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Abstract
Given a set V of points in the plane, a sequence dy, ds, ... ,d; of non-negative numbers
and an integer n, we are interested in the problem to assign integers from {0, ... ,n—1} to

the points in V' such that if x,y € V' are two points with euclidean distance less than d;,
then the difference between the labels of x and y is not equal to 4. This question is
inspired by problems occurring in the design of radio networks, where radio channels
need to be assigned to transmitters in such a way that interference is minimised. In this
paper we consider the case that the set of points are the points of a 2-dimensional lattice.
Recent results by McDiarmid and Reed show that if only one constraint dy is given,
good labellings can be obtained by using so-called strict tilings. We extend these results
to the case that higher level constraints dy,d;,...,d; occur. In particular we study
conditions that guarantee that a strict tiling, satisfying only the one constraint dy, can
be transformed to a strict tiling satisfying the higher order constraints as well. Special
attention is devoted to the case that the points are the points of a triangular lattice.

Keywords: radio channel assignment, optimal labelling, euclidean distance, minimum
span, 2-dimensional lattice, strict tiling.

1 Introduction

Large-scale radio systems such as those used in mobile phone networks often exhibit a “cel-
lular structure” [10, 14]: The service area is divided into cells and each cell is serviced by
a transmitter. These transmitters communicate with users within the cell using a particular
radio channel (or set of channels). In any particular application the available channels are
uniformly spaced in the spectrum justifying integer labellings of these channels.

*The results in this paper were first presented at the workshop on “Methods and Algorithms for Radio
Channel Assignment” held at the University of Oxford, 8-10 April 1997
tSupported by the U.K. Radiocommunications Agency.



Suppose that a radio receiver is tuned to a signal on channel ¢y, broadcast by its local
transmitter (i.e., the one at closest distance). Reception will be degraded if there is excessive
interference from other transmitters in the vicinity. First there is ‘co-channel’ interference due
to re-use of channel ¢y at nearby sites; but there are also contributions from sites using channels
near ¢y, since in practice neither transmitters nor receivers operate exclusively within the fre-
quencies of their assigned channels. To ensure acceptable signal quality constraints are imposed
on the allowed channel separations between pairs of potentially interfering transmitters.

As a first simplification, we assume that the allowed channel separation between a pair of
transmitters is uniquely determined by the distance of the transmitters. That is, we assume
that a sequence of numbers dy, ... ,d; is given such that if two transmitters have distance
less than d;, then the difference of their assigned channels is not allowed to be equal to i.
The physical assumptions involved when this type of constraints is that signal propagation is
isotropic and independent of frequency. Our main question is to determine the minimum span
of channels needed to assign frequencies to the transmitters such that none of the constraints
is violated.

A further simplification we assume in this paper is that the transmitters are placed at
the points of an infinite 2-dimensional lattice. Regular lattices form the initial framework for
many exercises in radio spectrum planning. The assumptions involved when using lattices
are that all transmitters are identical. Restrictions on transmitter placement generally mean
that the regular structure is distorted when the plan is actually implemented. Nevertheless,
lattice planning remains an important tool for radio engineers and we will accept its inherent
assumptions.

If one needs to cover the infinite plane with equal cells, then it is well-known that the most
economic covering will use hexagonal cells. And the centres of these cells ( “the transmitter
sites” ) will form the points of a triangular lattice. It is because of this that much work has
been done on channel assignment on the regular triangular lattice. In this paper we obtain
several results that can be used for 2-dimensional lattices in general as well as some stronger
results for the triangular lattice.

This paper is organised as follows. In the next section we describe the mathematical
background used and give the main definitions. In Section 3 we look at the problem to estimate
the span for general lattices. Our starting position is a recent result in [15] proving that so-
called “strict tilings” give a good approximation for an optimal labelling if only a constraint
on co-channel re-use is assumed (in other words, if only a distance dy is given). We extend
this result to the case that higher level constrains are involved and give sufficient conditions
that assure that the higher order constraints do not mean that more channels are needed than
if just the co-channel constraint needs to be satisfied. In Section 4, again inspired by work
in [15], we sharpen the results in the case that the lattice is a triangular lattice. In that case
we also can give an indication how good the results are.

The last sections, Sections 5 to 7, contain the proofs of the results in Sections 2 to 4,
respectively.



2 Mathematical background

We identify the 2-dimensional euclidean plane with the vector space R?. If x, y are two vectors,
then their inner product is denoted by x - y; the norm of a vector x is the standard euclidean
norm ||x|| = \/X-x; and the distance between two vectors x,y is d(x,y) = ||x —y]||. If x € R?
and V C R2, V # 0, then d(x,V) = inf{d(x,v) | ve V }.

2.1 Definition

Given a set V C R?, an n-labelling of V, where n is a positive integer, is a function ¢ :
V — {1,...,n}. Given non-negative real numbers dy, d1, ... ,d, we say that an n-labelling ¢
satisfies (do,... ,dy) if for all x,y € V and for alli = 1,... , K,

dxy) <di = |p&) —e@) # i

The idea of the numbers d; is that they determine the minimum distance that two transmitters
need to have in order to be allowed to use channels that are distance i apart. In particular,
the number dj gives the minimum distance that two transmitters using the same channel need
to have.

For most radio systems it can be assumed that dy > dy > --- > di. But there exist radio
systems that can be modelled with a description where this is not the case (see, e.g., [10,
Section ITTE]) and we will not use the assumption in this paper.

2.2 Definition
The span sp(V; do,... ,dy) of a set V C R? is the minimum n such that there exists an
n-labelling of V satisfying (dy, ... ,dy).

In this paper we are interested in the case that the set V' is a 2-dimensional lattice.

2.3 Definition
A lattice A = L(m, n) is a subset of R? of the form {pm +¢n | p,q € Z}. Here m, n are two

linearly independent vectors in R?. The pair of vectors m, n is called a basis of the lattice.
1

The triangular lattice A is the lattice generated by the vectors ( é) and (1 3/?;)
2
2.4 Definition

Ifm = (zl) and n = (Zl) are the cartesian coordinates of m and n, then the cell-area of
2 2

the lattice A = L(m, n), denoted p(A), is the number p(A) = |m1 ne — many|.

The cell-area p(L(m,n)) is the area of the parallelogram spanned by the pair m,n. But this
is also equal to the area of the set of all points in R? closest to a given point in the lattice
L(m,n). Interpreting the points in the lattice as the transmitters of a radio system this means
that p(L(m,n)) is the area of the cell serviced by any one transmitter. See Figure 2.1.



Figure 2.1. The lattice A = L(m, n) with the cell area p(A).

2.5 Definition

If m,n € R? are two linearly independent vectors, then M, ., denotes the 2 X 2 matrix which

has the vectors m, n as its columns. This means we can define the lattice L(m,n)as {M_  z|

z € 7Z2}. o
Also, if x € R?, then M;’lng gives the coordinates of x with respect to m,n. It follows

that x € L(m,n) if and only_if Mi}gz € Z2.

For a given lattice A there exists a wide choice of bases for this lattice. In fact, we have that
L(m,,n;) = L(m,,n,) if and only if my = Am,; and n, = An, for a unimodular 2 x 2
matrix A, i.e., a matrix A with integral entries and determinant +1. In order to avoid too
much ambiguity we define the following.

2.6 Definition

A minimal basis of a lattice A is a pair m,n € A chosen such that
(1) ||m| is minimum, subject to m € A\ {0};

(2) ||n|| is minimum, subject to (1) and n€ A\ {pm |peZ};
(3) m-n >0, subject to (1) and (2).

Notice that a minimal basis always exists. It is obvious that we can find a pair m', n’ satisfy-
ing (1) and (2). If we have m’ - n’ < 0, then the pair m’, —n’ will form a minimal basis.

Next note that a minimal basis is not unique. For instance, if m, n is a minimal basis of A,
then so is —m, —n. And lattices such as the triangular lattice have even more choices for a
minimal basis. The problem to find a basis of a lattice satisfying certain minimality conditions
such as those in Definition 2.6 is a hard problem in higher dimensions, see [9, Section 5.3].
Fortunately, for the 2-dimensional case the so-called “Gaussian Algorithm” provides a fast tool
to find such a minimal basis (see, e.g., [4] and references therein ).

One of the main advantages to assume that the basis of a lattice is a minimal basis is that
it gives a straightforward way to determine the distance between a given vector and the points
of the lattice, as expressed in the following lemma. The floor [z] of a real number z is the
largest integer p € Z such that p < x.



2.7 Lemma
Let x € R? and let A be a lattice with minimal basis m,n. Set (5;) = Mé}gz and define

xy = |y1]m+ [y2) n € A. Then
d(x,A) = min{d(x,x,), d(x,x, + m), d(x,x, +n), d(x,x, + m+n)}.

An illustration of the essential points in Lemma, 2.7 is given in Figure 2.2. The elementary but
technical proof of the lemma can be found in Section 5.

Xpa+tm+n

X\, +n °

X)A +m

Figure 2.2. If m,n are a minimal bases of L(m,n), then one of the four
indicated lattice points is the lattice point closest to x.

3 Results for general lattices

Throughout this section we assume that A is a lattice and dy, dq, ... ,d; are non-negative real

numbers.

3.1 Definition

A labelling ¢ of a A is called an (s, t)-labelling, where s,t € A are linearly independent, if
px+8) = px+1t) = @p(x) for all x € A. In the literature (s, t)-labellings are sometimes
known as regular tilings or just tilings. The lattice A* = L(s,t) forms a sub-lattice of A. This
sub-lattice is often called the co-channel lattice. So an (s, t)-labelling ¢ has the property

x—yeAN = pEx = ey
A strict (s,t)-labelling or strict tiling is an (s, t)-labelling satisfying

x—y € A* = px) = o(y)

<

Let sp,.(A; do, ... ,d;) denote the minimum n such that there exists an n-labelling of A satis-
fying (do, ... ,dx) which is a strict tiling.

Regular tilings and strict tilings have been an important tool in the construction of channel
assignments for the triangular lattice [1, 5]. Because of this it is surprisingly that it was shown
only recently that regular tilings provide good assignments, i.e., assignments with a span that
is close to the optimal span.



3.2 Theorem [15]
The spans sp(A; do) and spy(A; do) satisfy

d? d
1V3 9 < sp(A; do) < spa(A; dy) < 3232 4+ 0O(dy dy — 00).
2 p(A) — ( ) — T( ) — 2 p(A) ( ) ( )
Theorem 3.2 shows that strict tilings give good channel assignments for lattices if we are only
interested in the distance that channels can be re-used, and for large values of dy. For more
general constraints dy, ... ,d; very little is known. In light of this and of Theorem 3.2 the
following seems an interesting problem.

3.3 Question
Given a lattice A, for which constraints dy, ds, ... ,d can we guarantee

spp(A; do,dy, ... dy) = spp(A; do)?

A further idea behind Question 3.3 is that one might expect that for small values of dy,ds,
... ,dg, depending on dj, the span is determined by the minimum co-channel re-use distance dg
only. In this section we will try to give a partial answer to Question 3.3. First we take a closer
look at the mathematics of strict tilings.

Given a lattice A = L(m,n) and a co-channel lattice A* = L(s,t) generated by linearly
independent vectors s,t € A, we can consider A as an infinite abelian group (with standard
vector addition as the group operation) and A* as a subgroup of A. Then A* is in fact a
normal subgroup of A and, since s,t € A are linearly independent, the quotient group A/A*
is a finite abelian group. If s = s;m + son and t = ¢ty m + ¢y n, then it is an easy exercise to
show that the order of the quotient group is |A/A*| = |s1ta — sat1].

Combining everything, we can view a strict (s, t)-labelling as a labelling of the group A/A*
in which every element (every coset of A*) receives a different label. In particular this means
that every strict (s, t)-labelling of A has at least |A/A*| channels. The following theorem gives
a sufficient condition for the existence of a strict tiling labelling with exactly |A/A*| channels
satisfying the constraints.

If X is a subset of R? and A € R, then A X denotes the set { \x | x € X }.

3.4 Theorem

Let s,t € A be linearly independent vectors which generate the sub-lattice A* = L(s,t) and
such that there is a strict (s, t)-labelling of A satisfying (dy). Suppose there exists a set B C A
such that the following two conditions are satisfied :

(1) Theset {b+ A*| b € B} generates the quotient group A/A*.

(2) For each vector a in the convex hull of B (here we regard all points as vectors in R? ),

1 1
d(a,=A*) > =d; foralli=1,... k.
i i

Then there is a strict (s,t)-labelling of A with exactly |A/A*| channels satisfying (dy, ... ,dg)-



The proof of Theorem 3.4, as well as the proofs of the remaining results in this section, can be
found in Section 6.

In [11] Theorem 3.4 is used to design an algorithm to find radio channel assignments on
2-dimensional lattices. In this section we look at some corollaries that give sufficient conditions
for the existence of good labellings and such that the conditions are somewhat easier to check
than the complicated condition in Theorem 3.4. The next result shows a corollary in which it
is no longer needed to find a generating set for the quotient group A/A*.

If m,n is a minimal basis of the lattice A, then we define v, = |[n — m||. Note that v, is
independent of the choice of the minimal basis. For the triangular lattice A we get 7y, = 1.

3.5 Theorem
Let s,t € A be linearly independent vectors which generate the sub-lattice A* = L(s,t) and
such that there is a strict (s,t)-labelling of A satisfying (dy). Suppose there exists a vector
z € R? such that

1 1
d(z, =A%) > —d; +7, foralli=1,... k.
i i
Then there is a strict (s,t)-labelling of A with exactly |A/A*| channels satisfying (dy,. .. ,dg)-

Theorem 3.5 gives a partial answer to Question 3.3, provided we know the co-channel lattice A*
which gives a labelling of A with sp.(A; dg) channels. But since

spr(A; do) = min{ [A/A*| | A* a sub-lattice of A and min{||x|| |x € A*\ {0}} > do }

and since there exist only a finite number of sub-lattices of A with |A/A*| < N for every N,
we can fairly easily find the optimal strict tilings of A satisfying (dp).

The last results of this section give some further corollaries of Theorem 3.4. These corollar-
ies provide an answer to Question 3.3 independent of a co-channel lattice and only dependent
on the value of the constant -, .

3.6 Theorem
(a) Ifdy < 5+3do—,, then spr(A; do,dy) = spp(A; do).
(b) Foralle > 0 and dy large enough, if d > (3 V3+¢) do, then spy(A; do,d1) > spp(A; do).

Theorem 3.6 can be compared to similar bounds for the triangular lattices as they appear in
[6, Section II.B] and [13, Section III].

3.7 Theorem
1
24do

Let Ay be the lattice generated by the vectors (do) and ( 1 ) If there is a vector z € R?
0 5do /3

such that
1 1
d(g,gAO) > %\/é({diﬂA) foralli=1,...k,
then spp(A; do,di,. .. ,dy) = spp(A; do).

3.8 Corollary
Ifdy < 3V2do —, and dy < §v2dy — 2, then sp;(A; do,dy,d2) = spp(A; do).



4 Labellings and strict tilings for the triangular lattice

As mentioned before, the triangular lattice has been the object of significant research in the
area of radio channel assignment. In [15] a stronger version of Theorem 3.2 is proved in the
case that the lattice A is the triangular lattice. ( See also [2, Theorem 3].)

For a non-negative real number d let d* denote the minimum value of \/p2 + pq + ¢% such
that p, q are integers and p? +pq+ > > d?. Note that d < dt < [d] and that in fact d* is the
minimum euclidean distance between two points in A subject to that distance being at least d.

4.1 Theorem [2, 15]
For any dy > 0, sp(A; do) = spp(4A; do) = (df )%

Using Theorem 3.5 and the result above we can prove stronger versions of some of the results
in Section 3 for the triangular lattice.
The proofs of the results in this section will be given in Section 7.

4.2 Theorem
(a) Ifdy < 3v3do— 1, then spp(A; do,dy) = spp(A; do).
(b) Ifdy >3 and dy > 3 /3dg, then spp(A; do,dr) > spp(4; do).

4.3 Theorem
1
2 do

Let Ay be the lattice generated by the vectors (do) and (1 ) If there exists a vector
0 2doV3

z € R? such that
1 1 .
d(z,~ Ny) > =d;i+1 foralli=1,... ,k,
1 1

then spp(A; do,dy, ... ,diy) = spp(A; dp).

4.4 Corollary
Ifdy < £V3do— 1 and dy < 3 V/3do — 2, then spp(A; do,dy,d2) = spp(A; do).

A question that arises when studying sufficient conditions such as those in the theorems above
is the sharpness of the conditions. It seems very unlikely that the conditions are sufficient and
necessary in general. But for the special case of £k = 1, we see in Theorems 3.6 and 4.2 that
our results are close to best possible.

In general it is very hard to get an idea about the sharpness, mainly because we only
know sp;.(A; do, ... ,dy) for a very limited number of choices of dy, ... ,d;. Nevertheless, in
the remainder of this section we show that for some special cases the result in Theorem 4.3 is
surprisingly close to a best possible result.

The following proposition can be proved using the ideas in the proofs of [7, Lemma 2.2], [8,
Lemma 2.1] or [12, Proposition 2.5]. We use the notation m * d for a sequence of m times d.

4.5 Proposition
Let A be a lattice. Then for all dy and k, sp;(A; (k4 1) *xdy) = (K + 1) spp(A; do) — k.



From this proposition and Theorem 4.1 we easily deduce that for all k£ and dy > d it holds that
spp(A; do, k*d) > spp(A; (k+1) xd) = (k+ 1) (d*)? — k. In particular we get the following.

4.6 Proposition
1

vk +1

For all e > 0, k and dy, where dy is large enough and such that dy > d > (
have sp,.(A; do, k * d) > spp(A; dp).

+ E) do, we

The following result, which is a corollary of Theorem 4.3, shows that we can guarantee

spp(A; do k + d) = spp(A; do) for d a little bit smaller than \/l%

, provided dy and k

are large enough.

4.7 Theorem
For all A with0 < A < %\/?_) ( =~ 0.931), there exist k and dy large enough such that if

do
d< A\/Tﬁ’ then sp(A; do, k * d) = spp(4; dy).

5 Proof of Lemma 2.7
The following observation will be used several times in the proofs of this paper.

5.1 Lemma
Let m,n be a minimal basis of a lattice A. Then

In|*> > [m|* > 2m-n.

Proof Sincen—-m € A\ {pm |p € Z} we get by the choice of n that |n — m|?> > ||n|?,
hence |m||? + |n||? — 2m - n > ||n||2. This gives |m|? > 2m - n. The fact that ||n||?> > ||m)||?
follows from the definition of a minimal basis. ]

Proof of Lemma 2.7 Since d(x,A) = d(x — x,,A), we can assume that x, = 0 and hence
x = y; m + yo n for some 0 < y1,y2 < 1. We first prove that

d(za A) = min{ d(za Q)a d(za m)’ d(§7 E)a d(zaﬂ - m)a d(K,m - n)a d(xa m + Q) } (5'1)

Let pm + gn € A. First consider the case p,q < 0. Then

d(x,pm+g¢n)® = ||x— (pm+ gn)|?
= |x|*+|pm+gn|? —2x- (pm + gn)
= d(x,0)* + [[pm+gn|> — 2 (y1 p|m|®* + y2¢|n|* + (y1 ¢ + yop) m - n).

Now using that p,q < 0, y1,72 > 0 and m - n > 0, we get that d(x,pm + ¢n)* > d(x,0)*.

N



Next consider the case p +q < 0, ¢ 1. Seta=n—-m. Then x = yym+ yon =

>
(y1 +y2)m+y2a and pm +gn = (p+ ¢) m + ga. This means that
d(x,pm+gn)’ = |x—a+a—((p+¢)m+qa)|
= |x—al*+|la- ((p+¢) m+qa)|? (5.2)
+2(x—a)-(a—((p+9g)m+gqa)).
Now use Lemma 5.1 toobtainm-a=m-(n—m)=m-n—m-m < —m-n < 0. Using
that x —a = (y1 + y2) m + (y2 — 1) a and together with y; +y2 >0, p+¢ <0, y2 —1 <0 and
q — 1 > 0, we obtain
(x—a)-(a-(p+gm+gqa)) = (11 +y2)m+(y2—1)n) - (~(p+¢m—(¢—1)n)
= —(y1+w2) (p+9) |ml* — (2 —1) (¢ — 1) | a?
(1 +y2) (-1 +(y2—1)(ptg)m-a
> 0.
This means that from (5.2) we obtain d(x,pm + ¢n)? > ||x — a||?, hence d(x,pm + gn) >

Continuing in a similar way, we get the results

d(x,pm+qn) > d(x,0), if p<0,q<0;
dx,pm+gqn) > dix,n—m), if p+¢<0,g>1;
d(x,pm+gn) > d(x,n), if p<0,p+qg>1;
dx,pm+g¢n) > d(x,m+n), if p>1,¢>1;
d(x,pm+qn) > d(x,m), if p+¢g>1,¢<0;
dx,pm+g¢n) > dx,m—n), if p>1,p+¢<0,

which proves (5.1).
Some straightforward manipulations, using Lemma 5.1, give
Ix - (0 —m)|* — [x—n|* = 2y +1) |lm|*+ (292 —2)m-n
> (4y1 +2y2)m-n > 0,

which proves d(x,n — m) > d(x,n). In a similar way we can prove d(x,m — n) > d(x, m).
The lemma follows from (5.1). [
6 Proofs of the results in Section 3

6.1 Definition
Let G be a finite group and S C G, e € S. The Cayley digraph D = D(G; S) is defined by

V(D) =G and AD) = {(g9,99) |lg€ G, s€S}.

A hamiltonian path in a digraph D is a directed path containing all vertices of D.

10



Instead of giving the vertices of a hamiltonian path in a digraph, we can also describe the first
vertex and the arcs of the path. For a Cayley digraph this means that it is enough to prescribe
the first vertex and the sequence of elements from S that form the arcs. Moreover, since the
same collection of arcs give a hamiltonian path from any starting vertex, we only need to give
the arcs of the path.

The question which Cayley graphs and digraphs contain a hamiltonian path (or cycle) has
a long history. See, e.g., [3, 16] for a survey. For our purposes we only need the following
special, easy result.

6.2 Lemma
Let G be a finite abelian group and S C G, 0 ¢ S. Then D(G;S) contains a hamiltonian path
if and only if S generates G.

Proof Since D = D(G;S) is connected if and only if S generates the group G, it is obvious
that the condition is necessary.

Now let S be a generating set of G. We use induction on |S| to show that D contains
a hamiltonian path. If |S| = 1, say S = {s}, then (|G| — 1) % s is the collection of arcs of
a hamiltonian path in D. Now assume S = {s1,82,...,5k}, k > 1. Let G’ be the abelian
group generated by S’ = {s1,$92,...,5k_1}. By induction we know that D(G’;S") contains a

hamiltonian path. Say H = sMs® ... is the sequence of arcs on such a path. Since G is
abelian, G’ is a normal subgroup of G. Set m = |G /G|, the order of the quotient group. Now
it is straightforward to check that H, sy, H,sg,... , Sk, H, where we take m copies of H, is a
hamiltonian path in D. [ ]

Now we can give the proof of Theorem 3.4.

Proof of Theorem 3.4 From the definition of a strict tiling it follows that if there exists

one strict (s,t)-labelling of A satisfying (dp), then in fact every strict (s,t)-labelling of A

satisfies (dp). Let B C A satisfy the conditions in the theorem. Set n = |A/A*| and S =

{b+ A* | b € B}. Then by Lemma 6.2 and condition (1) in the theorem, there exists a

hamiltonian path in the Cayley digraph D(A/A*;S). Suppose the arcs of this hamiltonian

path are b; + A*, b, + A*,... ,b,, | + A*, for certain b; € B. Next define the vectors ¢y, ¢,
- 1€ by

J
co =0 and gj:i_zlhi forj=1,... ,n—1.

Then the cosets ¢+ A*,¢; +A*, ... ,¢,,_;+A* form a partition of A (the cosets are the vertices
of the hamiltonian path in D(A/A*;S)). So if we define ¢ : A — {0,... ,n—1} by

px) =5 if xec;+A% (6.1)

then ¢ is a strict (s,t)-labelling of A with n = |A/A*| channels. It remains to show that this
labelling satisfies the constraints (dy, ... ,d).

11



For this, let conv(B) denote the convex hull of B. By condition (2) in the theorem we have

1 1
d(a, H A*) > H d; for alla € conv(B) and i =1,... ,k.

This is equivalent to

d@@',A*) > d; foralla'€i-conv(B)andi=1,...,k. (6.2)
Now look again at the sequence by,...,b,_; € B C conv(B). If we take a subsequence
b,.1,byi9,... b, , of ¢ consecutive elements of this sequence (0 < p, 1 < g <k, p+q<
n—1), then

1 1
by, +--+byy, = q-(ahpﬂ—i----—i-ahpﬂ) € ¢-conv(B).

T
The last step follows since conv(B) is a convex set, hence >  A\;a; € conv(B) for any choice

=1
T

of r, a; € conv(B) and \; € R with A\; >0 and ) A; = 1. In particular we find
i=1

Qp—i—q_g — bp+1+...+h

p = D, g € ¢ conv(B).

Combining this with (6.2) we get that d(c

Cpiqg — p A*) > dg, which is equivalent to

div,w) > d, forallvec

ptq AT and w € ¢, + A*.

From this last inequality, which holds for all p,q with0 <p, 1 < ¢ <k, p+q <n—1, and from
the remark in the first sentence of this proof, it follows that the labelling ¢ defined in (6.1)
satisfies the constraints (dy,d, ... ,dy). This completes the proof of the theorem. [ |

In the proof of Theorem 3.5 the following is essential.

6.3 Lemma

Let A = L(m,n) be a lattice, where m,n form a minimal basis of A, and z € R?>. Let
D= {x € R |dxz) < Y5 } be the disk with centre z and radius vv,. Then there exist
b,,by,b; € AND withby, —b; =m and by —b; =n, or by —b; = —m and b; —b; = —n.

Proof Since m,n form a basis of R?> we can write z = z; m + 2z n. Following Lemma, 2.7,
set zy, = |z1]m+ [22|n € A, and set 2] = 21 — |21], 25 = 20 — |22], 2 = 2zl m + 2z, n. Then
0 < 2,2}, < 1. First suppose 0 < 2{ + 2}, < 1. Then z' lies in the triangle with vertices 0, m
and n. Since the lengths of the edges of this triangle are |ml||, |n|| and ||n — m||, of which
|In — m]|| is the longest, it follows that all vertices of the triangle lie within the disk D' with
centre z' and radius |[n — m|| = y,. Hence the points b; =z,, by =z, + mand by =z, +n
satisfy the requirements in the lemma.

If 1 < 2} 42 < 2, then we can prove similarly that the points b; =z, +m+n, b, =z, +n
and b; = z, + m satisfy the requirements in the lemma. [ |
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Proof of Theorem 3.5 Let the vector z € R? satisfy the condition in the theorem. We will
show that this means that there exists a set B = {b;,by,bs} C A satisfying conditions (1)
and (2) of Theorem 3.4. Using Theorem 3.4 this will yield a proof of the theorem.

Define D = {x € R? | d(x,z) <+, }. Then by the previous lemma there exist by, by, bs €
AN D such that by —b; = m and b; —b; =n, or b, —b; = —m and by —b; = —n. Set
B = {by,bs,b3}. It follows that both m + A* and n + A* are in the group generated by
{b; + A*,by + A*, by + A*}. Since {m, n} generates the group A, {m + A*,n + A*} generates
the quotient group A/A*, hence {b; + A*, b, + A*,bs + A*} generates the group A/A*. This
proves that B satisfies condition (1) in Theorem 3.4.

If a € D, then d(z,a) < v, and hence

1 1 1 .
d(g,;A*)Zd(g,;A*)—'yAZZdi foralls =1,... k.
Note that the tree vectors by, by, by lie within the disk D. Hence also the convex hull conv(B)
lies within this disk. So certainly for every a € conv(B) the inequality above holds, which
means that B satisfies condition (2) in Theorem 3.4. [

Proof of Theorem 3.6 Choose s,t € A such that there exists a strict (s, t)-labelling of A

with |A/A*| = sp.(A; do), where A* = L(s,t). This means ||s|,||t|| > dop. We assume that s,t
s-t

form a minimal basis of A*. Take w = t — Wg, i.e., w is the projection of t on the line

perpendicular to s, and set z = 55 + %ﬂ (see Figure 6.1 for a sketch of the situation ). Then

N

Figure 6.1. The essential points from the proof of Theorem 3.6 (a).

it is easy to show that

.t)2

d(z,0)" = d(z,8)" = 1 sl + 51itl* - 5 (isﬂﬁ
Since |[t]| > [|s]| and s-t < % |s||?, by Lemma 5.1, this gives d(z,0)? = d(z,s)? > % Is||2, hence
d(z,0) = d(z,5) > +V3|s|| > LV3dy > dy +7,. 63

Next notice that

(s-t)?
(Gllwl)?* = 58> — 5 T > LIl

13



Since w is the projection of t on the line perpendicular to s we get

d(z,t) = d3s+iwt) > diw,w) = 2|lw|| > V3]s > 2V3dy > di +7,,

Wi

and, similarly, d(z,s+t) > d; ++,. Together with (6.3) and Lemma, 2.7 we find that d(z, A*) >
di +v,- By Theorem 3.5 this completes the proof of (a).

In order to prove (b) we take a closer look at the possibilities we have for s,t € A such that
there exists a strict (s, t)-labelling of A with |A/A*| = spp(A; do), where A* = L(s,t). We can
always assume that s,t form a minimal basis of A*. Define w as above. Since s-t < % lIs]|?
and [|t|| > ||s|| this gives

(s-t)

lwl* = lItl* - e 2 161 = 5 lsl® > § l1s*. (6.4)

Now the number of points from A in the parallelogram {A1s + A2t | 0 < \; < 1}, which
is equal to the number of channels in a strict s,t-labelling of A, is equal to the area of the
parallelogram divided by the cell area p(A). Since the area of the parallelogram is equal to
lIs|| - [[w||, we can use (6.4) and the fact that ||s|| > dy to estimate

3 1g([2 )
spp(A; do) = |A/AY] = ”ﬂ(ﬂ)ﬂ” > \/p;(yj” > %ﬁ%. (6.5)
a2

On the other hand, we know from Theorem 3.2 that spp(A; do) < 2 V/3 TX) + O(dp) (do —
o0 ). Looking back at all the inequalities we used to obtain (6.5), this means

Isll = (1+0(1))do

It = (1+o(1) sl = (1+0(1))do (do — o0). (6.6)

s-t = (z+o()[Isl* = (5 +0(1))d}

Now suppose we have a strict s, t-labelling of A satisfying (dy, d1). Without loss of generality we
can assume that the points in A* receive label 0. This means that the points receiving label 1
have distance at least d; from the points in A*. The situation is sketched in Figure 6.2, where
the “forbidden” area for a point to have label 1 is indicated by the grey disks of radius d;.
So label 1 must appear in the triangle-shaped black areas between the disks. By (6.6) the
triangles in Figure 6.2 spanned by 0,s,t and by s,t,s+t ( which are congruent ) have all edges
equal to (14 0(1))dy (do — 00). It follows that if di > (3 V3 +¢€) dy for a fixed e, then for dy
large enough the grey disks cover the whole area, hence there is no point that can get label 1.
So in this situation we must find sp,.(A; do,d1) > |A/A*| = spp(A; do). [ |

Proof of Theorem 3.7 Choose s,t € A such that there exists a strict (s, t)-labelling of A
with |A/A*| = spp(A; do), where A* = L(s,t). This means ||s||, ||t|| > do. We assume that
s,t form a minimal basis of A*. By the definition of a minimal basis and Lemma 5.1 this

means 0 <s-t < % ||s||>. Define the linear transformation 7' : R? — R? by T(C(i)()) = s and

14



Figure 6.2. The grey area is “forbidden” for label 1 if the points of A*
have label 0.

1
2 ¢0 ” _” .
2 _ 2
T(% A \/?—)) t. We want to show that for all x € R*, x # 0, || || \/; For this, take

1
x € R2, x # 0, and set x = 21 (do) + 9 (1 2 do ) Then ||x||? = (2% + 21 72 + 23) d3. Also,

Tx = x18+ z2t, hence
ITx|]> = z7|ls]” + 221 228 - t + 25 [It]°. (6.7)

First consider the case z1 9 < 0. Then since st < % lIs||? < %do, we find 221 z9s -t >
71 T2 d3. Using that [|s], [|t]| > do we obtain from (6.7) that | Tx||? > 2% d3 + z1 z2 d3 + 23 d% =

I, hemee ﬂ” >1> /2.

Next consider the case z1 o > 0. This time we use s+t > 0 to obtain ||Tx|? > 22 d% +z3 d3.
|ITx]* o + a3
Il 2]+ 2122 + 25
x% + a:%
:v% +x122 + x%

. . Tx
means that in this case we have ITx| > \/g as well.

[b]

By the condition in the theorem there exists a z € R? such that for all s = 1,... ,k and
1 1 1
x € <Ay, ||z — x| =d(z,x) > %\/E (—_ d; + 'yA). This means that for all x € = Ag we have
i i i

This means

. Standard calculus shows that the function f(z,z2) =

has a minimum for z; = 2 for which the function value is f(z1,z1) = % This

1 1
IT2—7x| = |T@-%)| > 2lz—x| = /2 3V6 (5 di+,) = < di+,

1 1 1 1
Since T(; Ao) = ;A*, we find that d(T'z,y) > 2di—|—'yA foralli=1,... ,kandy € ;A* and
we are done by Theorem 3.5. [ |
Proof of Corollary 3.8 We can rewrite the conditions in the corollary as dy > 3 v/2 (d1+7,)

1
. —do
and dy > 3vV2(Ldy + . Define Ay as in Theorem 3.7 and set z = 2 . Then
0 = (2 2 VA) 0 - (%\/gdo)

15



straightforward calculus shows that
d(z,Ao) = £V3do > 1V3-3V2(di +,) = $V6(di +,)
and
d(Z,%AO) = %\/?_)do > %\/5-3\/5(%@ +79,) = %ﬁ(%dQ—l—’yA).

The result follows from Theorem 3.7. [ |

7 Proofs of the results in Section 4

1
Throughout this section we will fix the minimal basis m = ( é) and n = ( 1 \2/?—)) Before

proving the results in Section 4, we take a closer look at Theorem 4.1. Let dy > 0 and let
s,t € A be such that there exists an (s,t)-labelling of A with |A/A*| = sp,(A; dy), where
A* = A(s,t). It follows from the proof of Theorem 4.1 in [15] that there exist integers p,q
such that

df = Vp*+pg+, 1
_ _ (PT354q
s =pm-+gqgn = ,
(% \/?7)1 (7.1)
p— 5(])
+4q)V3

Without loss of generality we can assume

t =g¢(n—m)+pn = (

Al\?l?—"Q +

p>q>0. (7.2)
Finally, recall that v, = 1.

Proof of Theorem 4.2 Part (a) follows immediately from Theorem 3.6 (a).

For (b), choose s,t € A such that there exists an (s,t)-labelling of A with |A/A*| =
spp(A; do), where A* = A(s,t). Since dy > V/3, we are guaranteed that spr(A; do) > 4.
Choose p, g satisfying (7.1) and (7.2). This means that ||s|| = |[t|| = df and s-t =  (dg)?. Fol-
lowing the proof of Theorem 3.6 (b) we can conclude that if d; > § v/3d{, then sp,.(A; do,d1) >
spp(A; do).

So we are left with the case di = £ v/3d{. Again following the proof of Theorem 3.6 (b),
we can assume without loss of generality that all points in A* have label 0. Then the only
points that have distance at least d; from A* are the points in (% s+ % t) + A* and the points
n (%§ + %L) + A*. Without loss of generality, we can choose the points in (%g + %L) + A*
to receive label 1. Then the points at distance at least d; from (% s+ %L) + A* are the points
in A* and in (§§ + %L) + A*. Since the points in A* already have label 0, we must assign
label 2 to the points in (%g + %g) + A*. But now the points at distance at least d; from
(3s+ 2t) + A* are the points in A* and those in (3s + $t) + A*. All points in these sets
have label 0 or 1, hence there are no points to which we can assign label 3 to. Since we must
assign as least 4 labels, we can only conclude spp(A; do,di) > spp(A; do). [ ]
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Proof of Theorem 4.3 We can follow the proof of Theorem 3.7, using s,t defined in the
beginning of this section. Considering the linear transformation 7' : R? — R? defined by

1
T(do) =s and T( 12 do ) = t, we find that for all x € R?, ||Tx|| > x. This gives that for
O 5 d() \/g

all x € %Ao,

d(Tz,Tx) = Tz - Tx|| = [T(z—%)|| > |z —x|| = d(z,x) > di+1.
Since T(% AO) = %A*, we are done by Theorem 3.5. [ |
Proof (if Corollary 4.4 The corollary follows from Theorem 4.3 by considering the point
5= (125) "

Proof of Theorem 4.7 Let 0 < A< % 3 and choose k and dy such that

E—1 1+1v3 2k
AP+ 2 A+ < LB 7.3
k+1 k+ 1 dy ~ 2 (7.3)
dO . . . 21
< . 9. =
Assume d < A NS Define Ay as in Theorem 4.3. We will show that the point z (22)
with
do+d?>+d
o= d+1  and g = HFdte
dy—d

satisfies the conditions of Theorem 4.3.
Fori=1,... ,k and p,q € Z, define

zi(p,q) = §d0+%%d0’ vilpq) = %%do\/g and  x;(p,q) = (ZZ((gg)))

1
This means that the x;(p,q) are precisely the points in = Ag. So we need to show that
i

1
d(z,x;(p,q)) > =d + 1 for all 4,p,q. Using Lemma 2.7, it is more than enough if we do
i
this for p,q > 0.
1 1
First observe that 21 = d+1 > ~d+ 1, hence d(z,x;(0,0)) > =d + 1 for all i. We now
i i

do —
consider the case g=0and p > 1. If 1 < ;

;,thengdozd—l—2andweﬁnd

1 1
d(z,xi(p,0)) — - d 2 |21 —i(p,0)| — - d

pdop —d
i

1
:%do—(d—l—l)—;d: —(d+1)

5 (pdo—d)(d+2)
- do—d

—(d+1) > 1.
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dy—d
Whereas if ¢ > ;——i-?’ we can argue

1 1 do+d?+d 1
d . —=d > —y; ——d = ———-0-—-d
(Z,&( 70)) i = |22 yz(p,0)| i dO —d 7
do+d?>+d d+2
> — d = 1.
- do—d do—d
1
It follows that d(z,x;(p,0)) > —~d+ 1 for all and p > 1.
)
do
Next consider the case ¢ > 1. From (7.3) and the fact that d < A ——— we get that
x ¢z (7:3) AR R
k— 1) —+— <1
( )d2+(xf+)d0+do_f
do+d?>+d
This last inequality is equivalent to — ( doV/3—d) — % > 1. This means that for all
0 —
do+d?>+d
q>1we have do V3 > \/§ > u and hence
1

do—d

1
d(z,x;(p,q)) — z d > |z —yi(p,q)| — A d

do—d
1 do+d*>+d
= - — _d_
Z_(qu()\/g ) do—d
1 do+d?> +d
> (L —d) —
_k(Qdo\/?; d) - > 1

1
We find that d(z,x;(p,q)) > —~d + 1 for all 4, p and ¢ > 1. This completes the proof of the
)

theorem. n
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