Graph Colouring with Distances

JAN VAN DEN HEUVEL

Department of Mathematics London School of Economics and Political Science

The basics of graph colouring

vertex-colouring with k colours:

adjacent vertices must receive different colours

• chromatic number $\chi(G)$:

minimum k such that a vertex-colouring exists

Some essential graph parameters

- $\delta(G)$: minimum vertex degree
- $\Delta(G): maximum vertex degree$
- G is k-degenerate: every subgraph of G has minimum degree at most k

equivalent:

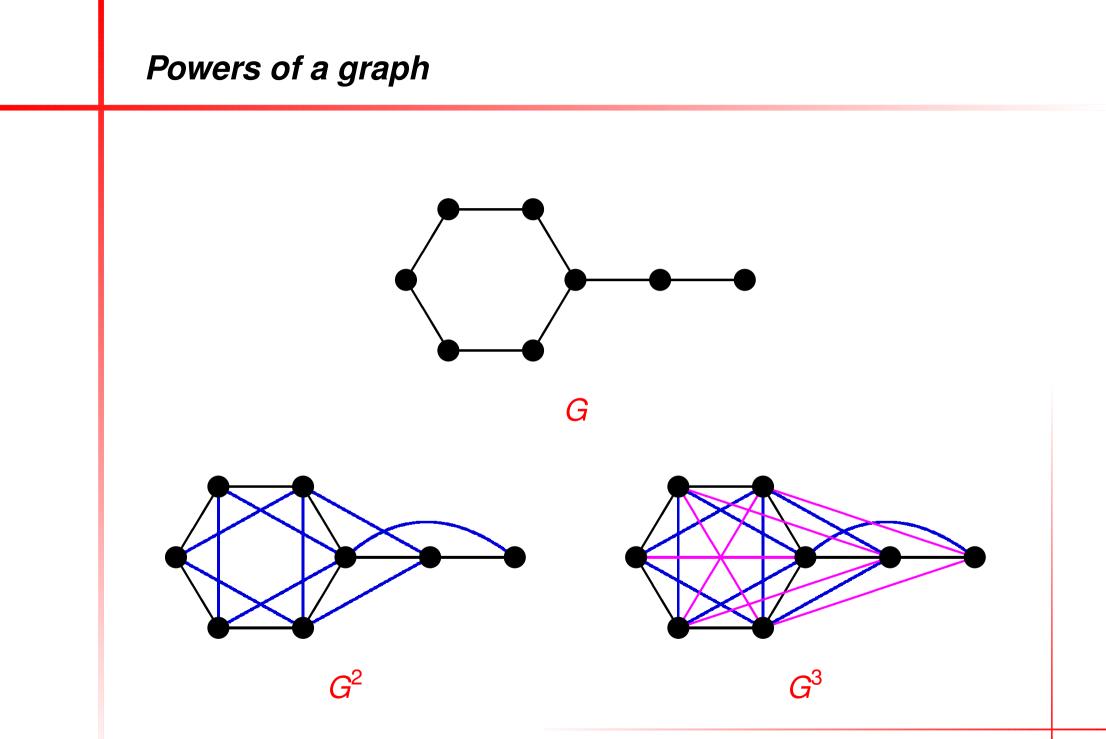
there is an ordering L of the vertices of G, such that every vertex has at most k neighbours that come earlier in the ordering

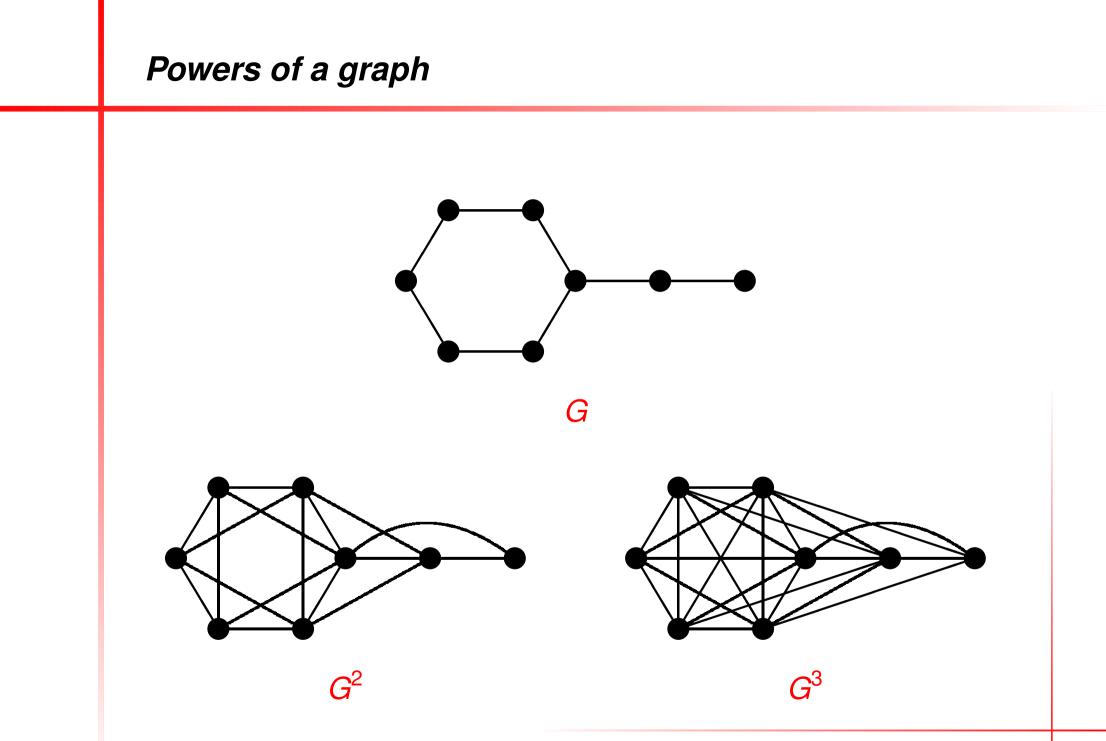
Another way to look at vertex-colouring

vertex-colouring:

vertices at distance one must receive different colours

- now suppose we want vertices at larger distances (say, up to distance d) to receive different colours as well
- can be modelled using the *d*-th power *G^d* of a graph:
 - same vertex set as G
 - edges between vertices with distance at most d in G





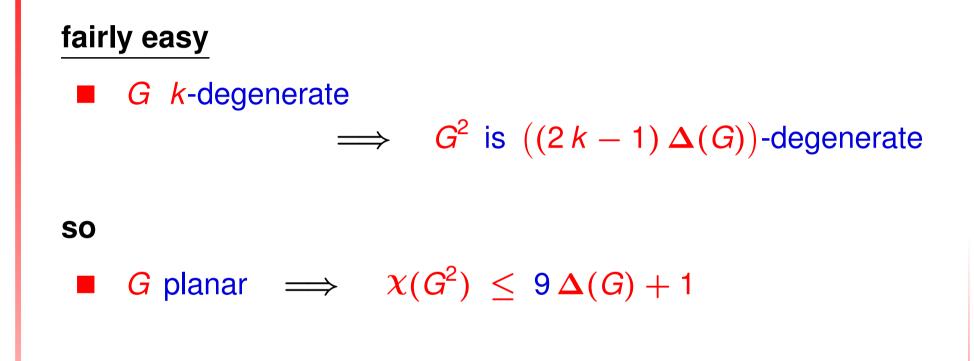
Colouring powers of a graph

easy facts $d \ge 2 \implies \chi(G^d) \ge \Delta(G) + 1$ and $\chi(G^d) \le 1 + \sum_{i=0}^{d-1} \Delta(G) (\Delta(G) - 1)^i$

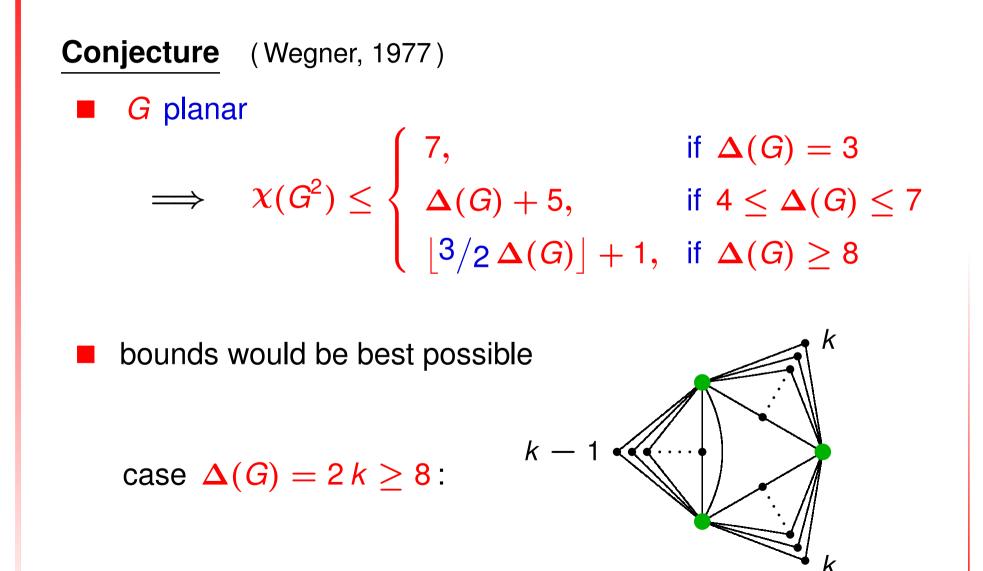
- for connected graphs, we have equality of the upper bound only if
 - any d: odd cycles C_{2d+1}
 - d = 2: C_5 and two or three more graphs

(including Petersen graph)

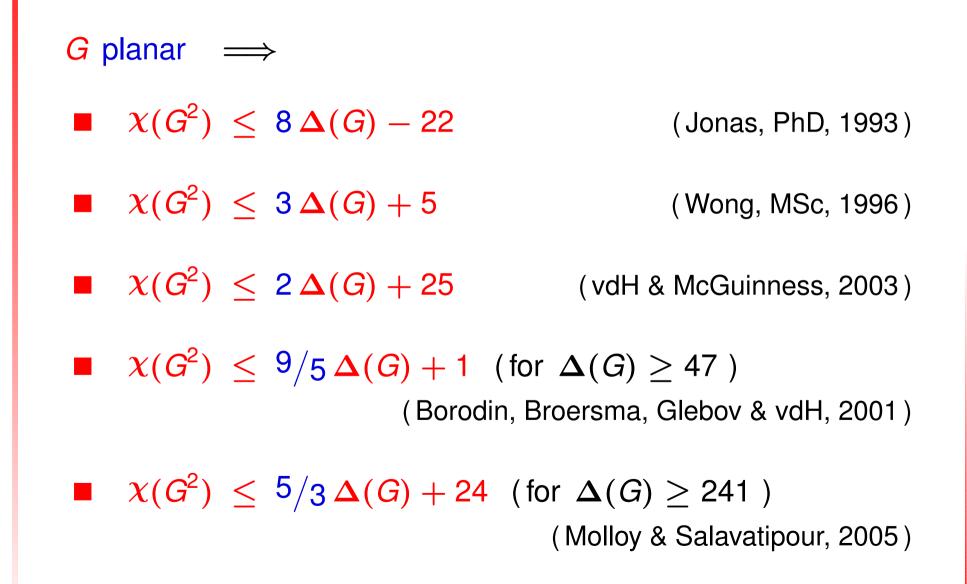
The square of k-degenerate graphs



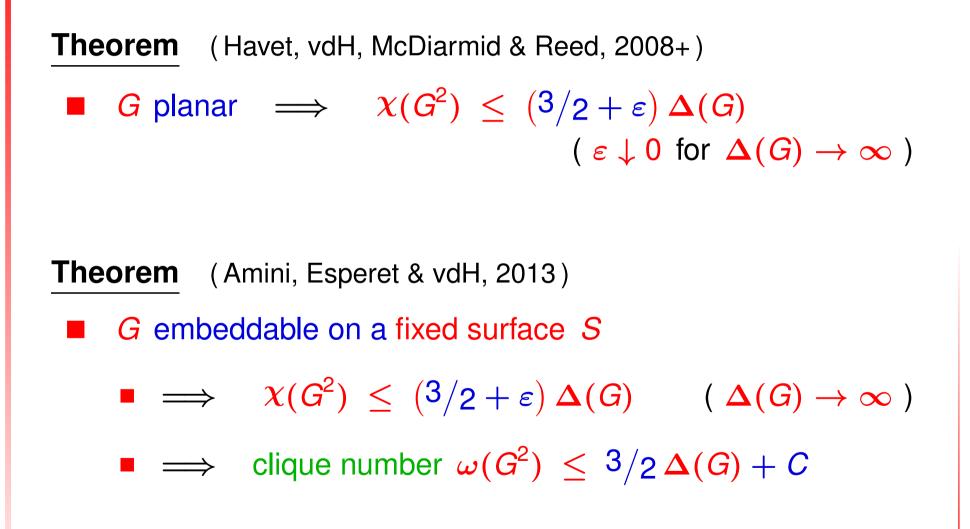
The square of planar graphs



Towards Wegner's Conjecture



Towards Wegner's Conjecture



What about distances larger than 2?

easy upper bound

Theorem (Agnarsson & Halldórsson, 2003)

 $\blacksquare \quad G \quad k \text{-degenerate} \quad \Longrightarrow \quad \chi(G^d) \leq c_{k,d} \Delta(G)^{\lfloor d/2 \rfloor}$

Colouring the cube of planar graphs

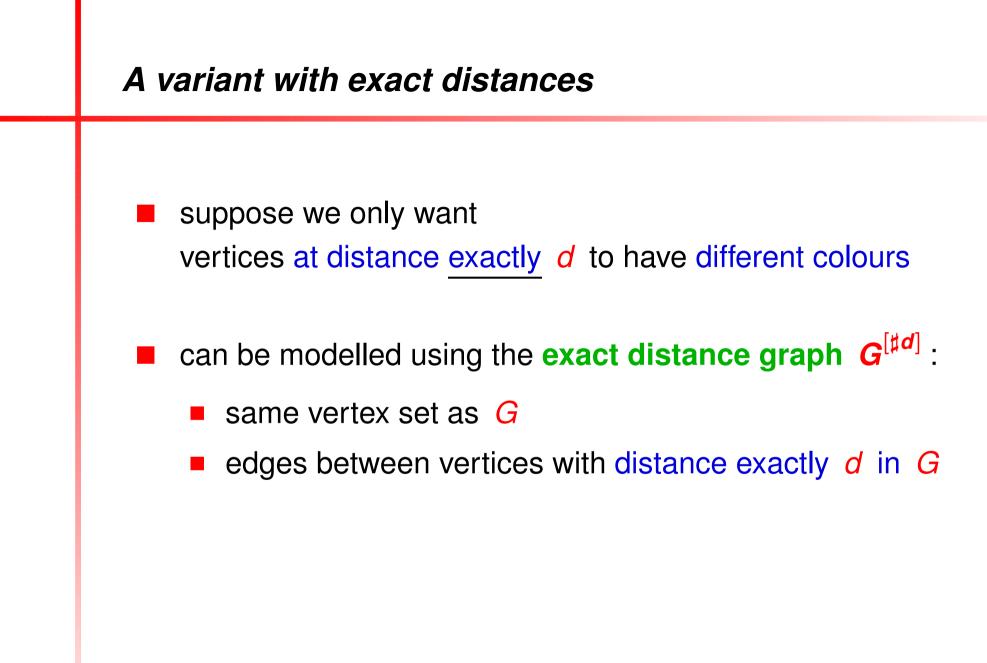
so there is some constant c_3 such that:

 $G \text{ planar} \implies \chi(G^3) \leq c_3 \Delta(G) + C$

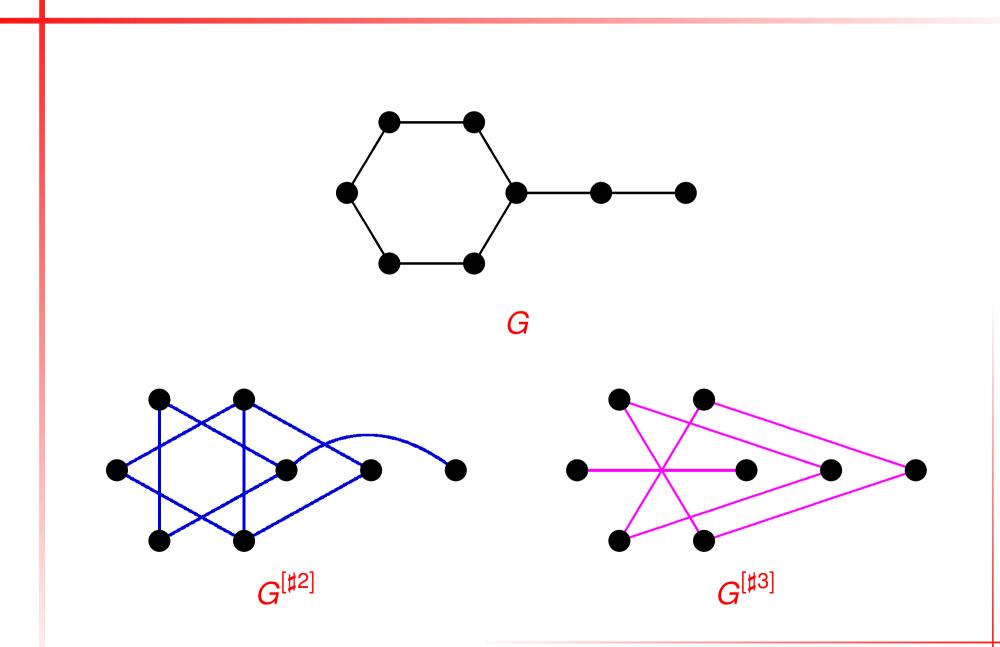
• but what is the best c_3 ?

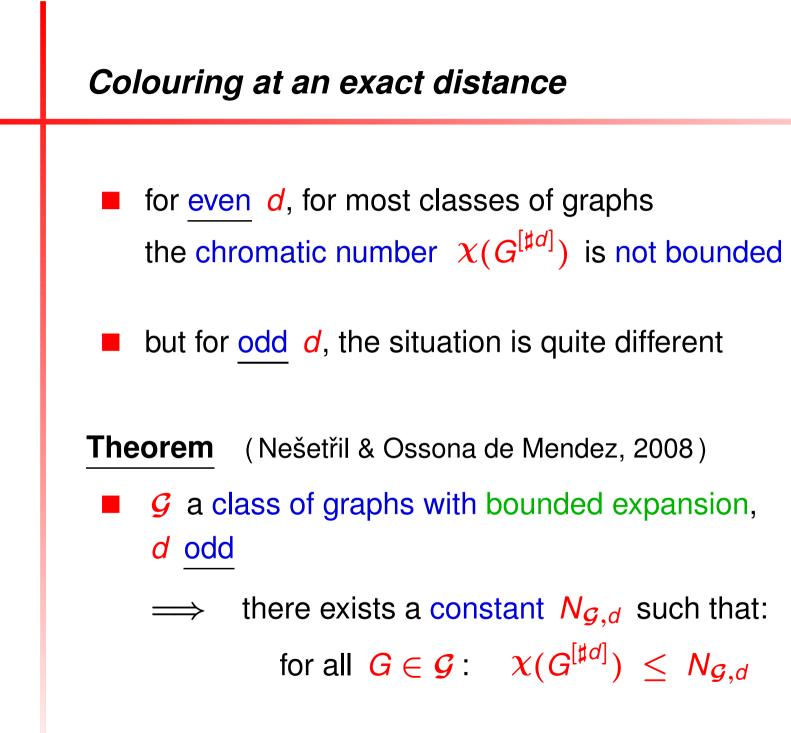
• we only know: $9/2 \leq c_3 \leq 45$

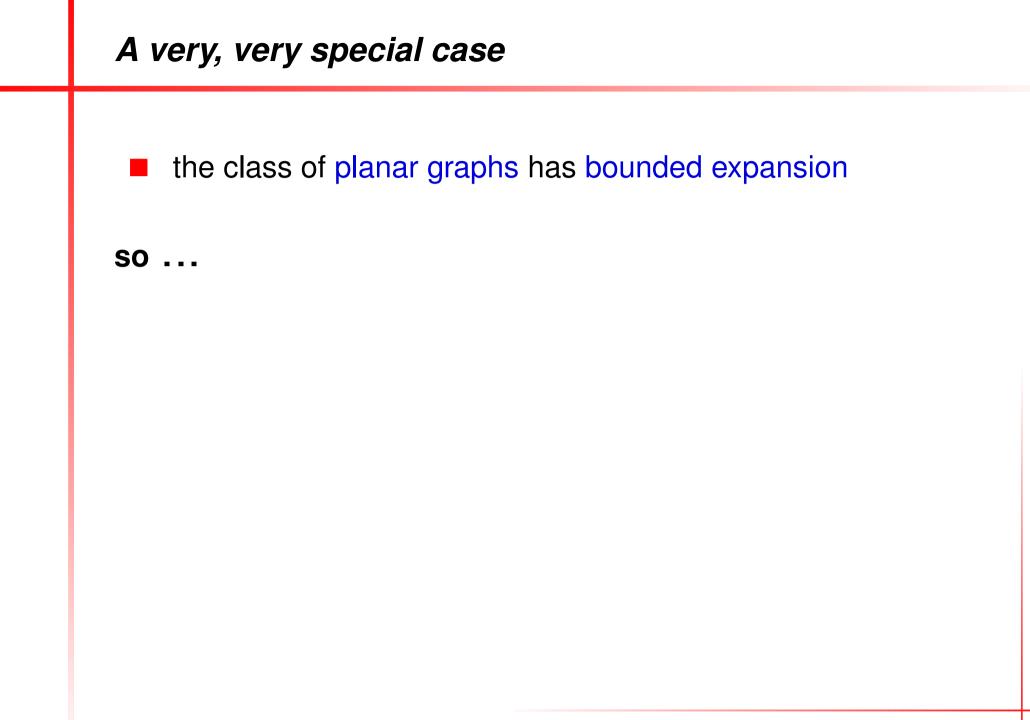
and what about distances d > 3?



Exact distance graphs







A very, very special case

Corollary

• there exists a constant *C* such that *G* planar $\implies \chi(G^{[\sharp 3]}) \leq C$

- proof of Nešetřil & Ossona de Mendez is long, complicated, and gives little idea what is going on
 - $G^{[\sharp 3]}$ can be very dense for planar G
 - there is no bound on the list-chromatic number of $G^{[\sharp 3]}$
 - until recently, best known bounds on C:
 $6 \leq C \leq 5 \cdot 2^{10,241}$

A very, very simple result

Theorem (vdH, Kierstead & Quiroz, 2016)
d odd, then for every graph G:

 $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d-1}(G)$

the weak d-colouring number wcol_d(G) is a generalisation of degeneracy

The normal colouring number

Iet L be a linear ordering of the vertices of a graph G

for a vertex $y \in V(G)$,

let S(L, y) be the set of neighbours u of y with $u <_L y$

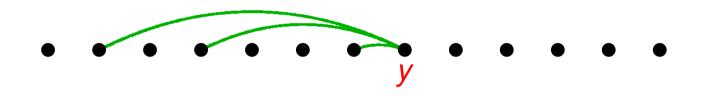
then the **colouring number col**(**G**) is defined as

$$\operatorname{col}(G) = \min_{L} \max_{y \in V(G)} |S(L, y)| + 1$$

note: G k-degenerate \implies col(G) \leq k + 1

• the set S(L, y) can be defined as

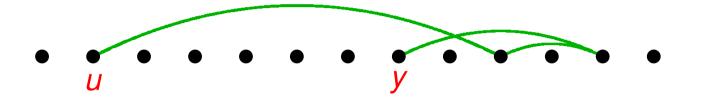
"vertices $u <_L y$ for which there is a uy-path of length 1"



what would happen if we allow longer paths ?

The strong colouring number

a strong uy-path has all internal vertices larger than y



- let S_d(L, y) be the set of vertices u <_L y for which there exists a strong uy-path with length at most d
 - then the strong d-colouring number scol_d(G) is defined as

$$\operatorname{scol}_d(G) = \min_{L} \max_{y \in V(G)} |S_d(L, y)| + 1$$

The weak colouring number

a weak uy-path has all internal vertices larger than u

- let W_d(L, y) be the set of vertices u <_L y for which there exists a weak uy-path of length at most d
- then the weak d-colouring number scol_d(G) is defined as

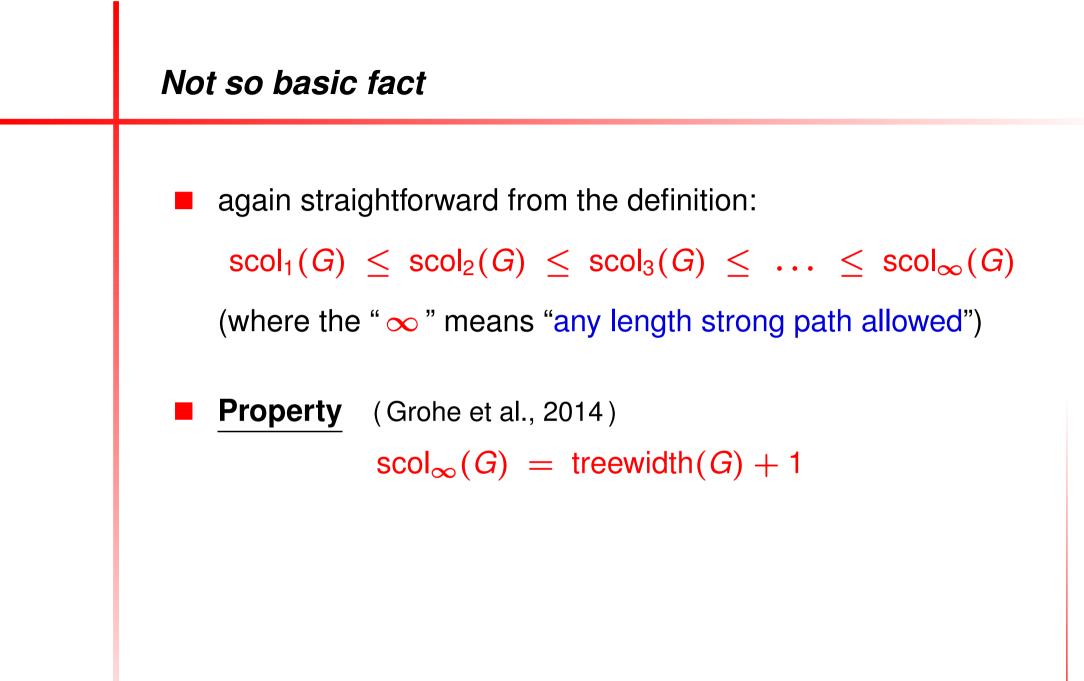
$$\operatorname{wcol}_{d}(G) = \min_{L} \max_{y \in V(G)} |W_{d}(L, y)| + 1$$

Some basic facts of these generalised colouring numbers

- by definition: $col(G) = scol_1(G) = wcol_1(G)$
- obviously: $scol_d(G) \leq wcol_d(G)$
 - in fact, also: $wcol_d(G) \leq (scol_d(G))^d$

hence:

if one of $scol_d$, $wcol_d$, is bounded on some class of graphs, then the other one is also bounded on that class



Back to classes with bounded expansion

Definition (Nešetřil & Ossona de Mendez)

- a class of graphs \mathcal{G} has **bounded expansion** if there exist constants c_1, c_2, \ldots , such that for all $G \in \mathcal{G}$ and for all $d = 1, 2, \ldots$ we have:
 - for all minors *H* of *G* formed by contracting connected subgraphs with radius at most *d*:

 $|E(H)| \leq c_d \cdot |V(H)|$

generalises classes with "bounded treewidth", "bounded genus", "forbidden minors", "bounded cop number", etc., etc.

a class of graphs \mathcal{G} has bounded expansion if there exist constants c'_1, c'_2, \ldots such that for all $G \in \mathcal{G}$ and for all $d = 1, 2, \ldots$: $\operatorname{scol}_d(G) \leq c'_d$

```
or
```

there exist constants c''_1, c''_2, \dots such that for all $G \in \mathcal{G}$ and for all $d = 1, 2, \dots$: $wcol_d(G) \leq c''_d$

time to prove that for any graph G: $\chi(G^{[\sharp^3]}) \leq \operatorname{wcol}_5(G)$

recall the definition of $\operatorname{wcol}_5(G)$: $\operatorname{wcol}_5(G) = \min_{L} \max_{y \in V(G)} |W_5(L, y)| + 1$

so let's choose an ordering L_5 of the vertices such that for all y: $|W_5(L_5, y)| + 1 \le \operatorname{wcol}_5(G)$

so let's choose an ordering L_5 of the vertices such that for all y: $|W_5(L_5, y)| + 1 \le \operatorname{wcol}_5(G)$

stage 1

going along the ordering L_5 , give every vertex y a colour c(y) different from the vertices in $W_5(L_5, y)$

requires at most wcol₅(G) colours

Back to colouring exact distance graphs

stage 1

going along the ordering L_5 , give every vertex y a colour c(y) different from the vertices in $W_5(L_5, y)$

stage 2

- for a vertex y, define N[y] = N(y) ∪ {y}
 and let µ(y) be the left-most vertex in N[y]
 (according to the ordering L₅)
- give every vertex y the colour $C(y) = c(\mu(y))$
- **Claim**: the colouring *C* is a proper colouring of $G^{[\sharp^3]}$

What can we say about $wcol_d(G)$?

Theorem (vdH, Kierstead & Quiroz, 2016)

• $d \operatorname{odd}$, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d-1}(G)$

Theorem (vdH, Ossona de Mendez, Quiroz, Rabinovich & Siebertz, 2016)

bounds on scol_d(G) and wcol_d(G) for all kinds of graphs (bounded treewidth, bounded genus, forbidden minor, etc.)

in particular:

• G planar \implies wcol_d(G) $\leq \begin{pmatrix} d+2\\ 2 \end{pmatrix} \cdot (2d+1)$

Bounds on $\chi(\mathbf{G}^{[\sharp 3]})$ for planar graphs

• G planar $\implies \chi(G^{[\sharp 3]}) \leq \operatorname{wcol}_5(G) \leq 231$

by being a bit more careful, we can prove: *G* planar $\implies \chi(G^{[\sharp 3]}) \le 143$

• we also constructed a planar H with $\chi(H^{[\sharp 3]}) = 7$

Some final bits and bobs

since a couple of weeks we know

Theorem

(Bousquet, Esperet, Harutyunyan, de Joannis de Verclos, Pastor)

 $\blacksquare \max \{ \chi(G^{[\sharp d]}) \mid G \text{ planar} \} \longrightarrow \infty \text{ if } d \longrightarrow \infty$

Some final bits and bobs

Theorem (vdH, Kierstead & Quiroz, 2016) d odd, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d-1}(G)$

• d even, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d}(G) \cdot \Delta(G)$

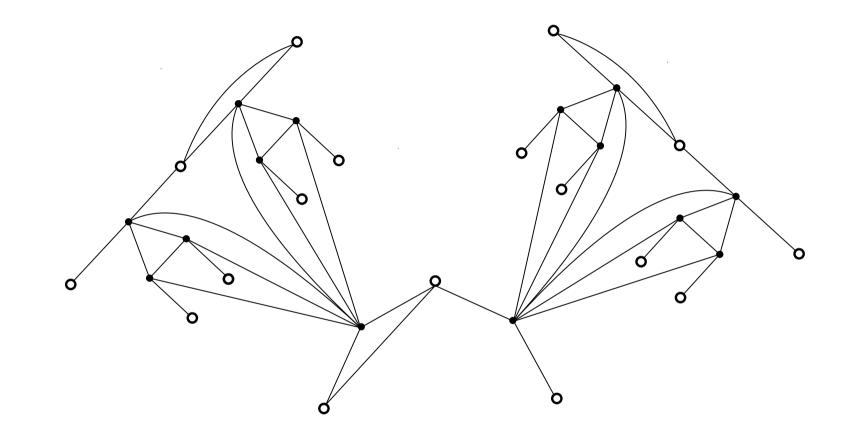
Some final bits and bobs

Theorem (vdH, Kierstead & Quiroz, 2016)

• d even, then for every graph G: $\chi(G^{[\sharp d]}) \leq \operatorname{wcol}_{2d}(G) \cdot \Delta(G)$

Corollary

- G a class of graphs with bounded expansion,
 d even
 - $\implies \text{ there exists a constant } N'_{\mathcal{G},d} \text{ such that:}$ for all $G \in \mathcal{G}$: $\chi(G^{[\sharp d]}) \leq N'_{\mathcal{G},d} \cdot \Delta(G)$



Thanks for your attention!