Universal Orderings for Generalised Colouring Numbers

Jan van den Heuvel
joint work with: H.A. Kierstead (Arizona State Univ.)

The normal colouring number

- let L be a linear ordering of the vertices of a graph G
- for a vertex $y \in V(G)$, let $\boldsymbol{S}(\boldsymbol{G}, L, \boldsymbol{y})$ be the neighbours u of y with $u<_{L} y$

- and set $S[G, L, y]=S(G, L, y) \cup\{y\}$
- then the colouring number $\operatorname{col}(G)$ is defined as

$$
\operatorname{col}(G)=\min _{L} \max _{y \in V(G)}|S[G, L, y]|
$$

Generalising the colouring number

- the set $S[G, L, y]$ can also be defined as
"the set of vertices $u \leq_{L} y$ for which there is a $y u$-path of length at most 1 "

■ what would happen if we allow longer paths?

Generalising the colouring number

■ what would happen if we allow longer paths?
■ for $u \leq_{L} y$:

- a strong $y u$-path has all internal vertices larger than y

- a weak yu-path has all internal vertices larger than u

Strong generalised colouring numbers

■ - a strong yu-path has all internal vertices larger than y

- let $S_{r}[G, L, y]$ be the set of vertices $u \leq_{L} y$ for which there exists a strong uy-path with length at most r

■ then define the strong r-colouring number $\operatorname{scol}_{r}(G)$ by

$$
\begin{array}{ll}
\text { - } \quad \operatorname{scol}_{r}(G, L) & =\max _{y \in V(G)}\left|S_{r}[G, L, y]\right| \\
\text { - } \quad & \operatorname{scol}_{r}(G)=\min _{L} \operatorname{scol}_{r}(G, L)
\end{array}
$$

Weak generalised colouring numbers

- a weak $y u$-path has all internal vertices larger than u

- let $W_{r}[G, L, y]$ be the set of vertices $u \leq_{L} y$ for which there exists a weak $u y$-path with length at most r

■ then define the weak r-colouring number wcol $_{r}(G)$ by

- $\quad \operatorname{wcol}_{r}(G, L)=\max _{y \in V(G)}\left|W_{r}[G, L, y]\right|$
- $\quad \operatorname{wcol}_{r}(G) \quad=\min _{L} \quad \operatorname{wcol}_{r}(G, L)$

Some facts about generalised colouring numbers

- studied in some form (in particular $r=2$) since early 1990's

■ introduced in this form by Kierstead \& Yang, 2003

■ by definition: $\operatorname{scol}_{1}(G)=\operatorname{wcol}_{1}(G)=\operatorname{col}(G)$

■ - obviously: $\operatorname{scol}_{r}(G) \leq$ wcol $_{r}(G)$

- but also: $\operatorname{wcol}_{r}(G) \leq\left(\operatorname{scol}_{r}(G)\right)^{r}$
(Proof: every weak path of length at most r is formed of at most r strong paths of length at most r.)

Some facts about generalised colouring numbers

- studied in some form (in particular $r=2$) since early 1990's

■ introduced in this form by Kierstead \& Yang, 2003

■ by definition: $\operatorname{scol}_{1}(G)=\operatorname{wcol}_{1}(G)=\operatorname{col}(G)$

■ obviously: $\operatorname{scol}_{r}(G) \leq$ wcol $_{r}(G)$

- but also: $\operatorname{wcol}_{r}(G) \leq\left(\operatorname{scol}_{r}(G)\right)^{r}$

■ $\operatorname{scol}_{1}(G) \leq \operatorname{scol}_{2}(G) \leq \ldots \leq \operatorname{scol}_{\infty}(G)=\operatorname{tree}-$ width $(G)+1$
■ $\operatorname{wcol}_{1}(G) \leq \operatorname{wcol}_{2}(G) \leq \ldots \leq \operatorname{wcol}_{\infty}(G)=\operatorname{tree}-\operatorname{depth}(G)$

A structural application

■ classes of graphs \mathcal{G} with bounded expansion were introduced by Nešetřil \& Ossona de Mendez in terms of "densities of shallow minors"

- generalises bounded tree-width, bounded genus, minor closed, etc., etc.

A structural application

- classes of graphs \mathcal{G} with bounded expansion were introduced by Nešetřil \& Ossona de Mendez in terms of "densities of shallow minors"

■ equivalent Definition (Zhu, 2009)
a class of graphs \mathcal{G} has bounded expansion:

- there exists a function $c: \mathbb{N} \rightarrow \mathbb{R}$ such that for every $G \in \mathcal{G}$ and every r we have $\operatorname{scol}_{r}(G) \leq c(r)$

■ we can use the weak colouring numbers wcol $_{r}(G)$ as well

Orderings

■ for every r,
$\operatorname{scol}_{r}(G)$ is defined using some "good" ordering L of $V(G)$:

$$
\operatorname{scol}_{r}(G)=\min _{L} \operatorname{scol}_{r}(G, L)
$$

Question

■ can we use the same ordering L for different r ?

Orderings

$$
\operatorname{scol}_{r}(G)=\min _{L} \operatorname{scol}_{r}(G, L)
$$

Question

■ can we use the same ordering L for different r ?

NO

- for every different r, s and function $f(x)$, there exists a graph G such that for any ordering L of $V(G)$:
- $\operatorname{scol}_{r}(G, L)=\operatorname{scol}_{r}(G) \Longrightarrow \operatorname{scol}_{s}(G, L) \geq f\left(\operatorname{scol}_{s}(G)\right)$
- $\operatorname{scol}_{s}(G, L)=\operatorname{scol}_{s}(G) \Longrightarrow \operatorname{scol}_{r}(G, L) \geq f\left(\operatorname{scol}_{r}(G)\right)$

Nevertheless, universal orderings are possible

Theorem (vdH \& Kierstead)

■ for every graph G, there exists an ordering L^{*} of $V(G)$, such that for all r we have

$$
\operatorname{scol}_{r}\left(G, L^{*}\right) \leq\left(2^{r}+1\right) \cdot\left(\operatorname{scol}_{2 r}(G)\right)^{4 r}
$$

Corollary

- a class of graphs \mathcal{G} has bounded expansion if and only if
- there exists a function $c^{\prime}: \mathbb{N} \rightarrow \mathbb{R}$ such that for every $G \in \mathcal{G}$ there exists an ordering L^{*} of $V(G)$, such that for every r we have $\operatorname{scol}_{r}\left(G, L^{*}\right) \leq c^{\prime}(r)$

Ideas of the proof

- the crucial idea of the proof goes back to a proof in the original work of Kierstead \& Yang (2003) that introduced generalised colouring numbers
- the main part of that paper actually deals with a game variant of those numbers

The game colouring number

- Alice and a gremlin create an ordering L^{\prime} of the vertices of a given graph G, as follows
- they alternately choose the next vertex, starting with the gremlin
- Alice wants to end up with an ordering L^{\prime} such that $\operatorname{scol}_{r}\left(G, L^{\prime}\right)$ is "small" (for some given r)

Theorem (Kierstead \& Yang, 2003)

- no matter how mischievous the gremlin is, Alice can guarantee the final ordering L^{\prime} to satisfy:

$$
\operatorname{scol}_{r}\left(G, L^{\prime}\right) \leq 3\left(\operatorname{wcol}_{2 r}(G)\right)^{2} \leq 3\left(\operatorname{scol}_{2 r}(G)\right)^{4 r}
$$

A first common ordering

- suppose the gremlin is not really mischievous, but has some specific ordering in mind as well
that directly leads to:

Corollary

■ let G_{1}, G_{2} be two graphs on the same vertex set V and let r_{1}, r_{2} be two natural numbers

- then there exists an ordering L^{*} of V such that

$$
\begin{aligned}
& \quad \operatorname{scol}_{r_{1}}\left(G_{1}, L^{*}\right) \leq 3\left(\operatorname{scol}_{2 r_{1}}\left(G_{1}\right)\right)^{4 r_{1}} \\
& \text { and } \\
& \qquad \operatorname{scol}_{r_{2}}\left(G_{2}, L^{*}\right) \leq 3\left(\operatorname{scol}_{2 r_{2}}\left(G_{2}\right)\right)^{4 r_{2}}
\end{aligned}
$$

Next step: a common ordering for many graphs

Theorem (vdH \& Kierstead)

■ let G_{1}, \ldots, G_{k} be a collection of graphs on the same set V and let r_{1}, \ldots, r_{k} be natural numbers

- then there exists an ordering L^{*} of V such that

$$
\text { for } i=1, \ldots, k: \operatorname{scol}_{r_{i}}\left(G_{i}, L^{*}\right) \leq(k+1)\left(\operatorname{scol}_{2 r_{i}}\left(G_{i}\right)\right)^{4 r_{i}}
$$

Corollary

- for every graph G and natural number k
- there exists an ordering L^{*} of $V(G)$ such that

$$
\text { for } r=1, \ldots, k: \operatorname{scol}_{r}\left(G, L^{*}\right) \leq(k+1)\left(\operatorname{scol}_{2 r}(G)\right)^{4 r}
$$

The most general, "weighted", version

Theorem (vdH \& Kierstead)

■ let G_{1}, \ldots, G_{k} be a collection of graphs on the same set V, let r_{1}, \ldots, r_{k} be natural numbers, and let a_{1}, \ldots, a_{k} be natural numbers

- set $A=a_{1}+\cdots+a_{k}$
- then there exists an ordering L^{*} of V such that for all $i=1, \ldots, k$:

$$
\operatorname{scol}_{r_{i}}\left(G_{i}, L^{*}\right) \leq\left(\frac{A}{a_{i}}+1\right) \cdot\left(\operatorname{scol}_{2 r_{i}}\left(G_{i}\right)\right)^{4 r_{i}}
$$

How to use this general, "weighted", version

$$
\operatorname{scol}_{r_{i}}\left(G_{i}, L^{*}\right) \leq\left(\frac{A}{a_{i}}+1\right) \cdot\left(\operatorname{scol}_{2 r_{i}}\left(G_{i}\right)\right)^{4 r_{i}}
$$

■ now set $k=\left\lfloor\log _{2}|V|\right\rfloor$
■ and for $i=1, \ldots, k$, set $a_{i}=2^{k-i}$

- then: $A=a_{1}+\cdots+a_{k}=2^{k}-1 \leq 2^{k}$, so $\frac{A}{a_{i}} \leq 2^{i}$

■ next, for $i=1, \ldots, k$ take $G_{i}=G$ and $r_{i}=i$, and we get:

$$
\operatorname{scol}_{i}\left(G, L^{*}\right) \leq\left(2^{i}+1\right) \cdot\left(\operatorname{scol}_{2 i}(G)\right)^{4 i}
$$

■ for $i>k$ we have $2^{i}+1>|V|$, so nothing to prove

Algorithmic aspects

■ there exists an ordering L^{*} of V such that for all $i=1, \ldots, k$:

$$
\operatorname{scol}_{r_{i}}\left(G_{i}, L^{*}\right) \leq\left(\frac{A}{a_{i}}+1\right) \cdot\left(\operatorname{scol}_{2 r_{i}}\left(G_{i}\right)\right)^{4 r_{i}}
$$

■ if orderings L_{i} with wcol $_{2 r_{i}}\left(G_{i}, L_{i}\right)=\operatorname{wcol}_{2 r_{i}}\left(G_{i}\right)$ are given, then L^{*} can be found in time polynomial in $|V|$ and A

■ unfortunately, finding wcol $_{r}(G)$ is NP-hard for $r \geq 3$
(Grohe et al., 2015)
■ but using results of Dvořák (2013), we can find in polynomial time an ordering L_{i}^{\prime} such that wcol $_{2 r_{i}}\left(G_{i}, L_{i}^{\prime}\right)$ "approximates" wcol $2_{r_{i}}\left(G_{i}\right)$

Finding universal orderings

Corollary

- let \mathcal{G} be a class with bounded expansion
- then there exists a function $c^{\prime}: \mathbb{N} \rightarrow \mathbb{R}$
and a polynomial time algorithm
- that finds for every $G \in \mathcal{G}$:
- an ordering L^{*} of $V(G)$
- such that for every $r: \operatorname{scol}_{r}\left(G, L^{*}\right) \leq c^{\prime}(r)$

But what does it really mean ... ?

Theorem

- a class of graphs \mathcal{G} has bounded expansion if and only if
- there exists a function $c^{\prime}: \mathbb{N} \rightarrow \mathbb{R}$ such that for every $G \in \mathcal{G}$ there exists an ordering L^{*} of $V(G)$, such that for every r we have $\operatorname{scol}_{r}\left(G, L^{*}\right) \leq c^{\prime}(r)$

Question

- what (if anything) does this ordering L^{*} tell us about the structure of the graphs in a class with bounded expansion?

A more concrete question

Property (Folklore et al.)

■ $\operatorname{scol}_{1}(G)=\operatorname{wcol}_{1}(G)=\operatorname{col}(G)$ can be found in polynomial time

Theorem (Grohe et al., 2015)

- for $r \geq 3$, finding $\operatorname{scol}_{r}(G)$ or wcol $_{r}(G)$ is NP-hard

Question

- what is the complexity of finding $\mathrm{scol}_{2}(G)$ or $\mathrm{wcol}_{2}(G)$?

Thanks for your attention!

Thanks to the organisers for another wonderful Midsummer Combinatorial Workshop !

(but please switch off the outdoor heating next year)

