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The basics of graph colouring

vertex-colouring with k colours:

adjacent vertices must receive different colours

chromatic number χ(G) :

minimum k such that a vertex-colouring exists
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Some essential graph parameters

δ(G) : minimum vertex degree

∆(G) : maximum vertex degree

G is k -degenerate: every subgraph of G has

minimum degree at most k

equivalent:

there is an ordering L of the vertices of G , such that

every vertex has at most k neighbours that come earlier

in the ordering

t t t t t t t t t t t t t L
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Another way to look at vertex-colouring

vertex-colouring:

vertices at distance one must receive different colours

now suppose we want vertices at larger distances

( say, up to distance d ) to receive different colours as well

can be modelled using the d-th power Gd of a graph:

same vertex set as G

edges between vertices with distance at most d in G
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Powers of a graph
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Colouring powers of a graph

easy facts

d ≥ 2 =⇒ χ(Gd) ≥ ∆(G) + 1

and χ(Gd) ≤ 1 +

d−1
∑

i = 0

∆(G) (∆(G) − 1)i

for connected graphs, we have equality of the upper bound

only if

any d : odd cycles C2d+1

d = 2 : C5 and two or three more graphs

( including Petersen graph )
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The square of k-degenerate graphs

fairly easy

G k-degenerate

=⇒ G2 is
(

(2 k − 1)∆(G)
)

-degenerate

so

G planar =⇒ χ(G2) ≤ 9∆(G) + 1
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The square of planar graphs

Conjecture ( Wegner, 1977 )

G planar

=⇒ χ(G2) ≤















7, if ∆(G) = 3

∆(G) + 5, if 4 ≤ ∆(G) ≤ 7
⌊
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bounds would be best possible
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case ∆(G) = 2 k ≥ 8 :
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Towards Wegner’s Conjecture

G planar =⇒

χ(G2) ≤ 8∆(G) − 22 ( Jonas, PhD, 1993 )

χ(G2) ≤ 3∆(G) + 5 ( Wong, MSc, 1996 )

χ(G2) ≤ 2∆(G) + 25 ( vdH & McGuinness, 2003 )

χ(G2) ≤ 9
/

5∆(G) + 1 ( for ∆(G) ≥ 47 )

( Borodin, Broersma, Glebov & vdH, 2001 )

χ(G2) ≤ 5
/

3∆(G) + 24 ( for ∆(G) ≥ 241 )

( Molloy & Salavatipour, 2005 )
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Towards Wegner’s Conjecture

Theorem ( Havet, vdH, McDiarmid & Reed, 2008+ )

G planar =⇒ χ(G2) ≤
(

3
/

2 + ε
)

∆(G)

( ε ↓ 0 for ∆(G) → ∞ )

Theorem ( Amini, Esperet & vdH, 2013 )

G embeddable on a fixed surface S

=⇒ χ(G2) ≤
(

3
/

2 + ε
)

∆(G) ( ∆(G) → ∞ )

=⇒ clique number ω(G2) ≤ 3
/

2∆(G) + C
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What about distances larger than 2 ?

easy upper bound

χ(Gd) ≤ 1 +

d−1
∑

i = 0

∆(G) (∆(G) − 1)i = Ω(∆(G)d)

Theorem ( Agnarsson & Halldórsson, 2003 )

G k-degenerate =⇒ χ(Gd) ≤ ck,d ∆(G)
⌊d/2⌋
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Colouring the cube of planar graphs

so there is some constant c3 such that:

G planar =⇒ χ(G3) ≤ c3 ∆(G) + C

but what is the best c3 ?

we only know: 9
/

2 ≤ c3 ≤ 45

and what about distances d > 3 ?
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A variant with exact distances

suppose we only want

vertices at distance exactly d to have different colours

can be modelled using the exact distance graph G
[♯d]

:

same vertex set as G

edges between vertices with distance exactly d in G
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Exact distance graphs
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Colouring at an exact distance

for even d , for most classes of graphs

the chromatic number χ(G
[♯d]

) is not bounded

but for odd d , the situation is quite different

Theorem ( Nešetřil & Ossona de Mendez, 2008 )

G a class of graphs with bounded expansion,

d odd

=⇒ there exists a constant NG,d such that:

for all G ∈ G : χ(G
[♯d]

) ≤ NG,d
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A very, very special case

the class of planar graphs has bounded expansion

so . . .
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A very, very special case

Corollary

there exists a constant C such that

G planar =⇒ χ(G
[♯3]

) ≤ C

proof of Nešetřil & Ossona de Mendez is long,

complicated, and gives little idea what is going on

G
[♯3]

can be very dense for planar G

there is no bound on the list-chromatic number of G
[♯3]

until recently, best known bounds on C :

6 ≤ C ≤ 5 · 210,241
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A very, very simple result

Theorem ( vdH, Kierstead & Quiroz, 2016 )

d odd, then for every graph G :

χ(G
[♯d]

) ≤ wcol2d−1(G)

the weak d-colouring number wcold(G) is a

generalisation of degeneracy
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The normal colouring number

let L be a linear ordering of the vertices of a graph G

for a vertex y ∈ V(G),

let S(L, y) be the set of neighbours u of y with u <L y

t t t t t t t t t t t t t

yu

then the colouring number col(G) is defined as

col(G) = min
L

max
y∈V(G)

|S(L, y)| + 1

note: G k-degenerate =⇒ col(G) ≤ k + 1
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Generalising the colouring number

the set S(L, y) can be defined as

“vertices u <L y for which there is a uy-path of length 1”

t t t t t t t t t t t t t

y

what would happen if we allow longer paths ?
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The strong colouring number

a strong uy-path has all internal vertices larger than y

t t t t t t t t t t t t t

yu

let Sd(L, y) be the set of vertices u <L y for which there

exists a strong uy-path with length at most d

then the strong d-colouring number scold(G) is defined

as

scold(G) = min
L

max
y∈V(G)

|Sd(L, y)| + 1
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The weak colouring number

a weak uy-path has all internal vertices larger than u

t t t t t t t t t t t t t

yu

let W d(L, y) be the set of vertices u <L y for which there

exists a weak uy-path of length at most d

then the weak d-colouring number scold(G) is defined

as

wcold(G) = min
L

max
y∈V(G)

|W d(L, y)| + 1
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Some basic facts of these generalised colouring numbers

by definition: col(G) = scol1(G) = wcol1(G)

obviously: scold(G) ≤ wcold(G)

in fact, also: wcold(G) ≤
(

scold(G)
)d

hence:

if one of scold , wcold , is bounded on some class of graphs,

then the other one is also bounded on that class
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Not so basic fact

again straightforward from the definition:

scol1(G) ≤ scol2(G) ≤ scol3(G) ≤ . . . ≤ scol∞(G)

(where the “∞ ” means “any length strong path allowed”)

Property ( Grohe et al., 2014 )

scol∞(G) = treewidth(G) + 1
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Back to classes with bounded expansion

Definition ( Nešetřil & Ossona de Mendez )

a class of graphs G has bounded expansion

if there exist constants c1, c2, . . . , such that

for all G ∈ G and for all d = 1, 2, . . . we have:

for all minors H of G formed by contracting

connected subgraphs with radius at most d :

|E(H)| ≤ cd · |V (H)|

generalises classes with “bounded treewidth”, “bounded

genus”, “forbidden minors”, “bounded cop number”,

etc., etc.
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Back to classes with bounded expansion

Equivalent definitions ( Zhu, 2009 )

a class of graphs G has bounded expansion if

there exist constants c′
1, c′

2, . . . such that

for all G ∈ G and for all d = 1, 2, . . . :

scold(G) ≤ c′
d

or

there exist constants c′′
1 , c′′

2 , . . . such that

for all G ∈ G and for all d = 1, 2, . . . :

wcold(G) ≤ c′′
d
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Back to colouring exact distance graphs

time to prove that for any graph G :

χ(G
[♯3]

) ≤ wcol5(G)

recall the definition of wcol5(G) :

wcol5(G) = min
L

max
y∈V(G)

|W 5(L, y)| + 1

so let’s choose an ordering L5 of the vertices such that

for all y : |W 5(L5, y)| + 1 ≤ wcol5(G)
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Back to colouring exact distance graphs

so let’s choose an ordering L5 of the vertices such that

for all y : |W 5(L5, y)| + 1 ≤ wcol5(G)

stage 1

going along the ordering L5 , give every vertex y

a colour c(y) different from the vertices in W 5(L5, y)

requires at most wcol5(G) colours
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Back to colouring exact distance graphs

stage 1

going along the ordering L5 , give every vertex y

a colour c(y) different from the vertices in W 5(L5, y)

stage 2

for a vertex y , define N[y ] = N(y) ∪ {y}

and let µ(y) be the left-most vertex in N[y ]

( according to the ordering L5 )

give every vertex y the colour C(y) = c
(

µ(y)
)

Claim: the colouring C is a proper colouring of G
[♯3]

�
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What can we say about wcold(G)?

Theorem ( vdH, Kierstead & Quiroz, 2016 )

d odd, then for every graph G :

χ(G
[♯d]

) ≤ wcol2d−1(G)

Theorem ( vdH, Ossona de Mendez, Quiroz, Rabinovich & Siebertz,

2016 )

bounds on scold(G) and wcold(G) for all kinds of graphs

( bounded treewidth, bounded genus, forbidden minor, etc. )

in particular:

G planar =⇒ wcold(G) ≤

(

d + 2

2

)

· (2d + 1)
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Bounds on χ(G[♯3]) for planar graphs

Corollary ( vdH, Kierstead & Quiroz, 2016 )

G planar =⇒ χ(G
[♯3]

) ≤ wcol5(G) ≤ 231

by being a bit more careful, we can prove:

G planar =⇒ χ(G
[♯3]

) ≤ 143

we also constructed a planar H with χ(H [♯3]) = 7
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Some final bits and bobs

since a couple of weeks we know

Theorem

( Bousquet, Esperet, Harutyunyan, de Joannis de Verclos, Pastor )

max { χ(G
[♯d]

) | G planar } −→ ∞ if d −→ ∞
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Some final bits and bobs

Theorem ( vdH, Kierstead & Quiroz, 2016 )

d odd, then for every graph G :

χ(G
[♯d]

) ≤ wcol2d−1(G)

d even, then for every graph G :

χ(G
[♯d]

) ≤ wcol2d(G) · ∆(G)
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Some final bits and bobs

Theorem ( vdH, Kierstead & Quiroz, 2016 )

d even, then for every graph G :

χ(G
[♯d]

) ≤ wcol2d(G) · ∆(G)

Corollary

G a class of graphs with bounded expansion,

d even

=⇒ there exists a constant N ′
G,d such that:

for all G ∈ G : χ(G
[♯d]

) ≤ N′
G,d · ∆(G)

Graph Colouring with Distances – Monash University – 13 March 2017



Thanks for your attention!
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