Improper Colourings
inspired by Hadwiger’s Conjecture

JAN VAN DEN HEUVEL

joint work with: DAVID WOOD (Monash Univ., Melbourne)
Graph minors

- A graph H is a **minor** of a graph G, if H can be obtained from G by a series of:
 - vertex deletions;
 - edge deletions;
 - edge contractions:
Graph minors – more intuitive

- A graph H is a minor of a graph G if:
 - For $V(H) = \{v_1, \ldots, v_k\}$, there exist connected, disjoint subgraphs H_1, \ldots, H_k of G such that:
 - If $v_i v_j \in E(H)$, then there is at least one edge in G between H_i and H_j.
Graph colouring

- a **colouring** of a graph means **colouring** the vertices

- **proper colouring**: adjacent vertices have **different colours**

- recurring question in graph theory:
 what **structural properties** of a graph
 - allow **proper colourings** with **few colours**?
 - force all proper colourings to use **many colours**?
Hadwiger’s Conjecture

Conjecture (Hadwiger, 1943)

- a graph G needs at least t colours for a proper colouring
 \[\implies G \text{ has the complete graph } K_t \text{ as a minor} \]

The contrapositive is probably more intuitive:

- G has no K_t-minor

\[\implies G \text{ has a proper } (t - 1) \text{-colouring} \]
Hadwiger’s Conjecture – what is known

- No K_t-minor \Rightarrow G has a proper $(t - 1)$-colouring

known

- Nothing to prove for $t = 1, 2$
- Easy for $t = 3$
- Not too hard for $t = 4$ (Hadwiger, 1943; Dirac, 1952)
- Case $t = 5$ is equivalent to the Four Colour Theorem (Wagner, 1937)
- True for $t = 6$ (Robertson, Seymour & Thomas, 1993)
How many colours do we need?

Theorem (Kostochka, 1984; Thomason, 1984)

- G has no K_t-minor
 \[\implies G \text{ has a vertex with degree at most } c t \sqrt{\log t} \]

Corollary

- G has no K_t-minor
 \[\implies G \text{ has a proper colouring with } c t \sqrt{\log t} \text{ colours} \]
Improper colourings

- what if we **weaken** the requirement on the **colouring**?
 - in a **proper colouring**:
 - the collection of **vertices with the same colour** is just a collection of **isolated vertices**
 - we could be happy with:
 - the collection of **vertices with the same colour** is just a subgraph with a "**simple**" structure

- **monochromatic subgraph**:
 - subgraph formed by **vertices with the same colour**

\[\text{no } K_t \text{-minor} \quad \Rightarrow \quad \text{proper } (t - 1)\text{-colouring} \]
Im proper colourings – small monochromatic degree

Theorem (Edwards, Kang, Kim, Oum & Seymour, 2015)

- G has no K_t-minor \implies

 G can be coloured with $t - 1$ colours such that each monochromatic subgraph has degree at most $c't^2 \log t$

- the bound $t - 1$ on the number of colours is best possible:

 - there exists a class of graphs without K_t-minor, but where you can’t bound the degree of monochromatic subgraphs when using $t - 2$ colours only

no K_t-minor \implies proper $(t - 1)$-colouring
Theorem (Edwards, Kang, Kim, Oum & Seymour, 2015)

- G has no K_t-minor \implies

 G can be coloured with $t - 1$ colours such that each monochromatic subgraph has degree at most $c' t^2 \log t$

Theorem (vdH & Wood, 2017)

- G has no K_t-minor \implies

 G can be coloured with $t - 1$ colours such that each monochromatic subgraph has degree at most $t - 2$
Improper colourings – small monochromatic components

Theorem (Kawarabayashi & Mohar, 2007)

- G has no K_t-minor \implies

 G can be coloured with $\lceil 15 \frac{1}{2} t \rceil$ colours such that each monochromatic component has at most $f_1(t)$ vertices

- improved to

 - $\lceil 3 \frac{1}{2} t - 1 \frac{1}{2} \rceil$ colours; $f_2(t)$ vertices \hspace{1cm} (Wood, 2010 (?))
 - $3(t - 1)$ colours; $f_3(t)$ vertices \hspace{1cm} (Liu & Oum, 2015)
 - $2(t - 1)$ colours; $f_4(t)$ vertices \hspace{1cm} (Norin, 2015; unpubl.)

- all use Robertson & Seymour Graph Minor Structure Thm., or worse . . .

- no K_t-minor \implies proper $(t - 1)$-colouring
Improper colourings – small monochromatic components

Theorem (vdH & Wood, 2017)

- G has no K_t-minor \implies

 G can be coloured with $2(t - 1)$ colours such that each monochromatic component has at most $\lceil \frac{1}{2}(t - 2) \rceil$ vertices

note

- G has no K_t-minor \implies

 at least $t - 1$ colours are needed to guarantee monochromatic components of bounded size

 (same examples as for small monochromatic degree)
A simple decomposition theorem for K_t-minor-free graphs

Theorem (vdH & Wood, 2017)

- G has no K_t-minor \implies G has a partition into subgraphs H_1, \ldots, H_ℓ such that
- **global structure:** each H_i is adjacent to at most $t - 2$ of the earlier subgraphs H_1, \ldots, H_{i-1}
A simple decomposition theorem for K_t-minor-free graphs

Theorem (vdH & Wood, 2017)

- G has no K_t-minor \implies G has a partition into subgraphs H_1, \ldots, H_ℓ such that
 - **global structure:** each H_i is adjacent to at most $t - 2$ of the earlier subgraphs H_1, \ldots, H_{i-1}
 - **local structure:**
 - each H_i has maximum degree at most $t - 2$
 - each H_i can be coloured with 2 colours such that each monochromatic component of H_i has at most $\left\lceil \frac{1}{2} (t - 2) \right\rceil$ vertices

no K_t-minor \implies proper $(t - 1)$-colouring
The global structure we actually prove

- \(G \) any graph \(\implies \)
 - we can construct (in many ways) a partition of \(G \) into induced subgraphs \(H_1, \ldots, H_\ell \) such that:
 - each \(H_i \) is connected
 - each \(H_i \) is adjacent to \(k \) subgraphs \(H_{i_1}, \ldots, H_{i_k} \)
 - the earlier subgraphs \(H_1, \ldots, H_{i-1} \)
 - for each \(H_i \), the adjacent subgraphs \(H_{i_1}, \ldots, H_{i_k} \)
 - are pairwise adjacent as well

\[\text{no } K_t \text{-minor } \implies \text{ proper } (t - 1) \text{-colouring} \]
The global structure – proof

- we will construct the H_i one by one such that once H_1, \ldots, H_h is constructed:
 - each $H_i, i \leq h$, satisfies the requirements
 - each component C of $G - (V(H_1) \cup \cdots \cup V(H_h))$ satisfies:
 - if C is adjacent to H_{i_1}, \ldots, H_{i_k} from H_1, \ldots, H_{i-1}, then H_{i_1}, \ldots, H_{i_k} are pairwise adjacent as well

$\no K_t$-minor \Rightarrow proper $(t-1)$-colouring
The global structure – proof

- start with H_1 any connected, induced subgraph of G
 (good choice for later: $V(H_1) = \{v\}$ for some $v \in V(G)$)
- all requirements are trivially satisfied
suppose H_1, \ldots, H_h are already constructed and C is some component of $G - (V(H_1) \cup \cdots \cup V(H_h))$

so C is adjacent to H_{i_1}, \ldots, H_{i_k}, which are also pairwise adjacent

for each H_{i_ℓ}, choose $a_{i_\ell} \in V(C)$ adjacent to H_{i_ℓ}

now choose H_{h+1} a connected, induced subgraph of C containing all a_{i_1}, \ldots, a_{i_k}
The global structure – proof

- H_{h+1} is still adjacent to H_{i_1}, \ldots, H_{i_k}
- A component of $G - (V(H_1) \cup \cdots \cup V(H_h) \cup V(H_{h+1}))$
 - is either a component of $G - (V(H_1) \cup \cdots \cup V(H_h))$ and hence still satisfies the requirements
 - or it is a component of $C - V(H_{h+1})$, hence it is adjacent to H_{h+1} and some of H_{i_1}, \ldots, H_{i_k}, which are all pairwise adjacent

No K_t-minor \Rightarrow proper $(t - 1)$-colouring
The global structure for K_t-minor-free graphs

- we can construct (in many ways) a partition of any graph G into induced, connected subgraphs H_1, \ldots, H_ℓ such that:
 - each H_i is adjacent to k subgraphs H_{i_1}, \ldots, H_{i_k} from H_1, \ldots, H_{i-1}, which are pairwise adjacent as well

 \[H_1 \quad H_2 \quad H_3 \quad H_4 \quad \cdots \quad H_i \quad \cdots \]

- G has no K_t-minor \implies for each H_i we must have $k \leq t - 2$
The local structure – inside the H_i

- so how can we choose the H_i so that they satisfy:
 - small degree and
 - 2-colourable with small mono. components

- each H_i was chosen as some induced subgraph of some connected subgraph C, such that:
 - H_i is connected
 - H_i contains some set $A = \{a_{i_1}, \ldots, a_{i_k}\}$

- idea:
 - choose H_i the smallest subgraph with those properties

no K_t-minor \Rightarrow proper $(t-1)$-colouring
The local structure – inside the H_i

Lemma

- C a connected graph, $A \subseteq V(C)$
 - H a minimal, induced, connected subgraph of C, such that H contains all of A

- then H satisfies:
 - every vertex in H has degree at most $|A|$ in H
 - every vertex not in A is a cut-vertex of H
 - easy corollary: there is a 2-colouring of H with monochromatic components of size at most $\left\lceil \frac{1}{2} |A| \right\rceil$

no K_t-minor \Rightarrow proper $(t - 1)$-colouring
Our decomposition theorem again

Theorem (vdH & Wood, 2017)

- G has no K_t-minor \implies G has a partition into subgraphs H_1, \ldots, H_ℓ such that
 - **global structure:** each H_i is adjacent to at most $t - 2$ of the earlier subgraphs H_1, \ldots, H_{i-1}
 - **local structure:**
 - each H_i has maximum degree at most $t - 2$
 - each H_i can be coloured with 2 colours such that each monochromatic component of H_i has at most $\lceil \frac{1}{2} (t - 2) \rceil$ vertices
- some more properties

no K_t-minor \implies proper $(t - 1)$-colouring
Theorem

- G has no K_t-minor \implies G has a partition into connected subgraphs H_1, \ldots, H_ℓ such that
 - contracting all H_i to single vertices gives a chordal graph with treewidth at most $t - 2$
 - each H_i has treewidth at most $t - 3$

$$
\begin{align*}
H_1 & \quad H_2 & \quad H_3 & \quad H_4 & \quad \ldots & \quad H_i & \quad \ldots \\
\end{align*}
$$

no K_t-minor \implies proper $(t - 1)$-colouring
A similar result for $K_{3,s}$-minor-free graphs

- we can prove a similar decomposition theorem for $K_{3,s}$-minor-free graphs

Corollary

- G has no $K_{3,s}$-minor \implies
 - G can be coloured with 3 colours such that each monochromatic subgraph has degree at most $4s$
 - G can be coloured with 6 colours such that each monochromatic component has at most $2s$ vertices
That’s all folks! – Thanks for listening.