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Abstract

We prove that for any planar graph G with maximum degree A it holds that the
chromatic number of the square of G satisfies x(G?) < 2A + 25. We generalise this
result to integer labellings of planar graphs involving constraints on distances one and
two in the graph.
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1 Introduction

Throughout this paper, V = V(G) and E = E(G) shall denote the set of vertices and the
set of edges, respectively, of a graph G. For vertices v and v in G, we let distg(u,v) denote
the distance between u and v, which is the length of the shortest path joining them. For
integers p,q > 0, a labelling of a graph ¢ :— {0,1,... ,n — 1}, for a certain n > 1, is called
an L(p, q)-labelling if it satisfies:

> p, if distg(u,v) = 1;
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lp(u) — e(v)| > q, if distg(u,v) = 2.

The p,g-span of a graph G, denoted A\(G;p,q), is the minimum n for which an L(p, q)-
labelling exists. The problem of determining A\(G; p, q) for certain graphs or classes of graphs
(or at least finding good lower or upper bounds ) has been studied before, see e.g. [3, 4, 5, 6, 10].
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The main inspiration for L(p, g)-labellings in those papers comes from problems related to
the Frequency Assignment Problem on large-scale telecommunication networks.

Determining A\(G;1,0) amounts to finding the chromatic number x(G) and for planar
graphs we have the famous 4-Colour Theorem.

1.1 Theorem ( APPEL & HAKEN [1], APPEL et al [2], ROBERTSON et al [9])
If G is a planar graph, then x(G) < 4.

For general p, the above is easily seen to yield the following upper bound.

1.2 Corollary
If G is a planar graph, then A\(G;p,0) <3p+1.

Now we shall look at the case when ¢ > 1. The problem of finding an L(1, 1)-labelling amounts
to finding a proper colouring of the square of G. The square of a graph G (denoted G2) is
defined such that V(G?) = V(G), and two vertices u and v are adjacent in G? if and only if
distg(u,v) € {1,2}. The question of finding the best possible upper bound for the chromatic
number of the square of a planar graph seems to first have been put forward in WEGNER [11]
in 1977. Wegner conjectured the following.

1.3 Conjecture (WEGNER [11])
Let G be a planar graph with maximum degree A, then

A+5,  HfA<ALT;

G?) <
x( )—{LgAJH, if A> 8.

Wegner also gave examples illustrating that these upper bounds are best possible and proved
that the square of a planar graph with A = 3 can be coloured with 8 colours. He conjectured
that in fact 7 colours should suffice. More information and problems relating colouring and
distances in graphs can be found in JENSEN & TOFT [8, Section 2.18].

As a special case of Theorem 1.5, to be formulated later, we obtain the following upper
bound:

1.4 Theorem
If G is a planar graph with maximum degree A, then x(G?) < 2 A + 25.

A straightforward argument shows that if G is a graph with maximum degree A, then we
must have A\(G;p,q) > gA +p —q+ 1. It is not too hard to construct planar graphs G
with A(G;p,q) = %qA + c1(p,q) where ci(p,q) is a constant depending only on p and g.
As far as upper bounds for A(G;p, q) are concerned, in CHANG & KUo [3] it is shown that
A(G;2,1) < 2A?+A. This suggests that for graphs in general, the best possible upper bound
for A\(G;p,q) will be of the order 2¢ A2. Our main result shows that for the case when G is
planar, we can reduce the order of the upper bound.



1.5 Theorem
If G is a planar graph with maximum degree A and p, q are positive integers with p > ¢, then

MG;p.q) < (4g—2)A+10p+38q—23.

Theorem 1.4 follows immediately from Theorem 1.5 by setting p = ¢ = 1 and using the
observation A\(G;1,1) = x(G?).

The remainder of this paper will form the proof of Theorem 1.5. In the next section we
will prove Lemmas 2.2 and 2.3 that describe certain “unavoidable configurations” in planar
graphs. The existence of these unavoidable configurations will then be used to prove the

main theorem in Section 3.

2 Discharging and unavoidable configurations

For problems involving colouring of planar graphs, the usual method of attack is to estab-
lish the existence of certain small, so-called, unavoidable configurations. For instance, it is
well-known that a simple planar graph has a vertex of degree at most five. This was used in
HEAWOOD [7] to prove the 5-Colour Theorem, namely that any planar graph has a proper
colouring using at most 5 colours. A new proof of the 4-Colour Theorem recently found by
ROBERTSON et al [9] establishes the existence of a large number of unavoidable configura-
tions for planar triangulations satisfying a certain connectivity constraint. For our proof of
Theorem 1.5 we need two structural results. These results are based on a certain method of
discharging, similar to methods found in the literature.

Let G be a graph. For a vertex v € V, we let Ng(v) denote its neighbour set, use
dg(v) = |Ng(v)| for its degree, and let E, denote the set of edges incident to v ( we omit the
subscript G in most cases ). For simple graphs, an edge e with end vertices v and v will often
be denoted as wuw.

Now let G be a simple planar graph with a fixed embedding in the plane. Let F' denote
the set of faces of G. For each f € F let d(f) be the number of edges belonging to f, where
cut-edges are counted twice. For an edge e € E let t(e) denote the number of triangular faces
containing e, and for a vertex v € V' let #(v) be the number of triangular faces containing v.
Using Euler’s formula, one easily obtains that ( see, e.g., JENSEN & TOFT [8, Section 2.9])

D odw) —4) + Y _(d(f) —4) = 8. (1)

veV feF

We shall associate a charge ¢(v) to each vertex v € V' where ¢(v) = d(v) — 4. Similarly,
we associate a charge ¢(f) = d(f) — 4 to each face f € F. According to (1), the sum of
the charges taken over all vertices and faces will be negative. We shall transfer the charge
of vertices and faces to the edges of the graph, in such a way that the total charge remains
constant. There are three steps to perform:



(2.1) For an edge e = uv € E, we give e a basic charge py(e) where, given e belongs to faces
f,g € F, we set

_ou) e | e(f) | elg)
2 = G T aw T ) @)

If e belongs to only one face f € F, then we give e a basic charge as in the above

taking g = f.

(2.2) For each triangular face with vertices u,v,w, where 3 < d(u) < 5, d(v) > 6, and
d(w) > 6, do the following:

Transfer a charge of % ( %(% — %) from vw to uw.

Transfer a charge of % ( % — %) from vw to uw.

(2.3) For each triple u,v,v" in V, with uv, uv’ € E,, d(u) =5, d(v) > 6, d(v') > 6, t(uv) = 2,
and t(uv') = 0 transfer a charge of § from uv’ to uv.

After doing all possible charge transfers once, let ¢(e) be the resulting charge on each edge
e € E. Since the total charge on the edges is seen to be equal to the total charge on the
vertices and faces, we have from (2) that

S wle) = Yo20(e) = o 2mi(e) = 16, 3)

vEV e€E, eck eck

The following properties, whose proofs follow by following the two discharging methods
given above, are used at numerous places in the sequel, although usually implicitly.

2.1 Proposition
Let G be a simple planar graph with a fixed embedding and let e = uv be an edge in G.

(i) If pp(e) < 0, then d(u) <5 or d(v) <5, and p(e) > pp(e).
(ii))  If pp(e) > 0, then p(e) > 0.

Let v be a vertex and vu an edge in a simple planar graph with a fixed embedding. If the
edge vw is an edge which directly precedes vv;, counting the edges of E, moving clockwise
around v, then we shall denote w by u . If vw directly succeeds vu, then we denote w by u*.

We need two structural lemmas which give specific unavoidable configurations for planar
graphs. The first lemma is sufficient to prove the main theorem for graphs with maximum
degree A > 12.

2.2 Lemma

Let G be a simple planar graph. Then there exists a vertex v with k neighbours vi,vs, ... ,vg
with d(vy) < --- < d(vg) such that one of the following is true:
i) k<2



(i) k=3 with d(v,) < 11;
(iii) k=4 with d(v1) <7 and d(ve) < 11;
(iv) k=5 with d(v1) <6, d(ve) <7, and d(vs) < 11.

To be able to prove the main result for graphs with maximum degree less than twelve, we
need a second lemma, giving a different collection of unavoidable configurations.

2.3 Lemma

Let G be a simple planar graph with maximum degree A. Then there exists a vertex v with k
neighbours vy, vs, ... ,v, with d(vy) < --- < d(vg) such that one of the following is true:

(i) kE<2;

(i) k=3 withd(v;) <5

(iii) k= 3 with t(vv;) > 1 for some i;

(iv) k=4 withd(v;) <4

(v) k=4 with t(vv;) = 2 for some i;

(vi) k=15 with d(v;) <4 and t(vv;) > 1 for some i;

(vii) k=5 with d(v;) <5 and t(vv;) = 2 for some i;

(v1) <7 and t(vv;) > 1 for all i;

) <5, d(v2) <7, and for each i with t(vv;) = 0 it holds that d(v;) < 5.

(viii) k =5 with d(v;
(ix) k=5 with d(vy

First common steps in the proofs of Lemmas 2.2 and 2.3 Both lemmas are proved
by contradiction. So let G be a simple, planar graph with a fixed embedding in the plane,
and suppose that G is a counterexample to one of the lemmas. According to equation (3)

there is a vertex v € V where )  ¢(e) < 0. Suppose w is such a vertex and suppose w
eckEy,

has m neighbours wy, ... ,w, where d(w;) < --- < d(wg). Since (i) does not hold, we know
m > 3.
For j =1,2,... ,m, let T} be the set of edges between vertices in {vj,... , v} belonging

to a face containing v, and set ¢; = |T}|.

Proof of Lemma 2.2 In this case, we may assume that G is a 2-connected triangulation,
for otherwise, we could add edges to G obtaining a triangulation G'. If none of (i)—(iv) holds
for G, then clearly none of (i)—(iv) holds for G'.

Claim 1 m # 3.

Proof Suppose m = 3. Because (ii) does not hold, d(w;) > 12 for all j, hence @p(ww;) >

—% + % -2 % = —%. According to the procedure for transferring charge, for each j a

charge of at least % units will be transfered from both wjw; and ij;" to ww;. This gives

p(ww;) > pp(ww;) +2- é >0, and thus )  ¢(e) > 0, contradicting the choice of w. O
ecFEy



Claim 2 m # 4.

Proof Supposem = 4. Suppose first that d(w;) > 8 for all j. Then p,(ww;) > 0-|—%—2-% =
1
12

will be transfered from both w;w; and ij;-" to ww;. This gives p(ww;) > pp(ww;)+2- 5 =

0 for all j, and thus )  ¢(e) > 0, contradicting the choice of w.
ecEy
We conclude d(w;) < 7. Since G does not satisfy condition (ii) in the lemma (with

—%. According to the procedure for transferring charge, for each j a charge of at least — units

v = wy ), we know d(w;) > 4 and hence p(ww;) > pp(wwi) > 0+0—2-1 = —2. Tt also
follows that d(w;) > 12 for all j > 2, hence py(ww;) > 0+ 5 —2- 2 = 0 for all j > 2.
According to the procedure for transferring charge, for each edge wjw, € T5> a charge of at
least % units will be transferred from w;wy to both ww; and ww,. Observing that t, = 2, we
have

> ole) > gulwmn) + Y gylwwy) + 12025 > 0,

e€Ey §>2
again contradicting the choice of w. O
Claim 3 m # 5.
Proof Supposem = 5. First suppose that d(w;) > 7 for all j. Then @p(ww;) > %+%—2-% =
—%. According to the procedure for transferring charge, for each j a charge of at least %

units is transferred from both w;w; and ijj to ww;. This gives p(ww;) > wp(ww;)+2-57

Z >0, and thus ZE: ¢(e) > 0, contradicting the choice of w.
ec w
So we have that d(w;) < 6. Again we know that di(w) > 4 and hence pp(wwy) >

%—I-O—Q- % = —%. If d(w;) > 8 for all j > 2, then ¢p(ww;) > %4— % -2 % = %. According
to the procedure for transferring charge, for each edge w;w; € To, we transfer a charge of at
least % units from w;w, to both ww,; and ww,. Observing that ¢, = 3, we have

7 1 1 1

1
E, > § Nty 2-— > 44— - = >0,
eCE ple) = wb(ww1)+j>2‘pb(wwj)+ ? 12 — 15 + 30 +2 6

contradicting the choice of w.

This means that we know d(w;) < 6 and d(wsz) < 7, hence d(w;) > 12 for all j > 3. Since

certainly d(w;) > 4 and d(w2) > 4, we have py(ww1) > —%& and @y(wwy) > —7&. Also,
op(ww;) > % + % —2- % = % for 7 > 3. According to the procedure for transferring basic

charge, for each w;wy; € T3, a charge of at least % units will be transferred from wj;w, to

both ww; and ww,. Observing that ¢3 > 1 we have

Z ple) > pp(wwr) + pp(wwr) + Zcpb(wwj) +t3-2- %

e€Ey §>3
7 1 1
> -2 —=4+3--+-=0
- 15 + 5 + 3 ’
again contradicting the choice of w. O



We now know that m > 6. Since the vertex w is chosen such that »_ ¢(e) < 0, there must
ecEy,
be an edge e € E,, such that ¢(e) < 0. Let ww, € E,, be such an edge. By Lemma 2.1 (ii)

this must mean that @p(ww,) < 0 also. Since d(w) = m > 6, by Lemma 2.1 (i) we have that
d(wg) <5.

Claim 4 m #6,7.

Proof Suppose m = 6 or m = 7. We certainly can assume d(w,) > 4, otherwise (i) or (ii)
would hold. If d(w,) = 4, then d(w,) > 12 and d(w]) > 12, otherwise (iii) holds with
v = wg. Then we have gp(ww,) > % +0— 2% = —%. Also, according to the procedure for
transferring charge, at least % units are transferred from both w,w, and w,w; to ww,. This

means o(wwe) > p(wwy) + 2+ § > 0, contradicting the choice of ww,.

m—4 1 2 m-4 7 .
g_g_T—E.SmceGdoes

not satisfy (iv) with v = w,, we have that either d(w, ) > 14 — m and d(w/}) > 14 —m, or

1,10— 1
max{d(w; ),d(w})} > 12. In the former case we have that a charge of at least 2 ( T4 :—g )

is transfered from both w,w, and w,w; to ww,. In the latter case a charge of at least % is

Now suppose d(w,) = 5, and thus ¢ (ww,) >

transfered from w,w, or wew, to ww,. So we obtain

. 1,10—-m 1, 1
m—4 7 100—m 1, 1
> — — — i - =), = 0
> = T il ) gt 20
again contradicting the choice of ww,. O

Claim 5 m # 8,9,10, 11.

Proof Suppose 8 < m < 11. We can assume d(w,) > 4, since otherwise (ii) would hold
with v = w,. It suffices to show p(ww,) > 0 when d(w,) = 4, as @p(ww,) > 3 ++—2-% >0

if d(we) > 5. Suppose d(w,) = 4. Then d(w;) > 8 and d(w) > 8, and a charge of at least 75
is transfered from both w,w, and w,w, to ww,. Hence

1 1 1 1
> - > oy —_ - — —_ =
olwwg) > op(wwg) + 2 T 2-i-O 2 3+6 0,

contradicting the choice of ww,. O

To complete the proof of Lemma 2.2, we need to show that m > 12 also leads to a contra-
diction. Suppose m > 12. Then d(w,) > 3, otherwise (i) would hold with v = w,. It suffices
to show p(ww,) > 0 when d(w,) = 3, for otherwise p(ww,) = py(ww,) > 2+0—-2-% =0.
If d(w,) = 3, then d(w, ) > 12 and d(w;) > 12, and a charge of at least § is transfered from

both w,w, and wew, to ww,. Thus we find

12 1
p(wwg) > pplwwy) +2-2 > = — - —2-

the final contradiction in this proof. |



Proof of Lemma 2.3 We use the notation and definitions from the part common with
the proof of Lemma 2.2. In fact, the proof follows a line similar to the proof of the previous
lemma, although the arguments are different.

Claim 1 m # 3.

Proof Suppose m = 3. Since (ii) and (iii) do not hold for G, we have d(w;) > 6 for all j,
and t(w) = 0. Thus p(ww;) > @p(ww;) > —% + % = 0 for all ww; € E,. It follows that

> ¢(e) >0, contradicting the choice of w. O
e€lby,

Claim 2 m # 4.

Proof Suppose m = 4. Since (iv) does not hold for G, we have d(w;) > 5 for all j. If

t(w) < 1, then we find Y ¢(e) > 4-0+4-%—2-% > 0. Thus t(w) > 2. If t(w) > 3,
ecEy
then ¢(ww;) = 2 for some i, in which case (v) holds. Consequently, t(w) = 2 and in fact

t(ww;) =1 for all j.
If d(wj) = 5 for some j, then setting v = w; and v; = w we find that (vi) holds,

contradicting the choice of G. Thus d(w;) > 6 for all j, and hence > ¢(e) > 4-0+4-3—4-3 =
ec by
0, contradicting the choice of w. O

Claim 3 m # 5.

Proof Suppose m = 5. We first note that d(w;) > 4 for all j, otherwise (i) or (ii) would
hold. Also, d(w;) < 7, for otherwise p(ww;) > ¢p(ww;) > % + % —2- % > 0 for all j. If
t(w) < 1, then we find > ¢(e) >5-1+5-0—2-% > 0. Thus t(w) > 2. Furthermore,
ecEy
since (vi) and (vii) do not hold, if t(ww;) = 1 for some j, then d(w;) > 5; and if t(ww;) = 2
for some ¢, then d(wy) > 6.
If t(w) = 2, then there are at least three neighbours w; of w with ¢(ww;) > 1, and hence
d(w;) > 5. This means > ¢(e) >5-2+3-++2-0—4-3>0.
e€Ey
If ¢(w) = 3, then, since (viii) does not hold, there must be at least one neighbour w;

with ¢(ww;) = 0. This means that in fact there are two neighbours w; with t(ww;) = 1, and
hence d(w;) > 5; and two neighbours wy with ¢t(wwg) = 2, and hence d(w;) > 6. This gives
> ople) >5-1+0+2-1+2-2-6-1>0.

e€lEy
If t(w) > 4, then for all j we find ¢(ww;) > 1, which means that (viii) holds. So in all
cases we contradict the choice of G or the choice of w. O

We now know that m > 6. Since the vertex w is chosen such that >  ¢(e) < 0, there must
ecFEy
be an edge e € E,, such that ¢(e) < 0. Let ww, € E, be such an edge. By Lemma 2.1 (i)

this must mean that ¢ (ww,) < 0 also, and hence
m—4  dlw,) —4
m d(wq)

0 > pp(wwg) > — t(wwg) - % (4)



Claim 4 m #6,7.

Proof Suppose m =6 or m = 7. From equation (4) it follows that the only possibilities
for d(w,) and t(ww,) are:

d(wa) < 2;

d(wg) =3 and tlww,) > 1;
dwg) =4 and t(ww,) = 2;
d(wg) =5 and t(ww,) =2

In the first three options we see that (i), (iii), and (v), respectively, hold, where we take
v = w,.

So the only possibility left is d(w,) = 5 and t(ww,) = 2. Let the neighbours of w, be
{wy ,w,wS,u1,us}. Then certainly t(w,w) > 1, t(wew,) > 1 and t(w,w]) > 1. Hence if
t(wgu1) > 1 and t(weusz) > 1, then (viii) holds with v = w,.

So for at least one p € {1,2}, t(wqup) = 0. Moreover, since (ix) does not hold, for at
least one p € {1,2} we have that t(w,u,) = 0 and d(u,) > 6. Without loss of generality
we can assume that u; has these properties. Combining everything we find that d(w,) = 5,
d(w) > 6, d(uy) > 6, t(w,w) = 2, and t(wgu;) = 0. This means that in the final step of the
discharging process a charge of % is transferred from w,u; to w,w. We find that the final
charge for the edge ww, satisfies

1 1 1 1
> 4C-2.-42>0
<,0(wwa)_3+5 3+6> ,

contradicting the choice of ww,. O

To complete the proof of Lemma 2.3 we only need to show that m > 8 also leads to a
contradiction. Suppose m > 8. From equation (4) it follows that the only possibilities
for d(w,) and t(ww,) are:

d(wg) < 2;
d(wg) =3 and t(ww,) >

L
dwg) =4 and t(ww,) = 2.

If the first possibility holds, then (i) follows; if the second holds, then (iii) holds; and the third
possibility gives that (v) holds, every time taking v = w,. This gives the final contradiction
against the existence of a counterexample G. |

3 Proof of Theorem 1.5

Let G be a planar graph and let A be its maximum degree. If A < 5, then Theorem 1.5
can be proven using a straight-forward “greedy” colouring method. In fact, in this case the



theorem holds even when the planarity condition is removed. The only essential observations
are that for any vertex in a graph H with maximum degree A, the number of vertices at
distance one from v is at most A and the number of vertices at distance two is at most
A (A —1). Moreover, if we assign a certain label to a vertex at distance one from v, then this
reduces the number of labels available to v with at most 2p — 1, whereas assigning a label
to a vertex at distance two from v can “forbid” at most 2¢q — 1 labels for v. We leave the
verification of the further details to the reader.

In the remainder, we are solely interested in the case A > 6. We shall prove Theorem 1.5
by induction on the number of vertices and edges. Let G be a planar graph such that for all
planar graphs H with |V(H)|+|E(H)| < |V(G)|+ |E(G)| the theorem is true. We note first
that can assume that G is simple and A > 6.

For an edge e € E let G/e denote the graph obtained from G by contracting e. For a
vertex v € V let G xv denote the graph obtained by deleting v and for each u € N(v) adding
an edge between v and v~ and between u and u™ if these edges do not exists in G already.
We will use Lemmas 2.2 and 2.3 to show that there is a vertex v € V such that d(v) <5, the
number of vertices at distance 2 from v is at most 2 A 4+ 19, and at least one of the following
is true:

(a)  A(G/e) < A for some e € E,;
(b) A(G xv) < A.

The following proposition formulates the essential properties of the vertex degrees and

distances after the operations G/e and G * v have been performed.

3.1 Proposition
Let G be a simple graph, v a vertex and e = vu an edge in G.

(i) Let H = G/e, and let v' be the vertex in H corresponding to the edge vu. Then for
eachw € V(H)\{v'} we have dy (w) < dg(w), and dy (v') = dg(v)+dg(u)—2—tc(vu).

(ii)  Let H = G xv. Then for each w € V(H) we have dg(w) = dg(w) if w ¢ Ng(v), and
dg(w) =dg(w) + 1 — tg(vw) if w € Ng(v).

(iii) Let H = G/e, and let v' be the vertex in H corresponding to the edge vu. Then for
any two vertices w,w' € V(H) \ {v'} it holds that disty(w,w') < distg(w,w') and
distg(w,v") < distg(w,u).

(iv)] Let H = G v and suppose dg(v) < 5. Then for any two vertices w,w' € V(H) it
holds that distg(w,w') < distg(w,w").

Now define a vertex v € V(G), possibly an edge e € E(G), and a graph H as follows:

(3.1) If A > 12, then let v be as described in Lemma 2.2, and set e = vv; and H = G/e.

(3.2) If 6 <A <11 and one of Lemma 2.3 (i), (ii), or (iv) holds, then let v be as described,
and set e = vv; and H = G/e.

10



(3.3) If6 <A <11 and Lemma 2.3 (iii) holds, then let v be as described, set e = vv; with
t(vv;) > 1, and set H = G/e.

(3.4) If 6 <A <11 and Lemma 2.3 (v) holds, then let v be as described, set e = vv; with
t(vv;) = 2 and set H = G/e.

(3.5) If 6 <A <11 and Lemma 2.3 (vi) holds, then let v be as described, set e = vv; with
d(v;) <4 and t(vv;) > 1, and set H = G/e.

(3.6) If6 <A <11 and Lemma 2.3 (vii) holds, then let v be as described, set e = vv; with
d(v;) <5 and t(vv;) = 2, and set H = G/e.

(3.7) If6 <A <11 and Lemma 2.3 (viii) holds, then let v be as described and set H = Gxv.
(3.8) If 6 <A <11 and Lemma 2.3 (ix) holds, then let v be as described and set H = G *v.

In the cases (3.1)—(3.6), identify the end vertex of e different from v with the vertex in H
corresponding to the contracted edge e. Then using Proposition 3.1, we find that in cases
(3.1)=(3.7), dy(w) < dg(w) for all w € V(H), hence A(H) < A(V) = A. In case (3.8) we
can have dy(w) = dg(w) + 1 for a vertex w € N(v) with ¢(vw) = 0, but then dg(w) < 5,
and we still find A(H) < A. By induction, this means

MH;p,q) < (4g—2)A+10p+ 38¢g—23.

Setn=(49g—2)A+10p+38¢—23 and let oy : V(H) — {0,1,... ,n — 1} be an L(p, q)-

labelling of H. Again using Proposition 3.1, for any two vertices w,w' € V(H) it holds that

distg(w,w,) < distg(w,w'). Therefore, to find an L(p, q)-labelling for G, we need only

extend g to G by giving v an appropriate colour. For each w € V(H) let p(w) = pu(w).
For any vertex v € V(G), the number of vertices at distance two from v is equal to

> d(u) —d(v) — 2t(v). (5)

uw€N(v)

Since v was chosen according to (3.1)—(3.8), d(v) < 5 and equation (5) gives that there are
at most 2 A 4+ 19 vertices at distance two from v. So, since

n> (4g—2)A+10p+38g—24 = 5-(2p—1) + (2A +19) - (2¢ — 1),
we can choose a colour ¢(v) € {0,1,... ,n — 1} such that

)| > p,  if distg(u,v) =1;
| > q, if distg(u,v) = 2.

Choosing such a colour for v, we see that ¢ is an L(p, g)-labelling for G. It now follows that
AMG;p,q) <n = (49g—2)A+10p+38q — 23,

which completes the induction step. [ |
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Remark

By a more elaborate case analysis, it is possible to slightly improve Lemmas 2.2 and 2.3 in

such a way that we get a slightly better bound in Theorem 1.5. But this would only improve

the additive term, and not the factor 4 ¢ — 2 in front of A. For this reason we haven’t tried

to push our method to the limit.

Acknowledgement

We like to thank Bjarne Toft for providing us with a copy of [11].

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
8]
[9]
[10]

[11]

K. APPEL AND W. HAKEN, Fvery planar map is four colourable. Part I: Discharging,
Ilinois J. Math. 21 (1977) pp. 429-490.

K. ApPEL, W. HAKEN AND J. KOCH, FEvery planar map is four colourable. Part II:
Reducibility, llinois J. Math. 21 (1977) pp. 491-567.

G.J. CHANG AND D. Kuo, The L(2,1)-labelling problem on graphs, Siam J. Disc.
Math. 9 (1996) pp. 309-316.

J.P. GEORGES AND D.W. MAURO, Generalized vertex labellings with a condition at
distance two, Congressus Numerantium 109 (1995) pp. 141-159.

J.P. GEORGES AND D. W. MAURO, One the size of graphs labelled with a condition at
distance two, J. Graph Th. 22 (1996), pp. 47-57.

J.R. Gricas AND R. K. YEH, Labelling graphs with a condition at distance 2, Siam J.
Disc. Math. 5 (1992) pp. 586-595.

P.J. HEAWOOD, Map Colour Theorem, Quart. J. Pure Appl. Math. 24 (1890) pp. 332—
338.

T.R. JENSEN AND B. TOFT, Graph Coloring Problems, John-Wiley & Sons, New York
(1995).

N. ROBERTSON, D. SANDERS, P. SEYMOUR AND R. THOMAS, The Four-Colour The-
orem, J. Comb. Th. 70 (1997) pp. 2-44.

D. SAkA1, Labelling chordal graphs: Distance two condition, Siam J. Disc. Math. 7
(1994) pp. 133-140.

G. WEGNER. Graphs with given diameter and a colouring problem. Prerpint, University
of Dortmund (1977).

12



