions about the

connectedness of configurations with certain allowed

transformations?

in other words:

what is the (computational) complexity of these decision

problems?
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The two kinds of reconfiguration problems

A-TO-B-PATH

Input : some collection of feasible configurations,

some collection of allowed transformations,

and two feasible configurations A,B

Question: can we go from A to B by a sequence of

transformations, so that each intermediate

configuration is feasible as well?

PATH-BETWEEN-ALL-PAIRS

Input : some collection of feasible configurations,

and some collection of allowed transformations

Question: is it possible to do the above for any two feasible

configurations A,B?
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A crash course in complexity theory

classical complexity theory studies the resources

time = number of steps and/or

amount of memory

needed to solve a decision problem for a given input

in terms of the length of the input (in some encoding)
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The complexity classes we need

we say a decision problem is in the class

P: Polynomial-Time

if you are clever, you can find the answer in polynomial time
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The complexity classes we need

we say a decision problem is in the class

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

if the answer is “yes” and you are lucky,

you can discover the “yes” in polynomial time
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The complexity classes we need

we say a decision problem is in the class

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

coNP: complement of Non-Deterministic Polynomial-Time

if the answer is “no” and you are lucky,

you can discover the “no” in polynomial time
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The complexity classes we need

we say a decision problem is in the class

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

coNP: complement of Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

if you are clever, you can find the answer

using a polynomial amount of memory
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The complexity classes we need

we say a decision problem is in the class

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

coNP: complement of Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

NPSPACE: Non-Deterministic Polynomial-Space

if the answer is “yes” and you are lucky, you can

discover the “yes” using a polynomial amount of memory
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

coNP: complement of Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

NPSPACE: Non-Deterministic Polynomial-Space

easy: P ⊆
NP

coNP
⊆ PSPACE ⊆ NPSPACE

and in fact: PSPACE = NPSPACE (Savitch, 1970)
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The complexity classes we need

P: Polynomial-Time

NP: Non-Deterministic Polynomial-Time

coNP: complement of Non-Deterministic Polynomial-Time

PSPACE: Polynomial-Space

NPSPACE: Non-Deterministic Polynomial-Space

finally:

a problem is complete in a class if it is the “hardest type” of

problems in that class
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How to describe a problem?

when being given a particular reconfiguration problem,

we don’t expect to being told an exhaustive list of all feasible

configurations and/or an exhaustive list of all related pairs

since then the input would be so large

that almost any algorithm would be in P

instead we assume we are told:

a “description” of all feasible configurations,

and a “description” of the allowed transformations
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How to describe a problem?

when being given a particular reconfiguration problem,

we don’t expect to being told an exhaustive list of all feasible

configurations and/or an exhaustive list of all related pairs

since then the input would be so large

that almost any algorithm would be in P

hence:

we assume the input is in the form of two algorithms to decide

if a possible configuration is feasible,

and if a possible transformation is allowed

and we assume these algorithms give the correct answer

in polynomial time
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The complexity of all reconfiguration problems

under these assumptions

A-TO-B-PATH and PATH-BETWEEN-ALL-PAIRS are in NPSPACE

(and hence in PSPACE)

suppose we want to decide if we can go from A to B

starting from A, “guess” a next configuration A1

check that A1 is feasible

check that going from A to A1 is an allowed transformation

if A1 is a valid next configuration,

“forget” A and replace it by A1

repeat those steps until the target configuration B is reached
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Deciding satisfiability problems

Schaefer (1978) considered “types” of Boolean formulas that can

be defined using certain logical relations

depending on what logical relations are allowed:

the decision problem whether or not a Boolean formula is

satisfiable is always either in P or NP-complete
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Deciding satisfiability problems

Schaefer (1978) considered “types” of Boolean formulas that can

be defined using certain logical relations

Gopalan, Kolaitis, Maneva & Papadimitriou (2009)

tried to use the same set-up to prove results on:

given the type of logical relations allowed

what is the complexity of deciding A-TO-B-PATH for two

satisfying assignments of some Boolean formula?

and what is the complexity of PATH-BETWEEN-ALL-PAIRS

(i.e. when is the set of satisfying assignments a connected

subgraph of the hypercube)?
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Reconfiguration of satisfiability problems

Theorem (Gopalan, Kolaitis, Maneva & Papadimitriou, 2009)

for Boolean formulas formed from some fixed set of logical relations:

A-TO-B-PATH for two satisfying assignments of some Boolean

formula is either in P or PSPACE-complete

the boundary between the two classes is different from the

boundary between P and NP-complete for satisfiability

The Complexity of Change – Arizona State University, 2 February 2017



Reconfiguration of satisfiability problems

Theorem (Gopalan, Kolaitis, Maneva & Papadimitriou, 2009)

for Boolean formulas formed from some fixed set of logical relations:

A-TO-B-PATH for two satisfying assignments of some Boolean

formula is either in P or PSPACE-complete

for the cases that A-TO-B-PATH is PSPACE-complete:

PATH-BETWEEN-ALL-PAIRS is also PSPACE-complete

in the cases that A-TO-B-PATH is in P:

PATH-BETWEEN-ALL-PAIRS can be in P, in coNP, or

coNP-complete

the boundaries between the classes are far from clear
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Reconfiguration of graph colourings

k -COLOUR-α-TO-β-PATH

Input : a graph G,

and two k -colourings α and β of G

Question: can we go from α to β

by recolouring one vertex at the time,

always maintaining a proper k -colouring?

k -COLOUR-PATH-BETWEEN-ALL-PAIRS

Input : a graph G

Question: can we go between any two k -colourings of G

in the manner above?
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Reconfiguration of graph colourings

Recall

if k = 2, then deciding if a graph is k -colourable is in P

a 2-colourable graph is also called bipartite

if k ≥ 3, then deciding if a graph is k -colourable is NP-complete

this means that if k ≥ 3,

for k -COLOUR-PATH-BETWEEN-ALL-PAIRS we already have a

problem to check if at least one colouring exists!
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Reconfiguration of graph colourings

Recall

if k = 2, then deciding if a graph is k -colourable is in P

if k ≥ 3, then deciding if a graph is k -colourable is NP-complete

Theorem

if k = 2, 3, then k -COLOUR-α-TO-β-PATH is in P

(Cereceda, vdH & Johnson, 2011)

if k ≥ 4, then k -COLOUR-α-TO-β-PATH is PSPACE-complete

(Bonsma, Cereceda, 2009)
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Reconfiguration of graph colourings

Completely trivial

restricted to bipartite, planar graphs:

for any k ≥ 2, deciding if a graph is k -colourable is in P:

“print(yes)”
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Reconfiguration of graph colourings

Completely trivial

restricted to bipartite, planar graphs:

for any k ≥ 2, deciding if a graph is k -colourable is in P

Theorem

restricted to bipartite, planar graphs:

if k = 2, 3, then k -COLOUR-α-TO-β-PATH is in P

(Cereceda, vdH & Johnson, 2011)

if k = 4, then k -COLOUR-α-TO-β-PATH is PSPACE-complete

(Bonsma, Cereceda, 2009)

if k ≥ 5, then k -COLOUR-α-TO-β-PATH is in P (“print(yes)”)
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Reconfiguration of graph colourings

Theorem

restricted to bipartite graphs:

if k = 2, then k -COLOUR-PATH-BETWEEN-ALL-PAIRS is in P:

“if no edges then print(yes), else print(no)”

if k = 3,

then k -COLOUR-PATH-BETWEEN-ALL-PAIRS is coNP-complete

(Cereceda, vdH & Johnson, 2009)

if k ≥ 4, then the complexity of

k -COLOUR-PATH-BETWEEN-ALL-PAIRS is unknown

The Complexity of Change – Arizona State University, 2 February 2017



The case k = 3 for bipartite graphs

the smallest bipartite graph for which not all 3-colourings are

connected is the 6-cycle C6 :

❆
❆❆

✁
✁✁

✁
✁✁

❆
❆❆

t1

t
2

t
3

t1

t2t3

✟✟❍
❍

❅
❅❅
�

��

Theorem (Cereceda, vdH & Johnson, 2011)

G is a bipartite graph:

not all 3-colourings are connected ⇐⇒ G “contains C6”
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Folding

fold of two vertices at distance 2:

✉

✉ ✉

✉

✉

❍❍ ��

✁✁ ❅❅
PPP

❍❍ ��
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PPP

❇
❇
❇❇

✂
✂
✂✂ ✲

G foldable to H: sequence of folds changes G to H

Theorem (Cook & Evans, 1979)

G a connected graph:

min { k | G can be coloured with k colours }

= min { k | G is foldable to complete graph K k }
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Folding and 3-colouring

fold of two vertices at distance 2:

G foldable to H: sequence of folds changes G to H

Theorem (Cereceda, vdH & Johnson, 2011)

G a connected, bipartite graph:

not all 3-colourings are connected ⇐⇒ G is foldable to C6

deciding if G is foldable to C6 is NP-complete
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Reconfiguration of graph colourings

Theorem

restricted to bipartite, planar graphs:

if k = 2, 3,

then k -COLOUR-PATH-BETWEEN-ALL-PAIRS is in P

(Cereceda, vdH & Johnson, 2009)

if k = 4, then the complexity of

k -COLOUR-PATH-BETWEEN-ALL-PAIRS is unknown

if k ≥ 5,

then k -COLOUR-PATH-BETWEEN-ALL-PAIRS is in P:

“print(yes)”
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Sliding token puzzles

as seen already, we can interpret the 15-puzzle as a problem

involving moving tokens on a given graph:

❧15 ❧8 ❧7 ❧5

✉ ❧6 ❧4 ❧14

❧9 ❧11 ❧1 ❧10

❧13 ❧2 ❧3 ❧12

✲
?

❧15 ❧8 ❧7 ❧5

✉❧6 ❧4 ❧14

❧9 ❧11 ❧1 ❧10

❧13 ❧2 ❧3 ❧12
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Sliding token puzzles

so what happens if we would play this on other graphs?

for a given graph G on n vertices,

define puz(G) as the graph that has:

nodes: all possible placements of n − 1 tokens on G

adjacency: sliding one token along an edge of G

to an empty vertex

and our standard decision problems become:

are two token configurations in one component of puz(G)?

is puz(G) connected?
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Sliding token puzzles

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

G is a cycle on n ≥ 4 vertices

(then puz(G) has (n − 2)! components)

G is bipartite different from a cycle

(then puz(G) has 2 components)

G is the exceptional graph Θ0 (puz(Θ0) has 6 components)

✈ ✈

✈ ✈ ✈

✈ ✈

❚
❚❚

✔
✔✔

✔
✔✔

❚
❚❚

Θ0

The Complexity of Change – Arizona State University, 2 February 2017



Why does Wilson only consider 2-connected graphs?

since puz(G) is never connected if G has connectivity below 2:

♥1 ♥2 ♥3

♥4 ♥5 ♥6

♥7 ♥8 ✈ ♥9 ♥10

♥11 ♥12 ♥13

♥14 ♥15 ♥16
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Generalised sliding token puzzles

what would happen if:

we have fewer than n − 1 tokens (i.e. more empty vertices)?

and/or not all tokens are the same?

so suppose we have a set (k1, k2, . . . , kp) of labelled tokens

meaning: k1 tokens with label 1, k2 tokens with label 2, etc.

tokens with the same label are indistinguishable

we can assume that k1 ≥ k2 ≥ · · · ≥ kp

and their sum is at most n − 1

the corresponding graph of all token configurations on G is

denoted by puz(G; k1, . . . , kp)
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

G is the exceptional graph Θ0 with token set (2, 2, 2),

(2, 2, 1, 1), (2, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1)

s s
s s s
s s

❚❚ ✔✔
✔✔ ❚❚
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

G is the exceptional graph Θ0 with some “bad” token sets

G has connectivity 1, p ≥ 2 and there is a “separating path

preventing tokens from moving between blocks”
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Generalised sliding token puzzles

“separating paths” in graphs of connectivity one:
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Generalised sliding token puzzles

we can also characterise:

given a graph G, token set (k1, . . . , kp),

and two token configurations on G,

are the two configurations in the same component of

puz(G; k1, . . . , kp)?

so recognising connectivity properties of puz(G; k1, . . . , kp) is

easy

so can we say something about the number of steps we would

need?
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The length of sliding token paths

SHORTEST-A-TO-B-TOKEN-MOVES

Input : a graph G, a token set (k1, . . . , kp),

two token configurations A and B on G,

and a positive integer N

Question: can we go from A to B in at most N steps?
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The length of sliding token paths

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n − 1 different tokens,

SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P

Theorem (vdH & Trakultraipruk, 2013)

restricted to the case that there is just one special token

and all others are the same:

SHORTEST-A-TO-B-TOKEN-MOVES is already NP-complete
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Robot motion

the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT is NP-complete

Robot Motion problems on graphs are sliding token problems,

with some special tokens (the robots)

that have to end in specified positions

all other tokens are just obstacles

and it is not important where those are at the end
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A final puzzle: Rush Hour
TM

RUSH-HOUR

Input : some rectangular board,

a configuration of cars on that board,

and one special car

Question: is it possible to get the special car moving?
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A final puzzle: Rush Hour
TM

RUSH-HOUR

Input : some rectangular board,

a configuration of cars on that board,

and one special car

Question: is it possible to get the special car moving?

Theorem

RUSH-HOUR is PSPACE-complete (Flake & Baum, 2002)

RUSH-HOUR remains PSPACE-complete

even if all cars have length two (Tromp & Cilibrasi, 2005)
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A final puzzle: Rush Hour
TM

what is the complexity if all cars have length one?

i.e. each car is a 1 × 1 block,

but can move in only one direction

✻

❄

or ✛ ✲
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Can you move your city car out of the garage?

your

car
✲✛✻ ✻ ✻ ✻

❄ ❄ ❄ ❄

✲✛ ✻ ✻
❄ ❄

✲ ✲✛ ✛

✻

✻

✻

❄

❄

❄
✲ ✲✛ ✛ ✻

❄

✻
❄

✲ ✲✛ ✛

✲ ✲ ✲✛ ✛ ✛ ✻

✻

❄

❄
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