Improper Colourings inspired by Hadwiger's Conjecture

JAN VAN DEN HEUVEL

joint work with: DAVID WOOD (Monash Univ., Melbourne)

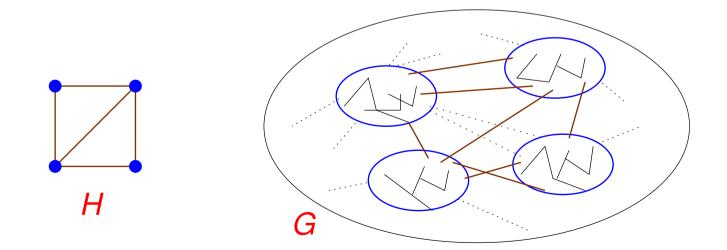
Department of Mathematics London School of Economics and Political Science

Graph minors

• a graph H is a **minor** of a graph G if:

for $V(H) = \{v_1, \dots, v_k\}$, there exist connected, disjoint subgraphs H_1, \dots, H_k of *G* such that:

• if $v_i v_j \in E(H)$, then there is at least one edge in *G* between H_i and H_j



Graph colouring

- a **colouring** of a graph means colouring the vertices
- proper colouring: adjacent vertices have different colours

recurring question in graph theory:

what structural properties of a graph

- allow proper colourings with few colours ?
- force all proper colourings to use many colours ?

Hadwiger's Conjecture

Conjecture (Hadwiger, 1943)

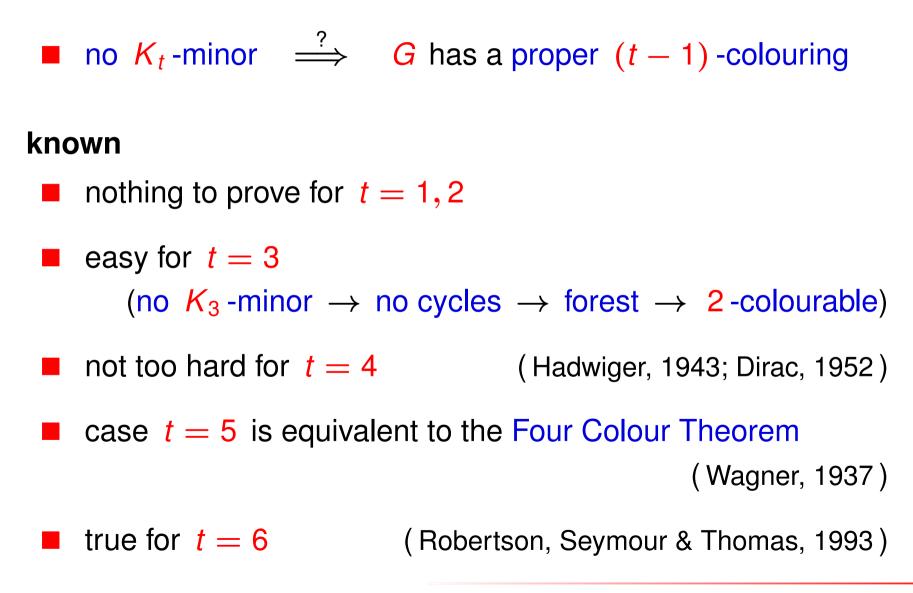
- graph G needs at least t colours for a proper colouring
 - \implies G has the complete graph K_t as a minor

the contrapositive is probably more intuitive:

 $\blacksquare \quad G \text{ has no } K_t \text{-minor}$

 $\stackrel{?}{\Longrightarrow}$ G has a proper (t-1) -colouring

Hadwiger's Conjecture – what is known



How many colours do we need?

Theorem (Kostochka, 1984; Thomason, 1984)

- G has no K_t-minor
 - \implies G has a vertex with degree at most $c t \sqrt{\log t}$

Corollary

- G has no K_t -minor
 - \implies G has a proper colouring with $c t \sqrt{\log t}$ colours

Improper colourings

what if we weaken the requirement on the colouring?

in a proper colouring:

the collection of vertices with the same colour is just a collection of isolated vertices

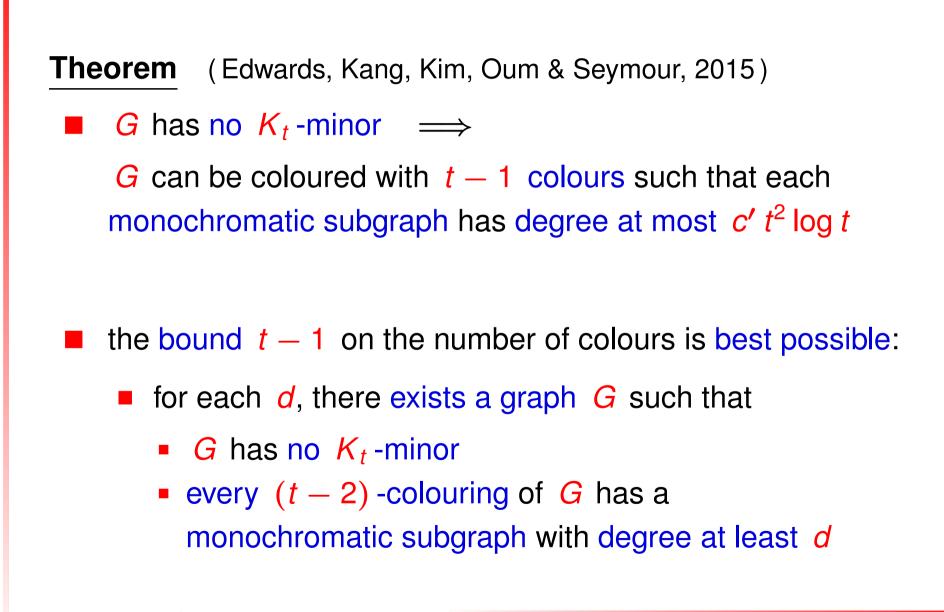
we could be happy with:

the collection of vertices with the same colour is just a subgraph with a "simple" structure

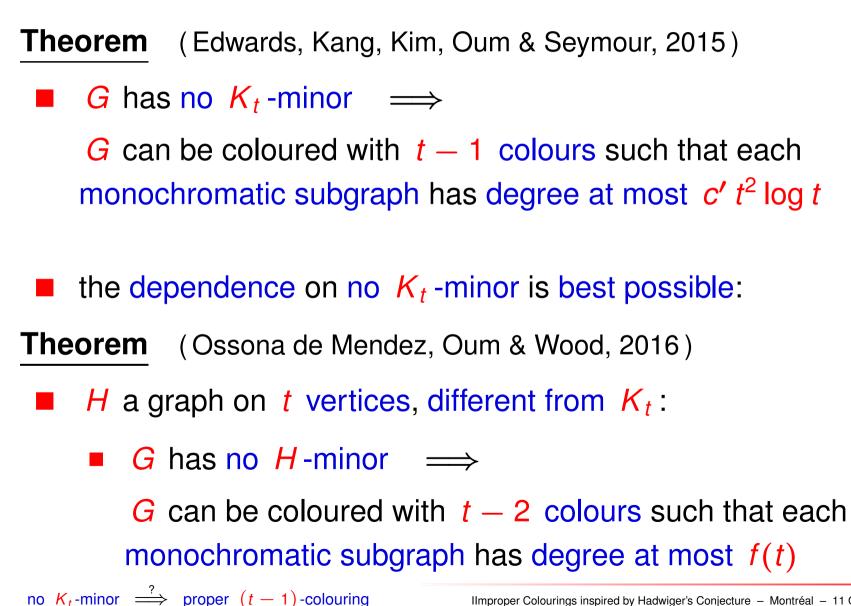
monochromatic subgraph:

subgraph formed by vertices with the same colour

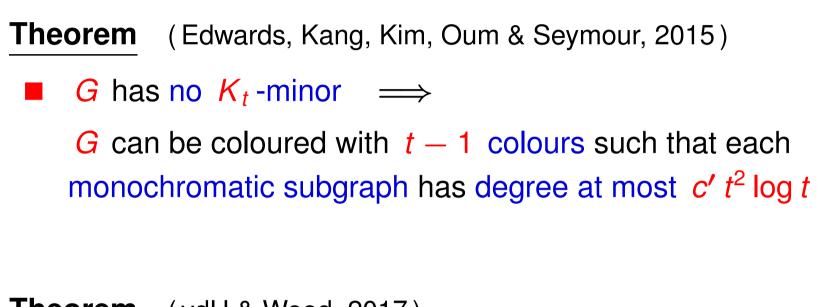
Improper colourings – small monochromatic degree



Improper colourings – small monochromatic degree



Improper colourings – small monochromatic degree



Theorem (vdH & Wood, 2017)

 $\blacksquare G has no K_t - minor \implies$

G can be coloured with t - 1 colours such that each monochromatic subgraph has degree at most t - 2

Improper colourings – small monochromatic components

Theorem (Kawarabayashi & Mohar, 2007)

 \blacksquare G has no K_t -minor \Longrightarrow

G can be coloured with $\begin{bmatrix} 15\frac{1}{2} t \end{bmatrix}$ colours such that each monochromatic components has at most $f_1(t)$ vertices

improved to

- $\left[3\frac{1}{2}t 1\frac{1}{2}\right]$ colours; $f_2(t)$ vertices (Wood, 2010; incl.)
- 3(t-1) colours; $f_3(t)$ vertices (Liu & Oum, 2015)

- **2**(t-1) colours; $f_4(t)$ vertices (Norin, 2015; unpubl.)
- all use Robertson & Seymour Graph Minor Structure Thm., or worse ...

Improper colourings – small monochromatic components

Theorem (vdH & Wood, 2017)

 $\blacksquare G \text{ has no } K_t \text{-minor} \implies$

G can be coloured with 2(t - 1) colours such that each monochromatic component has at most $\left\lfloor \frac{1}{2}(t - 2) \right\rfloor$ vertices

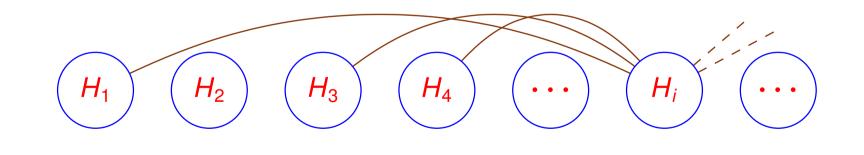
note

G has no K_t-minor ⇒ at least t - 1 colours are needed to guarantee monochromatic components of bounded order (same examples as for small monochromatic degree)

A simple decomposition theorem for K_t-minor-free graphs

Theorem (vdH & Wood, 2017)

- G has no K_t -minor \Longrightarrow
 - *G* has a partition into subgraphs H_1, \ldots, H_{ℓ} such that
 - global structure: each H_i is adjacent
 to at most t 2 of the earlier subgraphs H_1, \ldots, H_{i-1}

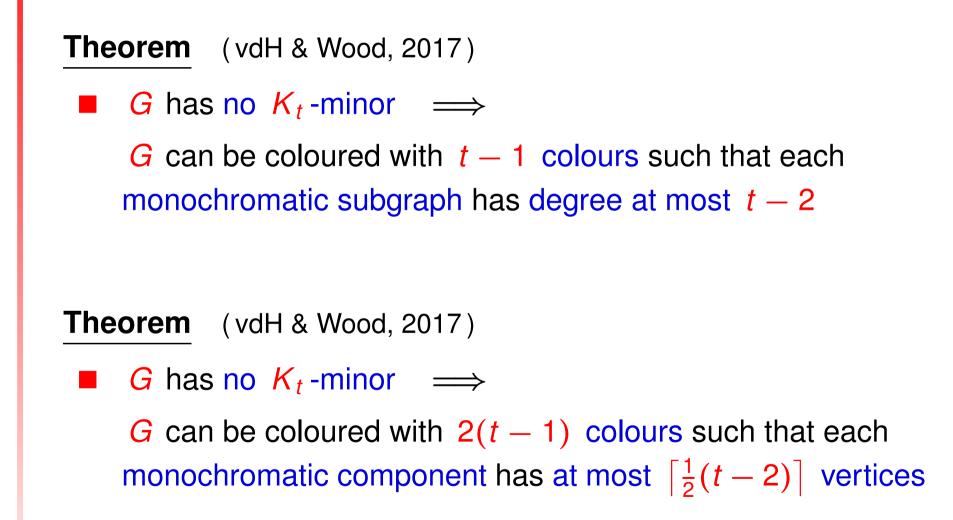


A simple decomposition theorem for K_t-minor-free graphs

Theorem (vdH & Wood, 2017)

- G has no K_t -minor \Longrightarrow
 - *G* has a partition into subgraphs H_1, \ldots, H_{ℓ} such that
 - global structure: each H_i is adjacent
 to at most t 2 of the earlier subgraphs H_1, \ldots, H_{i-1}
 - Iocal structure:
 - each H_i has maximum degree at most t 2
 - each H_i can be coloured with 2 colours such that each monochromatic component of H_i has at most [¹/₂(t - 2)] vertices

Our main results on improper colourings

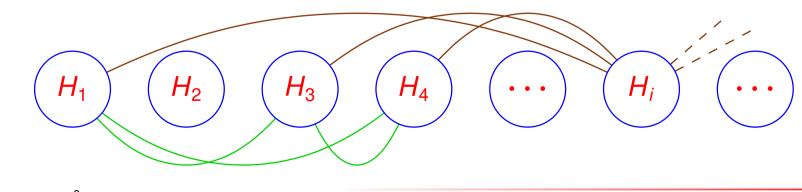


The global structure we actually prove

 $\blacksquare \quad G \text{ any graph} \implies$

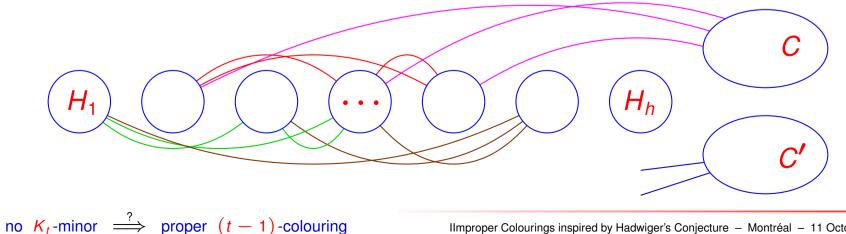
we can construct (in many ways) a partition of *G* into induced subgraphs H_1, \ldots, H_{ℓ} such that:

- each H_i is connected
- each H_i is adjacent to k subgraphs H_{i_1}, \ldots, H_{i_k} the earlier subgraphs H_1, \ldots, H_{i-1}
- for each H_i , the adjacent subgraphs H_{i_1}, \ldots, H_{i_k} are pairwise adjacent as well

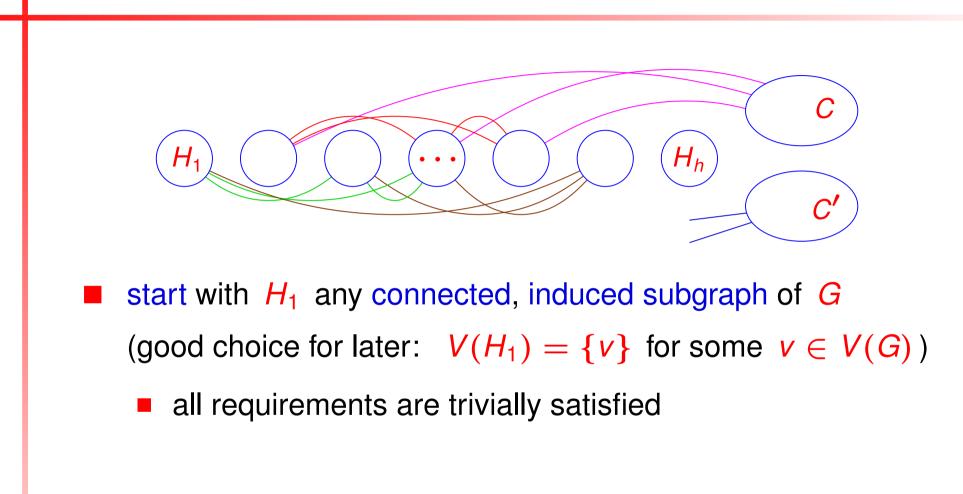


- we will construct the H_i one by one such that once H_1, \ldots, H_h is constructed:
 - each H_i , i < h, satisfies the requirements
 - each component C of $G (V(H_1) \cup \cdots \cup V(H_h))$ satisfies:

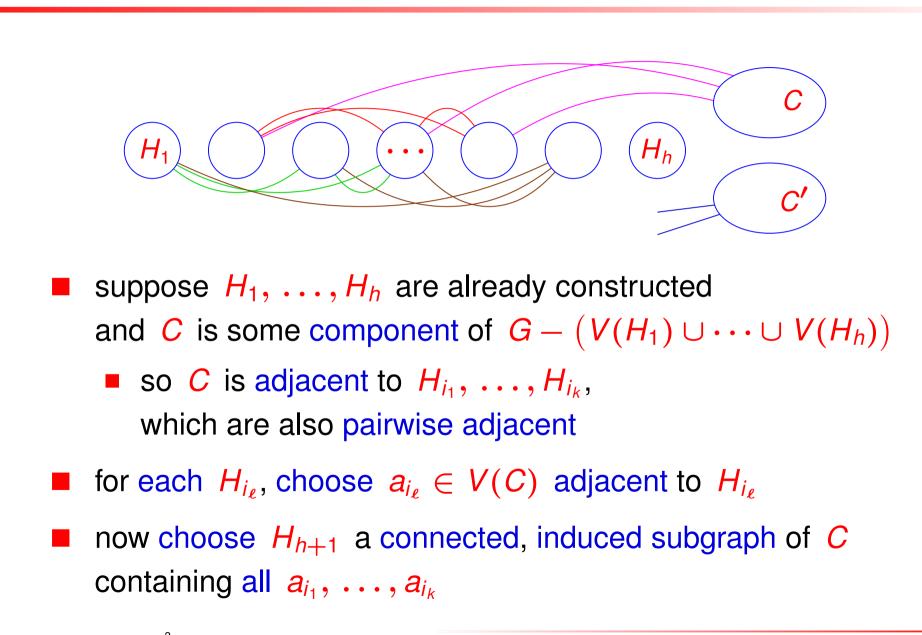
if C is adjacent to H_{i_1}, \ldots, H_{i_k} from H_1, \ldots, H_{i-1} , then H_{i_1}, \ldots, H_{i_k} are pairwise adjacent as well



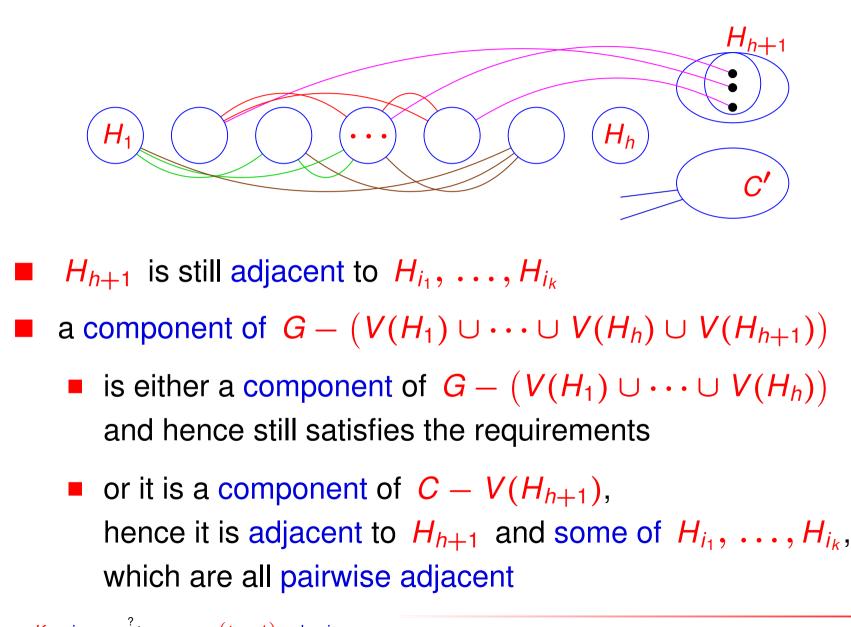
The global structure – proof



The global structure – proof

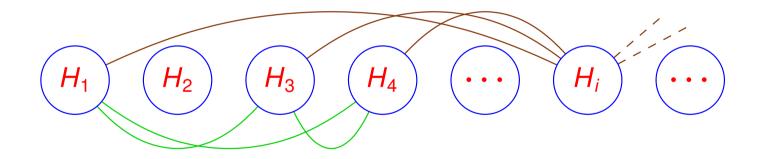


The global structure – proof



The global structure for K_t-minor-free graphs

we can construct (in many ways) a partition of any graph *G* into induced, connected subgraphs *H*₁, ..., *H*_ℓ such that:
 each *H_i* is adjacent to *k* subgraphs *H_{i1}*, ..., *H_{ik}* from *H₁*, ..., *H_{i-1}*, which are pairwise adjacent as well



• G has no K_t -minor \implies for each H_i we must have $k \le t - 2$

- small degree and
- 2-colourable with small monochromatic components
- each H_i was chosen as some induced subgraph of some connected subgraph C, such that:
 - H_i is connected
 - $V(H_i)$ contains some set $A = \{a_{i_1}, \ldots, a_{i_k}\}$
- idea:

choose H_i the smallest subgraph with those properties

The local structure – inside the H_i

Lemma

- C a connected graph, A ⊆ V(C)
 H a minimal, induced, connected subgraph of C, such that V(H) contains all of A
- then *H* satisfies:
 - every vertex in H has degree at most |A| in H
 - every vertex not in A is a cut-vertex of H
 - easy corollary: there is a 2-colouring of *H* with monochromatic components of size at most

 12|A|

Our decomposition theorem again

Theorem (vdH & Wood, 2017)

- $\blacksquare G \text{ has no } K_t \text{-minor} \implies$
 - *G* has a partition into subgraphs H_1, \ldots, H_{ℓ} such that
 - global structure: each H_i is adjacent
 to at most t 2 of the earlier subgraphs H_1, \ldots, H_{i-1}
 - Iocal structure:
 - each H_i has maximum degree at most t 2
 - each H_i can be coloured with 2 colours such that each monochromatic component of H_i has at most [¹/₂(t - 2)] vertices

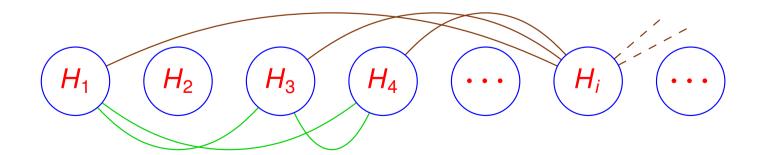
```
some more properties
```

no K_t -minor \implies proper (t-1)-colouring

With only a little bit extra work ...

Theorem

- *G* has no K_t -minor \implies *G* has a partition into connected subgraphs H_1, \ldots, H_ℓ such that
 - contracting all H_i to single vertices gives a chordal graph with treewidth at most t - 2
 - each H_i has treewidth at most t 3



A similar result for K_{3,s}-minor-free graphs

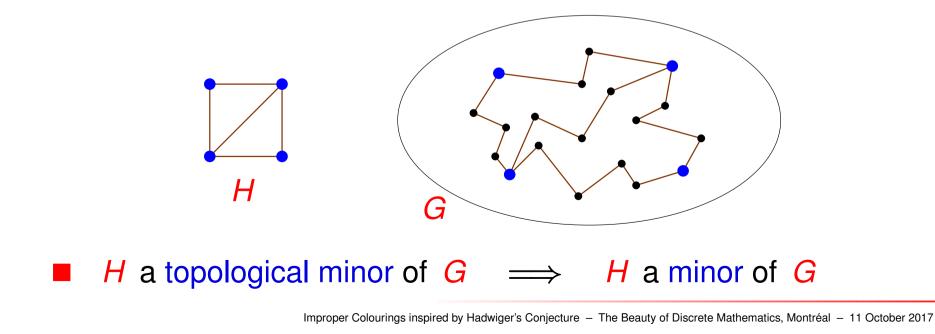
we can prove a similar decomposition theorem for $K_{3,s}$ -minor-free graphs

Corollary

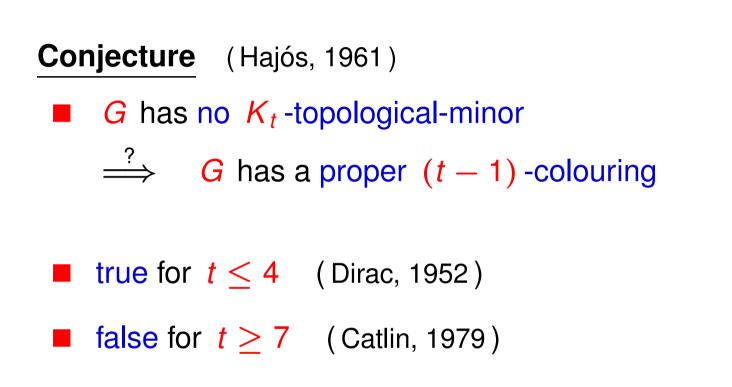
- G has no $K_{3,s}$ -minor \Longrightarrow
 - G can be coloured with 3 colours such that each monochromatic subgraph has degree at most 4s
 - G can be coloured with 6 colours such that each monochromatic component has at most 2s vertices
 - the bound of 6 colours for small monochromatic components is probably not best-possible could be 4

Variants – Topological minors

- a graph *H* is a **topological minor** of a graph *G* if: for $V(H) = \{v_1, \dots, v_k\}$, there are different u_1, \dots, u_k in V(G) such that:
 - if $v_i v_j \in E(H)$, then there is a u_i, u_j -path P_{ij} in G
 - apart from their end vertices, the paths P_{ij} are disjoint



Hajós' Conjecture



Theorem (Edwards, Kang, Kim, Oum & Seymour, 2015)

G has no K_t -topological-minor \implies G can be coloured with t - 1 colours such that each monochromatic subgraph has degree at most $c t^4$

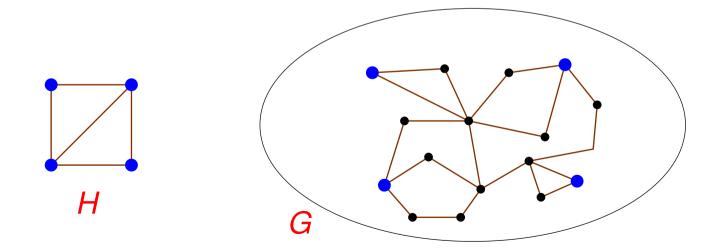
• a graph *H* is an **immersion** in a graph *G* if:

for $V(H) = \{v_1, ..., v_k\},\$

there are different u_1, \ldots, u_k in V(G) such that:

• if $v_i v_j \in E(H)$, then there is a u_i, u_j -path P_{ij} in G

• the paths P_{ij} are edge-disjoint



• a graph H is an **immersion** in a graph G if:

for $V(H) = \{v_1, ..., v_k\},\$

there are different u_1, \ldots, u_k in V(G) such that:

• if $v_i v_j \in E(H)$, then there is a u_i, u_j -path P_{ij} in G

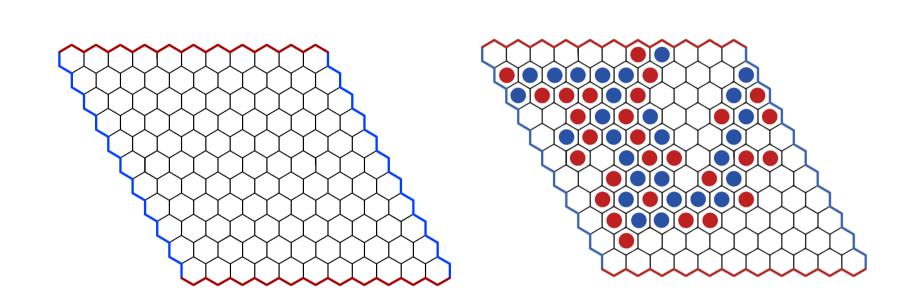
• the paths P_{ij} are edge-disjoint

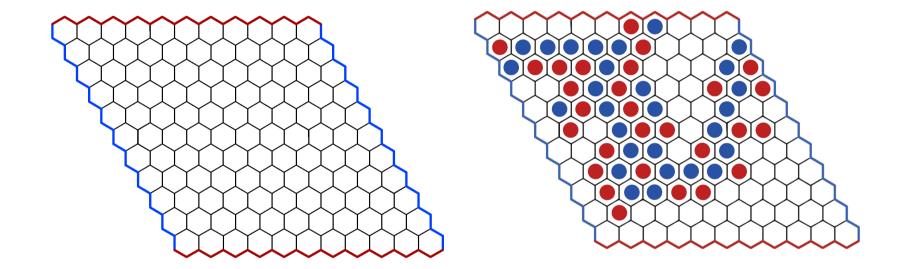
- *H* is a topological minor of $G \implies$
 - H is also a minor and an immersion in G
 - but in general not the other way round
- in general there is no relation between minor and immersion

Another conjecture



Hex and 2-colouring





That's all folks! – Thanks for listening.