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Preface

This book is intended as an introduction to graph theory. Our aim has been
to present what we consider to be the basic material, together with a wide
variety of applications, both to other branches of mathematics and to
real-world problems. Included are simple new proofs of theorems of Brooks,
Chvatal, Tutte and Vizing. The applications have been carefully selected,
and are treated in some depth. We have chosen to omit all so-called
‘applications’ that employ just the language of graphs and no theory. The
applications appearing at the end of each chapter actually make use of
theory developed earlier in the same chapter. We have also stressed the
importance of efficient methods of solving problems. Several good al-
gorithms are included and their efficiencies are analysed. We do not,
however, go into the computer implementation of these algorithms.

The exercises at the end of each section are of varying difficulty. The
harder ones are starred (*) and, for these, hints are provided in appendix 1.
In some exercises, new definitions are introduced. The reader is recom-
mended to acquaint himself with these definitions. Other exercises, whose
numbers are indicated by bold type, are used in subsequent sections; these
should all be attempted. : o

Appendix II consists of a table in which basic properties of four graphs
are listed. When new definitions are introduced, the reader may find it
helpful to check his understanding by referring to this table. Appendix III
includes a selection of interesting graphs with special properties. These may
prove to be useful in testing new conjectures. In appendix IV, we collect
together a number of unsolved problems, some known to be very difficult,
and others more hopeful. Suggestions for further reading are given in
appendix V. ‘ - 4 |

Many people have contributed, either directly or indirectly, to this book.
‘We are particularly indebted to C. Berge and D. J. A. Welsh for introducing
us to graph theory, to G. A. Dirac, J. Edmonds, L. Lovész and W. T. Tutte,
whose works have influenced our treatment of the subject, to V.
Chungphaisan and C. St. J. A. Nash-Williams for their careful reading of the
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manuscript and valuable suggestions, and to the ubiquitous G. O. M. for his
kindness and constant encouragement.

We also wish to thank S. B. Maurer, P. J. O’Halloran, C. Thomassen,
B. Toft and our colleagues at the University of Waterloo for many
helpful comments, and the National Research Council of Canada for its
financial support. Finally, we would like to express our appreciation to Joan
Selwood for her excellent typing and Diana Rajnovich for her beautiful
artwork. '

A. Bondy
S.

J.
U. S. R. Murty




Contents

Preface

1 GRAPHS AND SUBGRAPHS
1.1 Graphs and Simple Graphs .
1.2 Graph Isomorphism
1.3 The Incidence and Adjacency Matnces
1.4 Subgraphs :
1.5 Vertex Degrees
1.6 Paths and Connection .
1.7 Cycles .
: Apphcatlons
1.8 The Shortest Path Problem .
1.9 Sperner’s Lemma .

2 TREES
2.1 Trees .
2.2 Cut Edges and Bonds .
2.3 Cut Vertices .
2.4 Cayley’s Formula .
Applications
2.5 The Connector Problem

3 CONNECTIVITY
3.1 Connectivity .
3.2 Blocks .

Applications

3.3 Construction of’R'eliabl_e Communication Netwbrks .

4 EULER TOURS AND HAMILTON CYCLES
4.1 Euler Tours . .
4.2 Hamilton Cycles .
Applications |
4.3 The Chinese Postman Problem
4.4 The Travelling Salesman Problem

vi

25
27
31
32

36

42

- 44

47
51
53

62
65




Contents ‘ ix

S MATCHINGS

5.1 Matchings . . .. . 10

5.2 Matchings and Covenngs in Bnpartlte Graphs . : .72

5.3 Perfect Matchings . . . . : . . . .76
Applications | ;

5.4 The Personnel Assignment Problem . . . . . 80

5.5 The Optimal Assignment Problem . . . : . 86

6 EDGE COLOURINGS

6.1 Edge Chromatic Number . . . : : . .09

6.2 Vizing’s Theorem . . . . . : . .93
Applications | ,

6.3 The Timetabling Problem . . : . . . . 96

7 INDEPENDENT SETS AND CLIQUES

7.1 Independent Sets . . . . : . . . . 101

7.2 Ramsey’s Theorem . . . . . . . . 103

7.3 Turan’s Theorem . . . . . . . . 109
Applications | |

7.4 Schur’s Theorem . . . . . . . . 112

7.5 A Geometry Problem . . . . . . . . 113

8 VERTEX COLOURINGS

8.1 Chromatic Number . . . . . . . . 117
8.2 Brooks’ Theorem . . . . . . . . . 122
8.3 Hajés’ Conjecture. . e . . . . 123
8.4 Chromatic Polynomials 125
8.5 Girth and Chromatic Number - . . . ) . . 129
Applications | | | -
8.6 A Storage Problem . : : . . . oL 131

9 PLANAR GRAPHS '
9.1 Plane and Planar Graphs . . . . : . . 135

9.2 Dual Graphs. . . . . . : . . . 139

9.3 Euler’s Formula . e . . . . 143

9.4 Bridges . . . . . : . . . . 145

9.5 Kuratowski’s Theorem . . - 151

9.6 The Five-Colour Theorem and the Four-Colour Con)ecture 156

9.7 Nonhamiltonian Planar Graphs . : : : . . 160
Applications

9.8 A Planarity Algorithm . . . . : : . . 163




X

10 DIRECTED GRAPHS

10.1
10.2
10.3

10.4
10.5
10.6
10.7

Directed Graphs .

Directed Paths

Directed Cycles

Applications

A Job Sequencing Problem.

Designing an Efficient Computer Drum
Making a Road System One-Way
Ranking the Participants in a Tournament.

11 NETWORKS

11.1
11.2
11.3

11.4
11.5

Flows

Cuts . .

The Max-Flow Mm Cut Theorem
Applications

Menger’s Theorems

Feasible Flows

12 THE CYCLE SPACE AND BOND SPACE

12.1
12.2

12.3

Appendix
Appendix

Circulations and Potential Differences.
The Number of Spanning Trees .
Applications

Perfect Squares

I Hints to Starred Exercises

II  Four Graphs and a Table of their Properues.

Appendix III  Some Interesting Graphs.
Appendix IV Unsolved Problems.

Appendix

V  Suggestions for Further Readmg

Glossary of Symbols'

Index

Contents

171
173
176

179
181
182
185

191
194
196

. 203
. 206
. 212
. 218
. 220
. 227
. 232

234
. 246
. 254
. 257

261




1 Graphs and Subgraphs

1.1 GRAPHS AND SIMPLE GRAPHS

Many real-world situations can conveniently be described by means of a
diagram consisting of a set of points together with lines joining certain pairs
of these points. For example, the points could represent people, with lines
joining pairs of friends; or the points might be communication centres, with
lines representing communication links. Notice that in such diagrams one is
mainly interested in whether or not two given points are joined by a line;
the manner in which they are joined is immaterial. A mathematical abstrac-
tion of situations of this type gives rise to the concept of a graph.

A graph G is an ordered triple (V(G), E(G), ¥s) consisting of a
nonempty set V(G) of vertices, a set E(G), disjoint from V(G), of edges,
and an incidence function {c that associates with each edge of G an
unordered pair of (not necessarily distinct) vertices of G. If e is an edge and
u and v are vertices such that yc(e) = uv, then e is said to join u and v; the
vertices u and v are called the ends of e. '

Two examples of graphs should serve to clarify the definition.

Example 1 ,
where
V(G) ={v,, v2, 03, V4, s}

E(G)={ey, e, €3, €4, €5, €6, €7, €s}
and g 1s deﬁned by
Paler) = 0102, Ps(ez) = 0203, Poles) = V30;, Poles) = VaUs
Yo(es) = 0204, Poles) = Vavs, ¢o(e7) = 0,Us, Pcles) = V205
Example 2
H = (V(H), E(H), ¥»)

where :
V(H) ={u, v, w, x, y}

E(H)={a, b,c, d,e,f, g h}
and Yy is defined by ,
Yu(a) =uv, Yub)=uu, Yu(c)=vw, ¢Pu(d)=wx
Yu(e) =vx, Yu(f)=wx, Yu(g)=ux, yYu(h)=xy
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Figure 1.1. Diagrams of graphs G and H

Graphs are so named because they can be represented graphically, and it
is this graphical representation which helps us understand many of their
properties. Each vertex is indicated by a point, and each edge by a line
joining the points which represent its ends.t Diagrams of G and H are
shown in figure 1.1. (For clarity, vertices are depicted here as small circles.)

There is no unique way of drawing a graph; the relative positions of points
representing vertices and lines representing edges have no significance.
Another diagram of G, for example, is given in figure 1.2. A diagram of a
graph merely depicts the incidence relation holding between its vertices and
edges. We shall, however, often draw a diagram of a graph and refer to it as
the graph itself; in the same spirit, we shall call its points ‘vertices’ and its
lines ‘edges’.

Note that two edges in a diagram of a graph may intersect at a point that

€3

Q &
€4 €2 .
e
Va ! O Vy
V2
s
(J
vy

Figure 1.2. Another diagram of G

1 In such a drawing it is understood that no line intersects itself or passes through a point
representing a vertex which is not an end of the corresponding edge—this is clearly always
‘possible. ' _
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is not a vertex (for example e, and es of graph G in figure 1.1). Those graphs
that have a diagram whose edges intersect only at their ends are called
plartar, since such graphs can be represented in the plane in a simple
manner. The graph of figure 1.3a is planar, even though this is not
immediately clear from the particular representation shown (see exercise
1.1.2). The graph of figure 1.3b, on the other hand, is nonplanar. (This will
be proved in chapter 9.)

Most of the definitions and concepts in graph theory are suggested by the
graphical representation. The ends of an edge are said to be incident with
the edge, and vice versa. Two vertices which are incident with a common
edge are adjacent, as are two edges which are incident with a common
vertex. An edge with identical ends is called a loop, and an edge with
distinct ends a link. For example, the edge e; of G (figure 1.2) is a loop; all
other edges of G are links.

Figure 1.3. Planar and nonplanar graphs

A graph is finite if both its vertex set and edge set are finite. In this book
we study only finite graphs, and so the term ‘graph’ always means ‘finite
graph’. We call a graph with just one vertex trivial and all other graphs
nontrivial. . :

A graph is simple if it has no loops and no two of its links join the same
pair of vertices. The graphs of figure 1.1 are not simple, whereas the graphs
of figure 1.3 are. Much of graph theory is concerned with the study of simple
graphs. :

We use the symbols v(G) and £(G) to denote the numbers of vertices and
edges in graph G. Throughout the book the letter G denotes a graph.
Moreover, when just one graph is under discussion, we usually denote this
graph by G. We then omit the letter G from graph-theoretic symbols and
write, for instance, V, E, v and ¢ instead of V(G), E(G), v(G) and £(G).
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Exercises

1.1.1 List five situations from everyday life in which graphs arise naturally.
1.1.2 Draw a different diagram of the graph of figure 1.3a to show that it
is indeed planar.

1.1.3 Show that if G is simple, then & = (;)

1.2 GRAPH ISOMORPHISM

Two graphs G and H are identical (written G=H) if V(G)=V(H),
E(G)=E(H), and s = ¢u. If two graphs are identical then they can clearly
be represented by identical diagrams. However, it is also possible for graphs
that are not identical to have essentially the same diagram. For example, the
diagrams of G in figure 1.2 and H in figure 1.1 look exactly the same, with
the exception that their vertices and edges have different labels. The graphs
G and H are not identical, but isomorphic. In general, two graphs G and H
are said to be isomorphic (written G = H) if there are bijections 0 : V(G) —
V(H) and ¢ : E(G)— E(H) such that yig(e) = uv if and only if Yu(d(e))=
6(u)0(v); such a pair (6, ¢) of mappings is called an isomorphism between G
and H.

To show that two graphs are lsomorphlc one must indicate an isomorph-
ism between them. The pair of mappings (6, ¢) defined by

e(vl) = Y’ 6('-’2) =X, 0(”3) =u, 6(04) =0, O(US) =w

and
(b(el) = h, d)(e2) =8 ¢(e‘3) = b7 d)(ett) =a
dles)=e,  dled=c, d(e)=d, dles)=f

is an isomorphism between the graphs G and H of examples 1 and 2; G and
H clearly have the same structure, and differ only in the names of vertices
and edges. Since it is in structural properties that we shall primarily be
interested, we shall often omit labels when drawing graphs; an unlabelled
graph can be thought of as a representative of an equivalence class of
isomorphic graphs. We assign labels to vertices and edges in a graph mainly
for the purpose of referring to them. For instance, when dealing with simple
graphs, it is often convenient to refer to the edge with ends u and v as ‘the
edge uv’. (This convention results in no ambiguity since, in a simple graph,
at most one edge joins any pair of vertices.)

We conclude this section by introducing some speaal classes of graphs. A
simple graph in which each pair of distinct vertices is joined by an edge is
called a complete graph. Up to isomorphism, there is just one complete
graph on n vertices; it is denoted by K.. A drawing of K5 is shown in figure
1.4a. An empty graph, on the other hand, is one with no edges. A bipartite
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(a) (b) (c)

Figure 1.4. (a) K;; (b) the cube; (¢) K5

graph is one whose vertex set can be partitioned into two subsets X and Y,
so that each edge has one end in X and one end in Y; such a partition
(X, Y) is called a bipartition of the graph. A complete bipartite graph is a
simple bipartite graph with bipartition (X, Y) in which each vertex of X is
joined to each vertex of Y; if | X|=m and |Y|=n, such a graph is denoted
by K.... The graph defined by the vertices and edges of a cube (figure 1.4b)
is bipartite; the graph in figure 1.4¢ is the complete bipartite graph K.

There are many other graphs whose structures are of special interest.
Appendix III includes a selection of such graphs.

Exercises

1.2.1  Find an isomorphism between the graphs G and H of examples 1
’ and 2 different from the one given.
1.2.2  (a) Show that if G=H, then v(G)=v(H) and £(G)=e(H).
(b) Give an example to show that the converse is false.
1.2.3  Show that the following graphs are not isomorphic:

1.2.4  Show that there are eleven nonisomorphic simple graphs on four
| vertices. |

- 1.2.5  Show that two simple graphs G and H are isomorphic if and only if
‘ there is a bijection 6:V(G)— V(H) such that uve E(G) if and
only if 6(u)6(v)e E(H).
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1.2.6

1.2.7
1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

Graph Theory with Applications

Show that the following graphs are isomorphic:

2 4

| 4

Let G be simple. Show that ¢ = (2

Show that |

(a) &(Km.n)=mn;
(b) if G is simple and bipartite, then & < v?/4.

A k-partite graph is one whose vertex set can be partitioned into k
subsets so that no edge has both ends in any one subset; a complete
k-partite graph is one that is simple and in which each vertex is
joined to every vertex that is not in the same subset. The complete
m-partite graph on n vertices in which each part has either [n/m] or
{n/m} vertices is denoted by T,.. Show that

(a) €(Tan)= (n _?: k)+ (m-— 1)(k ; 1), where k =[n/m];

(b)* if G is a complete m-partite graph on n vertices, then £(G) =<

€(Twm.), with equality only if G = Tp,..

) if and only if G is complete.

The k-cube is the graph whose vertices are the ordered k-tuples of

0’s and 1’s, two vertices being joined if and only if they differ in

exactly one coordinate. (The graph shown in figure 1.4b is just the

3-cube.) Show that the k-cube has 2* vertices, k2*! edges and is

bipartite. , |

(a) The complement G of a simple graph G is the simple graph
with vertex set V, two vertices being adjacent in G° if and only
if they are not adjacent in G. Describe the graphs K§ and K&, ..

(b) A simple graph G is self-complementary if G = G*. Show that if
G is self-complementary, then »=0, 1 (mod 4).

An automorphism of a graph is an isomorphism of the graph onto

itself. '

(a) Show, using exercise 1.2.5, that an automorphism of a simple
graph G can be regarded as a permutation on V which pre-
serves adjacency, and that the set of such permutations form a
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group I'(G) (the automorphism group of G) under the usual
operation of composition.

(b) Find I'(K,) and I'(K..).

(c) Find a nontrivial simple graph whose automorphism group is
the identity. ‘

(d) Show that for any simple graph G, I'(G) =T(G").

(e) Consider the permutation group A with elements (1)(2)(3),
(1,2, 3) and (1, 3, 2). Show that there is no simple graph G with
vertex set {1, 2, 3} such that I'(G) = A.

(f) Find a simple graph G such that ['(G)=A. (Frucht, 1939 has
shown that every abstract group is isomorphic to the auto-
morphism group of some graph.)

1.2.13 A simple graph G is vertex-transitive if, for any two vertices u and
v, there is an element g in I'(G) such that g(u)y=gm); G is
edge-transitive if, for any two edges u,v, and u,vs, there is an
element h in I'(G) such that h({u,, v:}) = {u., v.}. Find

(a) a graph which is vertex-transitive but not edge-transitive;
(b) a graph which is edge-transitive but not vertex-transitive.

1.3 THE INCIDENCE AND ADJACENCY MATRICES

To any graph G there corresponds a v X ¢ matrix called the incidence matrix
of G. Let us denote the vertices of G by vi, v2,..., v, and the edges by
€1, €2, ..., €. Then the incidence matrix of G is the matrix M(G) =[m;],
where m;; is the number of times (0, 1 or 2) that v; and e, are incident. The
incidence matrix of a graph is just a different way of specifying the graph.

Another matrix associated with G is the adjacency matrix; this is the v X v
matrix A(G) =[a;], in which a;; is the number of edges joining v; and v;. A
graph, its incidence matrix, and its adjacency matrix are shown in figure 1.5.

e, € e e, e e e, v, V2 U3 U,
vl 1 0 0 1 0 1 v, [0 2 1 1
v»{1 1 1 0 0 0 0 vn|2 0 1 0
v 0 0 1 1 0 0 1 v (1 1 0 1
v, |0 O 1 1 2 O v, |1 O 1 1

M(G) A(G)

Figure 1.5
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~ The adjacency matrix of a graph is generally considerably smaller than its
incidence matrix, and it is in this form that graphs are commonly stored in
computers.

Exercises
1.3.1 Let M be the incidence matrix and A the adjacency matrix of a
graph G.

(a) Show that every column sum of M is 2.
(b) What are the column sums of A?

1.3.2 Let G be bipartite. Show that the vertices of G can be enumerated
so that the adjacency matrix of G has the form

| e—|

Fio

o P
~N

D a—

where A,; is the transpose of Aj,.
1.3.3* Show that if G is simple and the eigenvalues of A are distinct, then
the automorphism group of G is abelian

1.4 SUBGRAPHS

A graph H is a subgraph of G (written H< G) if V(H)< V(G), E(H) <
E(G), and yy is the restriction of Y to E(H). When H< G but H# G, we
write H<= G and call H a’proper subgraph of G. If H is a subgraph of G, G
is a supergraph of H. A spanning subgraph (or spanning supergraph) of G is
a subgraph (or supergraph) H with V(H)= V(G)

By deleting from G all loops and, for every pair of ad]acent vertices, all
but one link joining them, we obtain a simple spanning subgraph of G,
called the underlying simple graph of G. Figure 1.6 shows a graph and its
underlying simple graph.

Figure 1.6. A graph and its underlying simple graph
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€ a p
y v y v
! g g
d b d
X w X
c
G A spanning G-{u, w}
subgraph of G
u u
\ e a
v y v
g
X0 XO—— oW
c
The induced The edge-induced
subgraph subgraph
GUu, v, x}] Gla,c e g}

Figure 1.7

Suppose that V' is a nonempty subset of V. The subgraph of G whose
vertex set is V' and whose edge set is the set of those edges of G that have
both ends in V' is called the subgraph of G induced by V' and is denoted by
- G[V']; we say that G[V'] is an induced subgraph of G. The induced
subgraph G[V\V'] is denoted by G — V’; it is the subgraph obtained from G
by deleting the vertices in V' together with their incident edges. If
V'={v} we write G—v for G —{v}.

Now suppose that E’ is a nonempty subset of E. The subgraph of G
whose vertex set is the set of ends of edges in E’ and whose edge set is E' is
called the subgraph of G induced by E’' and is denoted by G[E']; G[E'] is
an edge-induced subgraph of G. The spanning subgraph of G with edge set
- E\E' is written simply as G —E’; it is the subgraph obtained from G by
deleting the edges in E’. Similarly, the graph obtained from G by adding a
set of edges E" is denoted by G+ E'. If E'={e} we write G—e¢ and G +e
instead of G —{e} and G +{e}.

Subgraphs of these various types are depicted in figure 1.7.

Let G, and G be subgraphs of G. We say that G, and G. are disjoint if
they have no vertex in common, and edge-disjoint if they have no edge in
common. The union G,U G; of G, and G; is the subgraph with vertex set
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V(G,) U V(G) and edge set E(G,) UE(G.); if G, and G, are disjoint, we
sometimes denote their union by G; + G,. The intersection G,N G, of G,
and G, is defined similarly, but in this case G, and G, must have at least one
vertex in common.

Exercises

1.4.1 Show that every simple graph on n vertices is isomorphic to a
subgraph of K,.
1.4.2 Show that

(a) every induced subgraph of a complete graph is complete;
(b) every subgraph of a bipartite graph is bipartite.

1.4.3 Describe how M(G—E') and M(G—-V') can be obtained from
M(G), and how A(G— V') can be obtained from A(G).

1.4.4 Find a bipartite graph that is not isomorphic to a subgraph of any
k -cube.

1.4.5% Let G be simple and let n be an integer with 1<n < v— 1. Show that
if v =4 and all induced subgraphs of G on n vertices have the same
number of edges, then either G=K, or G=K:.

1.5 VERTEX DEGREES

The degree ds(v) of a vertex v in G is the number of edges of G incident
with v, each loop counting as two edges. We denote by 8(G) and A(G) the
minimum and maximum degrees, respectively, of vertices of G.

Theorem 1.11
Yd(v)=2¢ h

veV
Proof Consider the incidence matrix M. The sum of the entries in the

row corresponding to vertex v is precisely d(v), and therefore )’ d(v) is just
veV

the sum of all entries in M. But this sum is also 2¢, since (exercise 1.3.1qa)
each of the £ column sums of Mis 2 [

Corollary 1.1 In any graph, the number of vertices of odd degree is even.

Proof Let V, and V; be the sets of vertices of odd and even degree in G,
respectively. Then

> d(v)+ Y d(v)= Zd(v)

veV, veV,

is even, by theorem 1.1. Since Y d(v) is also even, it follows that Y d(v) is

veV, veV;

even. Thus |V,| is even 0O
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A graph G is k-regular if d(v) =k for all v € V; a regular graph is one that
is k-regular for some k. Complete graphs and complete bipartite graphs K, ,
are regular; so, also, are the k-cubes.

Exercises

1.5.1 Show that § =2¢/v <A.

1.5.2 Show that if G is simple, the entries on the diagonals of both MM’
and A” are the degrees of the vertices of G.

1.5.3 Show that if a k-regular bipartite graph with k >0 has bipartition
(X,Y), then |X|=]Y].

1.5.4 Show that, in any group of two or more people, there are always two
with exactly the same number of friends inside the group.

1.5.5 If G has vertices vy, v, . .., v, the sequence (d(vy), d(v,), ..., d(v,))
is called a degree sequence of G. Show that a sequence
(d, ds, . . ., d.) of non-negative integers is a degree sequence of some

graph if and only if ). d; is even.
i=1

1.5.6 A sequence d=(dy, d,,...,d,) is graphic if there is a simple graph
with degree sequence d. Show that
(a) the sequences (7, 6, 5, 4, 3, 3, 2) and (6, 6, 5, 4, 3, 3, 1) are not
graphic; ~ 7
(b) if d is graphic and d;=d,=...>d,, then Y. d; is even and

i=1

k n
Ydi=sk(k—1)+ Z min{k, d} for 1<k=<n
i=1 : i=k+1

(Erd6s and Gallai, 1960 have shown that this necessary condition is
also sufficient for d to be graphic.)

1.5.7 Letd=(d,, d,,...,d.) be a nonincreasing sequence of non-negative
integers, and denote the sequence (d;—1, ds—1,..., ds.i— 1,
dd,+2, ey d..) by d. ’

(a)* Show that d is graphic if and only if d’ is graphic.
(b) Using (a), describe an algorithm for constructing a simple graph
with degree sequence d, if such a graph exists.
(V. Havel, S. Hakimi)

1.5.8* Show that a loopless graph G contains a bipartite spanning subgraph
H such that du(v) =3ds(v) for all ve V. -

1.5.9* Let S={x,, x,,..., x.} be a set of points in the plane such that the
distance between any two points is at least one. Show that there are
at most 3n pairs of points at distance exactly one.

1.5.10 The edge graph of a graph G is the graph with vertex set E(G) in
which two vertices are joined if and only if they are adjacent edges in
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G. Show that, if G is simple

(a) the edge graph of G has &(G) vertices and ). (dcz(v)> edges;
vEVIG) ’

(b) the edge graph of Ks is isomorphic to the complement of the

~ graph featured in exercise 1.2.6.

1.6 PATHS AND CONNECTION

A walk in G is a finite non-null sequence W = vee,v,€,0, ... exvx, Whose
terms are alternately vertices and edges, such that, for 1 <i=< k, the ends of
e; are vi-; and v;. We say that W is a walk from v, to vy, or a (v, vy)-walk.
The vertices v, and v, are called the origin and terminus of W, respectively,
and vy, v, ..., k-, its internal vertices. The integer k is the length of W.

If W=uv0e,0,...e,00 and W'=v,€44010s; ... 00 are walks, the walk
Uk€xVk-1 . . . €100, Obtained by reversing W, is denoted by W' and the walk
Vo€1V; ... ey, obtained by concatenating W and W' at v,, is denoted by
WW'. A section of a walk W = vge,v; . .. e v, is a walk that is a subsequence
Vi€ir1Viv1 . . . €0; Of consecutive terms of W; we refer to this subsequence as
the (v;, v;)-section of W. '

In a simple graph, a walk vee,v; ... e v, is determined by the sequence
UoVs.. .. Uk Of its vertices; hence a walk in a simple graph can be specified
simply by its vertex sequence. Moreover, even in graphs that are not simple,
we shall sometimes refer to a sequence of vertices in which consecutive
terms are adjacent as a ‘walk’. In such cases it should be understood that the
discussion is valid for every walk with that vertex sequence. .

If the edges e, e,, ..., e of a walk W are distinct, W is called a trail; in
this case the length of W is just e(W). If, in addition, the vertices
Vo, Uy, . . ., U are distinct, W is called a path. Figure 1.8 illustrates a walk, a
trail and a path in a graph. We shall also use the word ‘path’ to denote a
graph or subgraph whose vertices and edges are the terms of a path.

Walk: vavfyfvgyhwbyv
Trail: wexdyhwbvgy
Path: xcwhyeuav

Figure 1.8
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(a) (b)

Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components

Two vertices u and v of G are said to be connected if there is a (u, v) -path
in G. Connection is an equivalence relation on the vertex set V. Thus there
is a partition of V into nonempty subsets V,, V,,..., V. such that two
vertices u and v are connected if and only if both u and v belong to the
same set V.. The subgraphs G[V.], G[V.],..., G[V.] are called the com-
ponents. of G. If G has exactly one component, G is connected; otherwise G
is disconnected. We denote the number of components of G by w(G).
Connected and dlsconnected graphs are depicted in figure 1.9.

1.6.9

Exercises
1.6.1 Show that if there is a (u, v)-walk in G, then there is also a
(u, v)-path in G.
1.6.2  Show that the number of (v;, v,)-walks of length k in G is the (i, j)th
entry of A"
1.6.3  Show that if G is simple and & = k then G has a path of length k.
- 1.6.4  Show that G is connected if and only if, for every partition of V
into two nonempty sets Vi and V, there is an edge with one end in
Vi and one end in V..
1.6.5 (a) Show that if G is simple and & >(" 5 1), then G is connected.
(b) For v>1, find a disconnected simple graph G with & = (V 2 1).
1.6.6  (a) Show that if G is simple and & >[v/2]—1, then G is connected.
~(b) Find a disconnected ([»/2]— 1)-regular simple graph for v evea.
1.6.7 Show that if G is disconnected, then G° is connected. '
1.6.8 (a) Show that if e € E, then w(G)=<=w(G —e)=w(G)+1.
(b) Let ve V. Show that G —e cannot, in general, be replaced by
G - v in the above inequality.
Show that if G is connected and each degree in G is even, then, for

any ve V, w(G-v)=<3d(v).
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1.6.10 Show that any two longest paths in a connected graph have a vertex
in common.

1.6.11 If vertices u and v are connected in G, the distance between u and

| v in G, denoted by dc(u, v), is the length of a shortest (u, v)-path in
G; if there is no path connecting u and v we define dg(u, v) to be
infinite. Show that, for any three vertices u, v and w, d(u, v)+
d(v, w)=d(u, w). :

1.6.12 The diameter of G is the maximum distance between two vertices
of G. Show that if G has diameter greater than three, then G° has
diameter less than three.

1.6.13 Show that if G is simple with diameter two and A=v—2, then
e=2v—4. | , '

1.6.14 Show that if G is simple and connected but not complete, then G

: has three vertices u, v and w such that uv, vw e E and uwgE.

1.7 cvcies

A walk is closed if it has positive length and its origin and terminus are the
same. A closed trail whose origin and internal vertices are distinct is a cycle.
Just as with paths we sometimes use the term ‘cycle’ to denote a graph
corresponding to a cycle. A cycle of length k is called a k-cycle; a k-cycle is
odd or even according as k is odd or even. A 3-cycle is often called a
triangle. Examples of a closed trail and a cycle are given in figure 1.10.
Using the concept of a cycle, we can now present a characterisation of
bipartite graphs. | |

Theorem 1.2 A graph is bipartite if and only if it contains no odd cycle.

Proof Suppose that G is bipartite with bipartition (X, Y), and let C=
VoV: . . . Uxlo be a cycle of G. Without loss of generality we may assume that
vo€ X. Then, since vov: € E and G is bipartite, v,€ Y. Similarly v,e X # 3},
in general, v;€X and vi. €Y. Since vo€e X, vi€Y. Thus k=2i+1, for
some i, and it follows that C is even.

Closed trail: ucvhxgwfwdvbu
Cycle: xaubvhx

Figure 1.10
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It clearly suffices to prove the converse for connected gfaphs. Let G be a
connected graph that contains no odd cycles. We choose an arbitrary vertex
u and define a partition (X, Y) of V by setting

X={xeV|d(ux) iseven}
Y={yeV|d(uy) isodd}

We shall show that (X, Y) is a bipartition of G. Suppose that v and w are
two vertices of X. Let P be a shortest (u, v)-path and Q be a shortest
(u, w)-path. Denote by u, the last vertex common to P and Q. Since P and
Q are shortest paths, the (u, u,)-sections of both P and Q are shortest
(u, u,)-paths and, therefore, have the same length. Now, since the lengths of
both P and Q are even, the lengths of the (u,, v)-section P, of P and the
(u;, w)-section Q, of Q must have the same parity. It follows that the
(v, w)-path P7'Q, is of even length. If v were joined to w, P7'Q,wv would
be a cycle of odd length, contrary to the hypothesis. Therefore no two
vertices in X are adjacent; similarly, no two vertices in Y are adjacent [

Exercises

1.7.1 Show that if an edge e is in a closed trail of G, then e is in a cycle of
G.

1.7.2  Show that if § =2, then G contains a ‘cycle.

1.7.3* Show that if G is simple and 8 =2, then G contains a cycle of length
at least §+1.

1.7.4 'The girth of G is the length of a shortest cycle in G; if G has no
cycles we define the girth of G to be infinite. Show that

(a) a k-regular graph of girth four has at least 2k vertices, and (up to
isomorphism) there exists exactly one such graph on 2k vertices;
(b) a k-regular graph of girth five has at least k*+1 vertices.

1.7.5 Show that a k-regular graph of girth five and diameter two has
exactly k>+1 vertices, and find such a graph for k =2, 3. (Hoffman
and Singleton, 1960 have shown that such a graph can exist only if
k=2, 3, 7 and, possibly, 57.)

1.7.6 Show that |

(a) if e=v, G contains a cycle; | o
(b)* if e=v+4, G contains two edge-disjoint cycles. (L. P6sa)

APPLICATIONS

1.8 - THE SHORTEST PATH PROBLEM

With each edge e of G let there be associated a real number w(e), called its
weight. Then G, together with these weights on its edges, is called a weighted
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Figure 1.11. A (uo, vo)-path of minimum weight

graph. Weighted graphs occur frequently in applications of graph theory. In
the friendship graph, for example, weights might indicate intensity of
friendship; in the communications graph, they could represent the construc-
tion or maintenance costs of the various communication links.

If H is a subgraph of a weighted graph, the weight w(H) of H is the sum
of the weights e;;u w(e) on its edges. Many optimisation problems amount
to finding, in a weighted graph, a subgraph of a certain type with minimum
(or maximum) weight. One such is the shortest path problem: given a railway
network connectmg various towns, determine a shortest route between two
specified towns in the network.

Here one must find, in a weighted graph, a path of minimum weight
connecting two specified vertices u, and vo; the weights represent distances
by rail between directly-linked towns, and are therefore non-negative. The
path indicated in the graph of figure 1 11 is a (uo, vo)- path of minimum
weight (exercise 1.8. 1).

We now present an algorithm for solving the shortest path problem For -
clarity of exposition, we shall refer to the weight of a path in a weighted
graph as its length; similarly the minimum weight of a (u, v)-path will be
called the distance between u and v and denoted by d(u, v). These defini-
tions coincide with the usual notions of length and distance, as defined in
section 1.6, when all the weights are equal to one.

It clearly suffices to deal with the shortest path problem for simple graphs;
so we shall assume here that G is simple. We shall also assume that all the
weights are positive. This, again, is not a serious restriction because, if the
weight of an edge is zero, then its ends can be identified. We adopt the
convention that w(uv) = if uvé E. :
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The algorithm to be described was discovered by Dijkstra (1959) and,
independently, by Whiting and Hillier (1960). It finds not only a shortest
(uo, Vo)-path, but shortest paths from u, to all other vertices of G. The basic
idea is as follows.

Suppose that S is a proper subset of V such that u,€ S, and let S denote
VAS. If P=1uo...d is a shortest path from u, to S then clearly iie S and
the (uo, it)-section of P must be a shortest (uo, it)-path. Therefore

d(uo, ) = d(uo, i) + w(iad)
and the distance from u, to S is given by the formula

d(uo, S) = min{d(uo, u)+w(uv)} (1.1)

veS§

This formula is the basis of Dijkstra’s algorithm. Starting with the set
So={uo}, an increasing sequence S,, S, ..., S,_, of subsets of V is con-
structed, in such a way that, at the end of stage i, shortest paths from u, to
all vertices in S; are known. :

The first step is to determine a vertex nearest to uo. This is achieved by

computing d(u,, So) and selecting a vertex u;eS, such that d(uo, u;) =
d(uo, So) by (1 1)

d(ue, So) = mm{d(uo, u)+w(uv)}= mm{w(uov)}

VG So

and so d(uo, So) is easily computed. We now set S, ={uo, u,} and let P,
denote the path uou;; this is clearly a shortest (uo, u;)-path. In general, if the
set Sy ={uo, Uy, .. ., i} and corresponding shortest paths Py, P,, . .., P, have
already been determined, we compute d(uo, Sk) using (1.1) and select a
vertex 1€ S, such that d(uo, tis1) = d(uo, Si). By (1.1), d(uo, Us1) =
d(uo, u;) + w(u;uw+,) for some j=k; we get a shortest (uo, ui+1)-path by
adjoining the edge u;u.., to the path P;.

We illustrate this procedure by considering the weighted graph depicted in
figure 1.12a. Shortest paths from u, to the remaining vertices are deter-
mined in seven stages. At each stage, the vertices to which shortest paths
have been found are indicated by solid dots, and each is labelled by its
distance from uo; initially u, is labelled 0. The actual shortest paths are
indicated by solid lines. Notice that, at each stage, these shortest paths
together form a connected graph without cycles; such a graph is called a tree,
and we can think of the algorithm as a ‘tree-growing’ procedure. The final
tree, in figure 1.12h, has the property that, for each vertex v, the path
connecting u, and v is a shortest (uo, v)-path.

Dijkstra’s algorithm is a refinement of the above procedure. This refine-
ment is motivated by the consideration that, if the minimum in (1.1) were to
be computed from scratch at each stage, many comparisons would be
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. Figure 1.12. Shortest path algori




Graphs and Subgraphs 19

repeated unnecessarily. To avoid such repetitions, and to retain computa-
tional information from one stage to the next, we adopt the following
labelling procedure. Throughout the algorithm, each vertex v carries a label
I(v) which is an upper bound on d(uo, v). Initially I(u,) =0 and I(v) = » for
v# Uo. (In actual computations » is replaced by any sufficiently large
number.) As the algorithm proceeds, these labels are modified so that, at the
end of stage i,

l(u)=d(uo,u) for ues,
and

l(v)=Esip{d(uo, u)+w(uv)} for veS,

Dijkstra’s Algorithm

1. Set l(uo) = 0, l(p_) =oo for v# Uo, Soz{uo} and i =0.
2. For each veS, replace I(v) by min{l(v); I(u)+ w(u;v)}. Compute
Qlisn{l(v)} and let wi., denote a vertex for which this minimum is attained.

Set Si+1 = Si U.{um}.
3. Ifi=v~—1, stop. If i<v—1, replace i by i+1 and g0 to step 2.

When the algorithm terminates, the distance from u, to v is given by the
final value of the label I(v). (If our interest is in determining the distance to
one specific vertex v, we stop as soon as some u; equals vo.) A flow diagram
summarising this algorithm is shown in figure 1.13.

As described above, Dijkstra’s algorithm determines only the distances
from u, to all the other vertices, and not the actual shortest paths. These
shortest paths can, however, be easily determined by keeping track of the
predecessors of vertices in the tree (exercise 1.8.2). :

Dijkstra’s algorithm is an example of what Edmonds (1965) calls a good
algorithm. A graph-theoretic algorithm is good if the number of computa-
tional steps required for its implementation on any graph G is bounded
above by a polynomial in v and & (such as 3v’e). An algorithm whose
implementation may require an exponential number of steps (such as 2%)
might be very inefficient for some large graphs.

To see that Dijkstra’s algorithm is good, note that the computations
involved in boxes 2 and 3 of the flow diagram, totalled over all iterations,
require v(v —1)/2 additions and v(v —1) comparisons. One of the questions
that is not elaborated upon in the flow diagram is the matter of deciding
whether a vertex belongs to S or not (box 1). Dreyfus (1969) reports a
technique for doing this that requires a total of (v — 1)? comparisons. Hence,
if we regard either a comparison or an addition as a basic computational
unit, the total number of computations required for this algorithm is
approximately 5»°/2, and thus of order v2. (A function f(v, €) is of order
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STOP:

S . o)
Uluj 41}+S Liv)=dlug,v)

i+1—>

YES

VveV
k | min LW, G+ wlgvl == () |y =i =1 additions
YveS v —i—1comparisons
(3)
N———] Compute min {((v)} v - i=1comparisons
3u;,q St ‘ ves
{uj ) =min{t(v)}
veS

Figure 1. 13 Dijkstra’s algonthm

gy, g) if there exists a positive constant ¢ such that f(v, e)/g(v g)=c for all
v and &)

Although the shortest path problem can be solved by a good algornthm
there are many problems in graph theory for which no good algorithm is

known. We refer the reader to Aho, Hopcroft and Ullman (1974) for
further detalls

Exercises

181 Find shortest paths from u, to all other vertices in the wexghted
graph of figure 1.11.
1.8.2 What additional instructions are needed in order that Dl]kstras
algorithm determine shortest paths rather than merely distances?
1.8.3 A company has branches in each of six cities Ci, Cs, . . . , Ce. The fare
- for a direct flight from C; to C; is given by the (i, j)th entry in the
following matrix (e indicates that there is no direct flight):
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[0 50 o 40 25 10]
50 0 15 20 o« 25
© 15 0 10 20 o
40 20 10 0 10 25
25 «© 20 10 0 55
110 25 o 25 55 0O

The company is interested in computing a table of cheapest routes
between pairs of cities. Prepare such a table.

1.8.4 A wolf, a goat and a cabbage are on one bank of a river. A ferryman
wants to take them across, but, since his boat is small, he can take

- only one of them at a time. For obvious reasons, neither the wolf and
the goat nor the goat and the cabbage can be left unguarded. How is
the ferryman going to get them across the river?

1.8.5 Two men have a full eight-gallon jug of wine, and also two empty
jugs of five and three gallons capacity, respectively. What is the
simplest way for them to divide the wine equally?

1.8.6 Describe a good algorithm for determining

(a) the components of a graph;
(b) the girth of a graph.
How good are your algorithms?

o

1.9 SPERNER’S LEMMA

Every continuous mapping f of a closed n-disc to itself has a fixed point
(that is, a point x such that f(x)=x). This powerful theorem, known as
Brouwer’s fixed-point theorem, has a wide range of applications in modern
mathematics. Somewhat surprisingly, it is an easy consequence of a simple
combinatorial lemma due to Sperner (1928). And, as we shall see in this
section, Sperner’s lemma is, in turn, an immediate consequence of corollary
1.1.

Sperner’s lemma concerns the decomposition of a simplex (line segment,
triangle, tetrahedron and so on) into smaller simplices. For the sake of
simplicity we shall deal with the two-dimensional case. :

Let T be a closed triangle in the plane. A subdivision of T into a finite
number of smaller triangles is said to be simplicial if any two intersecting
triangles have either a vertex or a whole side in common (see figure 1.14a).

Suppose that a simplicial subdivision of T is given. Then a labelling of the
vertices of triangles in the subdivision in three symbols 0, 1 and 2 is said to
be proper if
(i) the three vertices of T are labelled 0, 1 and 2 (in any order), and
(ii) for 0=i<j=2, each vertex on the side of T joining vertices labelled i

and j is labelled either i or j.
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(a)

Figure 1.14. (a) A simplicial subdivision of a triangle; (b) a proper labelling of the
‘ subdivision

We call a triangle in the subdivision whose vertices receive all three labels a
distinguished triangle. The proper labelling in figure 1.14b has three distin-
guished triangles. '

Theorem 1.3 (Sperner’s lemma) Every properly labelled simplicial subdivi-
sion of a triangle has an odd number of distinguished triangles.

Proof Let T, denote the region outside T, and let Ty, T,, ..., T, be the
triangles of the subdivision. Construct a graph on the vertex set
{vo, V1, ..., Ua} by joining v; and v; whenever the common boundary of T;
and T; is an cdge with labels 0 and 1 (see figure 1.15).

In this graph, v, is clearly of odd degree (exercise 1.9.1). It follows from
corollary 1.1 that an odd number of the vertices vy, v, ..., v, are of odd
degree. Now it is easily seen that none of these vertices can have degree

W V:
pl 2
) Vo
v
g o 12
Vs
Ve
o) o
vy Ve
Vo

Figure 1.15
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three, and so those with odd degree must have degree one. But a vertex v, is
of degree one if and only if the triangle T; is distinguished [

We shall now briefly indicate how Sperner’s lemma can be used to deduce
Brouwer’s fixed-point theorem. Again, for simplicity, we shall only deal with
the two-dimensional case. Since a closed 2-disc is homeomorphic to a closed
triangle, it suffices to prove that a continuous mapping of a closed triangle to
itself has a fixed point.

Let T be a given closed triangle with vertices xo, x, and x,. Then each
point x of T can be written uniquely as x = aoXo+ a;x; + a,x,, where each
a;=0 and X a;=1, and we can represent x by the vector (ao, a,, a,); the real
numbers ao, a; and a, are called the barycentric coordinates of x.

Now let f be any continuous mapping of T to itself, and suppose that

f(aﬂa a, a2) = (a(')’ ai, a&)

Define S; as the set of points (ao, a1, a,) in T for which a! < a;. To show that
f has a fixed point, it is enough to show that SoNS, NS, #@. For suppose
that (ao, a1, a;) € SoNS; N S,. . Then, by the definition of S, we have that
ai=a; for each i, and this, coupled with the fact that 3 a/=3 a,, yields

(a5, ai, at) = (a0, as, a,)

In other words, (ao, a1, a,) is a fixed point of f.

So consider an arbitrary subdivision of T and a proper labelling such that
each vertex labelled i belongs to S;; the existence of such a labelling is easily
seen (exercise 1.9.2a). It follows from Sperner’s lemma that there is a
triangle in the subdivision whose three vertices belong to S, S; and S,. Now
this holds for any subdivision of T and, since it is possible to choose
subdivisions in which each of the smaller triangles are of arbitrarily small
diameter, we conclude that there exist three points of So, S; and S, which
are arbitrarily close to one another. Because the sets S: are closed (exercise
1.9.2b), one may deduce that S,NS;N S, #@. |

For details of the above proof and other applications of Sperner’s lemma,
the reader is referred to Tompkins (1964).

Exercises

1.9.1 In the proof of Sperner’s lemma, show that the vertex vo is of odd
degree. ‘

1.9.2" In the proof of Brouwer’s fixed-point theorem, show that

(a) there exists a proper labelling such that each vertex labelled i
belongs to S;;
(b) the sets S; are closed.

1.9.3 State and prove Sperner’s lemma for higher dimensional simplices.
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2 Trees
2.1 TREES

An acyclic graph is one that contains no cycles. A tree is a connected acyclic
graph. The trees on six vertices are shown in figure 2.1.

Theorem 2.1 In a tree, any two vertices are connected by a unique path.

Proof By contradiction. Let G be a tree, and assume that there are two
distinct (u, v)-paths P, and P, in G. Since P, # P,, there is an edge e = xy of
P, that is not an edge of P,. Clearly the graph (P, U P,)—e is connected. It
therefore contains an (x, y)-path P. But then P+e is a cycle in the acyclic
graph G, a contradiction [

The converse of this theorem holds for graphs without loops (exerc1se
2.1.1).

Observe that all the trees on six vertices (ﬁgure 2. 1) have ﬁve edges In
general we have:

Theorem 2.2 1If G is a tree, then e =v—1.

Proof By induction on v. When v=1, G=K, and e =0=v-1.

Figure 2.1. The trees on six vertices
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Suppose the theorem true for all trees on fewer than v vertices, and let G
be a tree on v =2 vertices. Let uv € E. Then G —uv contains no (u, v)-path,
since uv is the unique (u, v)-path in G. Thus G —uv is disconnected and so
(exercise 1,6.8a) w(G —uv)=2. The components G; and G, of G —uv,
being acyclic, are trees. Moreover, each has fewer than v vertices. Therefore,
by the induction hypothesis

S(Gi)=V(Gi)—1 VfOI' i=1,2
Thus ' | ,
e(G)=¢e(G)+e(G)+1=v(G)+v(G)-1=v(G)-1 [

Corollary 2.2 Every nontrivial tree has at least two vertices of degree one.
Proof ‘Let G be a nontrivial tree. Then
d(v)=1 forall veV
Also, by theorems 1.1 and 2.2, we have

Z’Vd(v) =2e=2v-2

It now follows that d(v) =1 for at least two vertices v 0

Another, perhaps more illuminating, way of proving corollary 2.2 is to
show that the origin and terminus of a longest path in a nontrivial tree both
~ have degree one (see exercise 2.1.2).

Exercises

2.1.1  Show that if any two vertices of a loopless graph G are connected
- by a unique path, then G is a tree. - |

2.1.2  Prove corollary 2.2 by showing that the origin and terminus of a
longest path in a nontrivial tree both have degree one.

2.1.3  Prove corollary 2.2 by using exercise 1.7.2.

2.14  Show that every tree with exactly two vertices of degree one is a
path.

2.1.5 Let G be a graph with v—1 edges. Show that the following three
statements are equivalent:

(a) G is connected;
~ (b) G is acyclic;
(c) G is a tree.
2.1.6  Show that if G is a tree with A=k, then G has at least k vertices of

degree one.
2.1.7  An acyclic graph is also called a forest. Show that

(a) each component of a forest is a tree;
(b) G is a forest if and only if ¢ =v— .
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2.1.8 A centre of G is a vertex u such that max d(u, v) is as small as
vEV

possible. Show that a tree has either exactly one centre or two,
adjacent, centres. .
2.1.9 Show that if G is a forest with exactly 2k vertices of odd degree,
then there are k edge-disjoint paths P,, P,,..., P, in G such that
2.1.10* Show that a sequence (d, d., . . ., d.) of positive integers is a degree
sequence of a tree if and only if ), di=2(v—1).

1=1

2.1.11 Let T be an arbitrary tree on k+1 vertices. Show that if G is
simple and 6§ =k then G has a subgraph isomorphic to T.

2.1.12 A saturated hydrocarbon is a molecule C..H, in which every carbon
atom has four bonds, every hydrogen atom has one bond, and no
sequence of bonds forms a cycle. Show that, for every positive
integer m, C,H, can exist only if n =2m+2.

2.2 CUT EDGES AND BONDS

A cut edge of G is an edge e such that w(G — e) > w(G). The graph of figure
2.2 has the three cut edges indicated.

Theorem 2.3 An edge e of G is a cut edge of G if and only if e is
contained in no cycle of G.

Proof Let e be a cut edge of G. Since w(G—e)>w(G), there exist
vertices u and v of G that are connected in G but not in G —e. There is
therefore some (u, v)-path P in G which, necessarily, traverses e. Suppose
that x and y are the ends of e, and that x precedes y on P. In G—e, u is
connected to x by a section of P and y is connected to v by a section of P. If
e were in a cycle C, x and y would be connected in G —e by the path C—e.
Thus, u and v would be connected in G —e, a contradiction.

Figure 2.2. The cut edges of a graph
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Conversely, suppose that e = xy is not a cut edge of G; thus, w(G—e) =
o(G). Since there is an (x, y)-path (namely xy) in G, x and y are in the
same component of G. It follows that x and y are in the same component of
G —e, and hence that there is an (x, y)-path P in G —e. But then e is in the
cycle P+e of G O |

Theorem 2.4 A connected graph is a tree if and only if every edge is a cut
edge.

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is
contained in no cycle of G and is therefore, by theorem 2.3, a cut edge of G.

Conversely, suppose that G is connected but is not a tree. Then G
contains a cycle C. By theorem 2.3, no edge of C can be a cut edge of G O

A spannmg tree of G is a spanmng subgraph of G that is a tree.
Corollary 2. 4.1 Every connected graph contains a spanning tree.

Proof Let G be connected and let T be a minimal connected spanning
subgraph of G. By definition w(T) =1 and w(T—e)>1 for each edge e of T.
It follows that each edge of T is a cut edge and therefore, by theorem 2.4,
that T, being connected, is a tree 0 : ‘

Frgure 2. 3 depicts a connected graph and one of its spanning trees.

Corollary 2.4.2 If G is connected, then e =v—1.

~ Proof Let G be connected. By corollary 241, G contams a spannmg
tree T. Therefore

e(G)=e(T) = W(T)=1=w(G)—-1 O

Fig\jré 2.3. A spanning tree in a connected graph
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(@) | (b)

Figure 2.4. (a) An edge cut; (b) a bond

Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be
an edge of G not in T. Then T+ e contains a unique cycle.

Proof Since T is acyclic, each cycle of T + e contains e. Moreover, C is a
cycle of T+ e if and only if C—e is a path in T connecting the'ends of e. By
theorem 2.1, T has a unique such path; therefore T +e contains a unique
cycle 0O

For subsets S and S’ of V, we denote by [S, S'] the set of edges with one
end in S and the other in S’. An edge cut of G is a subset of E of the form
[S, S], where S is a nonempty proper subset of V and § = V\S. A minimal
nonempty edge cut of G is called a bond; each cut edge e, for instance, gives
rise to a bond {e}. If G is connected, then a bond B of G is a minimal subset
of E such that G —B is disconnected. Figure 2.4 indicates an edge cut and a
bond in a graph. ‘

If H is a subgraph of G, the complement of H in G, denoted by H(G), is
the subgraph G — E(H). If G is connected, a subgraph of the form T, where
T is a spanning tree, is called a cotree of G.

Theorem 2.6 Let T be a spanning tree of a connected graph G, and let e be
any edge of T. Then

(i) the cotree T contains no bond of G;
(ii) T+e contains a unique bond of G.

Proof (i) Let B be a bond of G. Then G- B is disconnected, and so
cannot contain the spanning tree T. Therefore B is not contained in T. (ii)
Denote by S the vertex set of one of the two components of T —e. The edge
cut B =[S, S]is clearly a bond of G, and is contained in T + e. Now, for any
beB, T—e+b is a spanning tree of G. Therefore every bond of G
contained in T+e must include every such element b. It follows that B is
the only bond of G contained in T+e [

The relationship between bonds and cotrees is analogous to that between
cycles and spanning trees. Statement (i) of theorem 2.6 is the analogue for
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bonds of the Simple fact that a spanning tree is acyclic, and (ii) is the
analogue of theorem 2.5. This ‘duality’ between cycles and bonds will be
further explored in chapter 12 (see also exercise 2.2.10).

Exercises
2.2.1  Show that G is a forest if and only if every edge of G is a cut edge.
2.2.2  Let G be connected and let e € E. Show that
(a) e is in every spanning tree of G if and only if e is a cut edge of
G; |
(b) e is in no spanning tree of G if and only if e is a loop of G.
2.2.3  Show that if G is loopless and has exactly one spanning tree T, then
G=T.
2.2.4 Let F be a maximal forest of G. Show that
(a) for every component H of G, FNH is a spanning tree of H;
(b) &(F)=v(G)-w(G).
2.2.5 Show that G contains at least ¢ — v+ w distinct cycles.
2.2.6 Show that
(a) if each degree in G is even, then G has no cut edge;
(b) if G is a k-regular bipartite graph with k =2, then G has no cut
| edge. ' |
2.2.7  Find the number of nonisomorphic spanning trees in the following

graphs:

2.2.9

- 2.2.10

Let G be connected and let S be a nonempty proper subset of V.
Show that the edge cut [S, S] is a bond of G if and only if both
G[S] and G[S] are connected. |
Show that every edge cut is a disjoint union of bonds.

Let B; and B, be bonds and let C, and C, be cycles (regarded as
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sets of edges) in a graph. Show that

(a) B, AB,; is a disjoint union of bonds;
(b) CiAC; is a disjoint union of cycles,

where A denotes symmetric difference;

(c) for any edge e, (B, U B;)\{e} contains a bond;
(d) for any edge e, (C;U C;)\{e} contains a cycle.

2.2.11 Show that if a graph G contains k edge-disjoint spanning trees

then, for each partition (V,, V,, ..., V) of V, the number of edges
which have ends in different parts of the partition is at least
k(n—-1).

(Tutte, 1961 and Nash-Williams, 1961 have shown that this
necessary condition for G to contain k edge-disjoint spanning trees
is also sufficient.)

2.2.12* Let S be an n-element set, and let f ={A;, A,, ..., A.} be a family
of n distinct subsets of S. Show that there is an element x € S such
that the sets A, U{x}, A,U{x},..., A.U{x} are all distinct.

2.3 CUT VERTICES

A vertex v of G is a cut vertex if E can be partitioned into two nonempty
subsets E; and E, such that G[E,] and G[E,] have just the vertex v in
common. If G is loopless and nontrivial, then v is a cut vertex of G if and
only if (G —v)>w(G). The graph of figure 2.5 has the five cut vertices
indicated. ' ' '

Theorem 2.7 A vertex v of a tree G is a cut vertex of G if and only if
d(v)>1.

Proof If d(v)=0, G =K, and, clearly, v. is not a cut vertex.

Figure 2.5. The cut vertices of a graph
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If d(v)=1, G—v is an acyclic graph with v(G —v)—1 edges, and thus
(exercise 2.1.5) a tree. Hence (G —v)=1=w(G), and v is not a cut vertex
of G. A

If d(v) > 1, there are distinct vertices u and w adjacent to v. The path uvw
is a (u, w)-path in G. By theorem 2.1 uvw is the unique (u, w)-path in G. It
follows that there is no (u, w)-path in G —v, and therefore that w(G —v) >
1=w(G). Thus v is a cut vertex of G [

- Corollary 2.7 Every nontrivial loopless connected graph has at least two
vertices that are not cut vertices.

Proof Let G be a nontrivial loopless connected graph. By corollary
2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T

has at least two vertices that are not cut vertices. Let v be any such vertex.
Then
o(T-v)=1

Since T is a spanning subgraph of G, T—v is a spanning subgraph of G —v
and therefore
o(G-v)=w(T—-v)

It follows that w(G —v) =1, and hence that v is not a cut vertex of G. Since
there are at least two such vertices v, the proof is complete 0

Exercises
2.3.1 Let G be connected with v=3. Show that
(a) if G has a cut edge, then G has a vertex v such that (G —v)>
(G); |
(b) the converse of (a) is not necessarily true.

2.3.2 Show that a simple connected graph that has exactly two vertices
which are not cut vertices is a path.

2.4 CAYLEY’S FORMULA

There is a simple and elegant recursive formula for the number of spanning
trees in a graph. It involves the operation of contraction of an edge, which
we now introduce. An edge e of G is said to be contracted if it is deleted
and its ends are identified; the resulting graph is denoted by G - e. Figure
2.6 illustrates the effect of contracting an edge.

It is clear that if e is a link of G, then

v(G-e)=v(G)—-1 £(G-e)=e(G)—-1 and w(G-e)=w(G)

Therefore, if T is a tree, so too is T-e.
We denote the number of spanning trees of G by 7(G).
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Figure 2.6. Contraction of an edge

Theorem 2.8 1If e is a link of G, then 7(G)=7(G—e)+7(G-e).

Proof Since every spanning tree of G that does not contain e is also a
spanning tree of G —e, and conversely, 7(G —e) is the number of spanning
trees of G that do not contain e.

Now to each spanning tree T of G that contains e, there corresponds a
spanning tree T-e of G -e. This correspondence is clearly a bijection (see
figure 2.7). Therefore 7(G - e) is precisely the number of spanning trees of G
that contain e. It follows that 7(G)=1(G—-e)+7(G-e) O

Figure 2.8 illustrates the recursive calculation of 7(G) by means of
theorem 2.8; the number of spanning trees in a graph is represented
symbolically by the graph itself.

Although theorem 2.8 provides a method of calculating the number of
spanning trees in a graph, this method is not suitable for large graphs.
Fortunately, and rather surprisingly, there is a closed formula for 7(G) which
expresses 7(G) as a determinant; we shall present this result in chapter 12.
In the special case when G is complete, a simple formula for 7(G) was
discovered by Cayley (1889). The proof we give is due to Priifer (1918).

SR

Figure 2.7
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Theorem 2.9 7(K,)=n"">.

Proof Let the vertex set of K, be N={1,2,..., n}. We note that n"? is
the number of sequences of length n—2 that can be formed from N. Thus,
to prove the theorem, it suffices to establish a one-one correspondence
between the set of spanning trees of K, and the set of such sequences.

With each spanning tree T of K, we associate a unique sequence
(t1, t2, - - ., ta—2) as follows. Regarding N as an ordered set, let s, be the first
vertex of degree one in T; the vertex adjacent to s, is taken as t;. We now
delete s, from T, denote by s, the first vertex of degree one in T —s;, and
take the vertex adjacent to s, as t,. This operation is repeated until t,_, has
been defined and a tree with just two vertices remains; the tree in figure 2.9,
for instance, gives rise to the sequence (4, 3, 5, 3, 4, 5). It can be seen that
different spanning trees of K, determine difference sequences.

<> (4,3,53,4,5)

Figure 2.9

The reverse procedure is equally straightforward. Observe, first, that any
vertex v of T occurs drtv)—1 times in (t;, t;, . . ., t._o). Thus the vertices of
degree one in T are precisely those that do not appear in this sequence. To
reconstruct T from (t,, t, . . ., t._2), we therefore proceed as follows. Let s,
be the first vertex of N not in (t;, t, . . ., t.—z); join s; to t;. Next, let s, be the
first vertex of N\{s:} not in (t,,.. ., t.->), and join s, to t,. Continue in this
way until the n—2 edges s;ti, Sat, . . ., Sa—2tn—> have been determined. T is
now obtained by adding the edge joining the two remaining vertices of
N\{s1, sz, ..., sa2}. It is easily verified that different sequences give rise to
different spanning trees of K,. We have thus established the desired one-
one correspondence 0 |

Note that n"™* is not the number of nonisomorphic spanning trees of K.,
but the number of distinct spanning trees of K,; there are just six
nonisomorphic spanning trees of Ks (see figure 2.1), whereas there are
6*=1296 distinct spanning trees of K.
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- Exercises

2.4.1 Using the recursion formula of theorem 2.8, evaluate the number of
spanning trees in K.

2.4.2* A wheel is a graph obtained from a cycle by adding a new vertex and
edges joining it to all the vertices of the cycle; the new edges are
called the spokes of the wheel. Obtain an expression for the number
of spanning trees in a wheel with n spokes.

2.4.3 Draw all sixteen spanning trees of K.

2.4.4 Show that if e is an edge of K,, then 7(K,—¢)=(n—2)n"">

2.4.5 (a) Let H be a graph in which every two adjacent vertices are joined

by k edges and let G be the underlying simple graph of H. Show
that 7(H) =k" " '7(G).

(b) Let H be the graph obtained from a graph G when each edge of
G is replaced by a path of length k. Show that ~(H)=
ke—v-i-lT( G).

(c) Deduce from (b) that 7(K,.)=n2""".

APPLICATIONS

2.5 THE CONNECTOR PROBLEM

A railway network connecting a number of towns is to be set up. Given the
cost ¢; of constructing a direct link between towns v; and v;, design such a
~ network to minimise the total cost of construction. This is known as the
connector problem.

By regarding each town as a vertex in a wexghted graph with weights
w(viv;) = ¢y, it is clear that this problem is just that of finding, in a weighted
graph G, a connected spanning subgraph of minimum weight. Moreover,
since the weights represent costs, they are certainly non-negative, and we
may therefore assume that such a minimum-weight spanning subgraph is a
spanning tree T of G. A minimum-weight spanning tree of a weighted graph
will be called an optimal tree; the spanning tree indicated in the weighted
graph of figure 2.10 is an optimal tree (exercise 2.5.1). :

We shall now present a good algorithm for finding an optimal tree in a
nontrivial weighted connected graph, thereby solving the connector
problem.

Consider, first, the case when each weight w(e)=1. An opnmal tree is
then a spanning tree with as few edges as possible. Since each spanning tree
of a graph has the same number of edges (theorem 2.2), in this special case
we merely need to construct some spanning tree of the graph. A simple
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Figure 2.10. An optimal tree in a weighted graph

inductive algbrithm for finding such a tree is the following:

1. Choose a link e;.

2. If edges e, e;...,e; have been chosen, then choose ei.; from
E\ley, €2, ..., e} in such a way that G[{e,, e, . . ., ei.1}] is acyclic.

3. Stop when step 2 cannot be implemented further.

This algorithm works because a maximal acyclic subgraph of a connected
graph is necessarily a spanning tree. It was extended by Kruskal (1956) to
solve the general problem; his algorithm is valid for arbitrary real weights.

Kruskal’s Algorithm

1. Choose a link e, such that w(e;) is as small as possible.

2. If edges ey, e,,.. ., e; have been chosen, then choose an edge ei.. from
E\{e,, ez, ..., e} in such a way that
(i) G[{es, e2, ..., ei.1}] is acyclic;
(ii) w(eis1) is as small as possible subject to (i).

3. Stop when step/2 cannot be implemented further.

As an example, consider the table of airline distances in miles between six
of the largest ci_ties in the world, London, Mexico City, New York, Paris,
Peking and Tokyo:

L MC NY Pa Pe T

5558 3469 214 5074 5959
- 2090 5725 7753 7035
— 3636 6844 6757
Pa 214 5725 3636 — 5120 6053
Pe 5074 7753 6844 5120 — 1307
T 5959 7035 6757 6053 1307 —

MC | 5558  —
NY | 3469 2090
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This table determines a weighted complete graph with vertices L, MC, NY,
Pa, Pe and T. The construction of an optimal tree in this graph is shown in
figure 2.11 (where, for convenience, distances are given in hundreds of miles).

Kruskal’s algorithm clearly produces a spanning tree (for the same reason
that the simpler algorithm above does). The following theorem ensures that
such a tree will always be optimal.

Theorem 2.10 Any spanning tree T*= Glle, e, . .., e.-1}] constructed by
Kruskal’s algorithm is an optimal tree.

Proof By contradiction. For any spanning tree T of G other than T%,
denote by f(T) the smallest value of i such that e; is not in T. Now assume that
T* is not an optimal tree, and let T be an optimal tree such that f(T) is as
large as possible.

Suppose that f(T) = k; this means that e, e, . . ., ex—; are in both T and T*,
‘but that e, is not in T. By theorem 2.5, T + e, contains a unique cycle C. Let ex
be an edge of C that isin T but not in T*. By theorem 2.3, ey is not a cut edge
of T+ e.. Hence T'= (T + e.) —ex is a connected graph with v—1 edges, and
therefore (exercise 2.1.5) is another spanning tree of G. Clearly

w(T") = w(T)+w(e)—wled) (2.1)
Now, in Kruskal’s algorithm, e, was chosen as an edge with the smallest weight
such that G[{e, e, ..., ex}] was acyclic. Since G[{ei, €2, ..., ex-1,ei}] is a
subgraph of T, it is also acyclic. We conclude that
w(ew) = w(ed) (2.2)
Combining (2.1) and (2.2) we have
w(T)=w(T)

and so T', too, is an optimal tree. However
f(T)>k = f(T)

contradicting the choice of T. Therefore T = T*, and T* is indeed an optimal
tree 0O

A flow diagram for Kruskal’s algorithm is shown in figure 2.12. The edges
are first sorted in order of increasing weight (box 1); this takes about ¢ log €
computations (see Knuth, 1973). Box 2 just checks to see how many edges
have been chosen. (S is the set of edges already chosen and i is their
number.) When i=v—1, S={ej, e,,..., e 1} is the edge set of an optimal
tree T* of G. In box 3, to check if G[S U{a;}] is acyclic, one must ascertain
whether the ends of a; are in different components of the forest G[S] or not.
This can be achieved in the following way. The vertices are labelled so that,
at any stage, two vertices belong to the same component of G[S] if and only
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(1)
Sort edges in order of increasing
weight
04,02, ..., 0¢

{6‘1.62,. .o

' ev-1}

Su{e”,}——*S

i+ 1—»—[
Jr1—=>j
t (3).
YES Glsulg)]
Set €4y = aj OCyChC?

Figure 2.12. Kruskal’s algorithm

if they have the same label; initially, vertex v, is assigned the label I,
1=I=v. With this labelling scheme, G[S U{a;}] is acyclic if and only if the
ends of a; have different labels. If this is the case, a; is taken as ei.i;
“otherwise, a; is discarded and a;.., the next candidate for ei.,, is tested. Once
ei+1 has been added to S, the vertices in the two components of G[S] that
contain the ends of e;., are relabelled with the smaller of their two labels. For
each edge, one comparison suffices to check whether its ends have the same or
different labels; this takes £ computations. After edge e;.; has been added to
S, the relabelling of vertices takes at most v comparisons; hence, for all v —
edges e, ez, ..., e,; we need v(v—1) computations. Kruskal’s algorlthm is
therefore a good algorithm.

Exercises

2.5.1 Show, by applying Kruskal’s algorlthm that the tree mdlcated in
figure 2.10 is indeed optimal.
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2.5.2 Adapt Kruskal’s algorithm to solve the connector problem with preas-
sighments: construct, at minimum cost, a network linking a number
of towns, with the additional requirement that certain selected pairs
of towns be directly linked.

2.5.3 Can Kruskal’s algorithm be adapted to find

(a) a maximum-weight tree in a weighted connected graph?
(b) a minimum-weight maximal forest in a weighted graph?
If so, how?

754 Show that the following Kruskal-type algorithm does not necessarily
yield a minimum-weight spanning path in a weighted complete
graph:

1. Choose a link e, such that w(e,) is as small as possible.

2. If edges ey, e, . .., €; have been chosen, then choose an edge e
from E\{e,, e, . .., e} in such a way that
(i) G[{es, ez, ..., es}] is a union of disjoint paths;
(ii) w(ei.;) is as small as possible subject to (1).

3. Stop when step 2 cannot be implemented further.

2.5.5 The tree graph of a connected graph G is the graph whose vertices
are the spanning trees Ty, T, .. ., T. of G, with T; and T; joined if
and only if they have exactly v—2 edges in common. Show that the
tree graph of any connected graph is connected. '
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3 Connectivity
3.1 CONNECTIVITY

In section 1.6 we introduced the concept of connection in graphs. Consider,
now, the four connected graphs of figure 3.1.

G, is a tree, a minimal connected graph; deleting any edge disconnects it.
G cannot be disconnected by the deletion of a single edge, but can be
disconnected by the deletion of one vertex, its cut vertex. There are no cut
edges or cut vertices in Gs, but even so Gs is clearly not as well connected as
G., the complete graph on five vertices. Thus, intuitively, each successive
graph is more strongly connected than the previous one. We shall now
define two parameters of a graph, its connectivity and edge connectivity,
which measure the extent to which it is connected. 1

A vertex cut of G is a subset V' of V such that G — V' is disconnected. A
k-vertex cut is a vertex cut of k elements. A complete graph has no vertex
cut; in fact, the only graphs which do not have vertex cuts are those that
contain complete graphs as spanning subgraphs. If G has at least one pair of
distinct nonadjacent vertices, the connectivity k(G) of G is the minimum k
for which G has a k-vertex cut; otherwise, we define «(G) to be v—1. Thus
k(G) =0 if G is either trivial or disconnected. G is said to be k-connected if
k(G)=k. All nontrivial connected graphs are 1-connected.

Recall that an edge cut of G is a subset of E of the form [S, S], where S is
a nonempty proper subset of V. A k-edge cut is an edge cut of k elements.
If G is nontrivial and E' is an edge cut of G, then G —E' is disconnected; we
then define the edge connectivity k'(G) of G to be the minimum k for which
G has a k-edge cut. If G is trivial, k'(G) is defined to be zero. Thus k'(G) =0
if G is either trivial or disconnected, and x'(G) =1 if G is a connected graph
with a cut edge. G is said to be k-edge-connected if k'(G) = k. All nontrivial
connected graphs are 1-edge-connected.

Q o)

G, G, Gs Gaq

Figure 3.1
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Figure 3.2

Theorem 3.1 k<k'<3$.

Proof 1If G is trivial, then k'= 0=4. Otherwise, the set of links incident
with a vertex of degree § constitute a 6-edge cut of G. It follows that k' < §.

We prove that k <k’ by induction on «’. The result is true if x'= 0, since
then G must be either trivial or disconnected. Suppose that it holds for all
graphs with edge connectivity less than k, let G be a graph with k'(G) = k >
0, and let e be an edge in a k-edge cut of G. Setting H = G —e, we have
k'(H)=k -1 and so, by the induction hypothesis, k(Hy<k-1. N

If H contains a complete graph as a spanning subgraph, then so does G
and

k(G)=x(H)<k-1
Otherwise, let S be a vertex cut of H with k(H) elements. Since H-S is
disconnected, either G —§ is disconnected, and then

k(G)=k(H)=sk-1

or else G- is connected and e is a cut edge of G—S. In this latter case,
either v(G—-8)=2 and

k(G)=w(G)-1=k(H)+1=k
or (exercise 2.3.1a) G—S has a 1-vertex cut {v}, implying that S U{v}is a
vertex cut of G and
k(G)=k(H)+1<k
Thus in each case we have k(G)=k =«'(G). The result follows by . the
principle of induction [

The inequalities in theorem 3.1 are often strict. For example, the graph G
of figure 3.2 has k =2, k'=3 and § =4,
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Exercises

3.1.1 (a) Show that if G is k-edge-connected, with k >0, and if E' is a set
of k edges of G, then w(G—-E')=<2.
(b) For k>0, find a k-connected graph G and a set V' of k vertices
of G such that w(G— V')>2. |
Show that if G is k-edge-connected, then & =kv/2.
(a) Show that if G is simple and 8§ =v—2, then k =34.
(b) Find a simple graph G with 8=v—3 and « <8
3.1.4 (a) Show that if G is simple and 8 =v/2, then k' =3.
(b) Find a simple graph G with § =[(v/2)—1] and «'<8.
3.1.5 Show that if G is simple and & >(v+k 2)/2, then G is k-
connected.
3.1.6 Show that if G is simple and 3-regular, then k =«’.
3.1.7 Show that if [, m and n are integers such that 0 <l=m =n, then
there exists a simple graph G with k =1, k'=m, and 8 =n.
(G. Chartrand and F. Harary)

W W
—
W N

3.2 BLOCKS

A connected graph that has no cut vertices is called a block. Every block
with at least three vertices is 2-connected. A block of a graph is a subgraph
that is a block and is maximal with respect to this property. Every graph is
the union of its blocks; this is illustrated in figure 3.3.

i £

(b)
Figure 3.3. (a) G; (b) the blocks of G "

A family of paths in G is said to be internally-disjoint if no vertex of G is
an internal vertex of more than one path of the famlly The following
theorem is due to Whitney (1932).

Theorem 3.2 A graph G with v =3 is 2-connected if and only if any two
vertices of G are connected by at least two internally-disjoint paths.
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Figure 3.4

Proof If any two vertices of G are connected by at least two internally-
disjoint paths then, clearly, G is connected and has no 1-vertex cut. Hence
G is 2-connected.

Conversely, let G be a 2-connected graph. We shall prove, by induction
on the distance d(u, v) between u and v, that any two vertices u and v are
connected by at least two internally-disjoint paths.

Suppose, first, that d(u, v) = 1. Then, since G is 2-connected, the edge uv
is not a cut edge and therefore, by theorem 2.3, it is contained in a cycle. It
follows that u and v are connected by two internally-disjoint paths in G.

Now assume that the theorem holds for any two vertices at distance less
than k, and let d(u, v) =k =2. Consider a (u, v)-path of length k, and let w
be the vertex that precedes v on this path. Since d(u, w) =k —1, it follows
from the induction hypothesis that there are two internally-disjoint (u, w)-
paths P and Q in G. Also, since G is 2-connected, G —w is connected and
so contains a (u, v)-path P'. Let x be the last vertex of P’ that is also in
PU Q (see figure 3.4). Since u is in PUQ there is such an x; we do not
exclude the possibility that x =v

We may assume, without loss of generality, that x is in P. Then G has two
internally-disjoint (u, v)-paths, one composed of the section of P from u to
x together with the section of P’ from x to v, and the other composed of Q
together with the path wo 0

Corollary 3.2.1 1If G is 2-connected, then any two vertices of G lie on a
common cycle.

Proof This follows immediately from theorem 3.2 since two vertices lie
on a common cycle if and only if they are connected by two interna'y-
disjoint paths 0O

It is convenient, now, to introduce the operation of subdivision of an
edge. An edge e is said to be subdivided when it is deleted and replaced by a
path of length two connecting its ends, the internal vertex of this path being
a new vertex. This is illustrated in figure 3.5.
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Figure 3.5. Subdivision of an edge

It can be seen that the class of blocks with at least three vertices is closed
under the operation of subdivision. The proof of the next corollary uses this
fact. :

Corollary 3.2.2 If G is a block with v =3, then any two edges of G lie on a
common cycle.

Proof Let G be a block with »=3, and let e, and e, be two edges of G.
Form a new graph G’ by subdividing e: and e, and denote the new vertices
by v: and v,. Clearly, G’ is a block with at least five vertices, and hence is
2-connected. It follows from corollary 3.2.1 that v, and v, lic on a common
cycle of G'. Thus e, and e, lie on a common cycle of G (see figure 3.6) O

Theorem 3.2 has a generalisation to k-connected. graphs, known as
Menger’s theorem: a graph G with v =k +1 is k-connected if and only if any
two distinct vertices of G are connected by at least k internally-disjoint
paths. There is also an edge analogue of this theorem: a graph G is
k-edge-connected if and only if any two distinct vertices of G are connected

Figure 3.6. (a) G'; (b) G
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by at least k edge-disjoint paths. Proofs of these theorems will be given in
chapter 11.

Exercises

3.2.1 Show that a graph is 2-edge-connected if and only if any two vertices
are connected by at least two edge-disjoint paths. :

3.2.2 Give an example to show that if P is a (u, v)-path in a 2-connected
graph G, then G does not necessarily contain a (u, v)-path Q
internally-disjoint from P.

3.2.3 Show that if G has no even cycles, then each block of G is either K, or
K,, or an odd cycle.

3.2.4 Show that a connected graph which is not a block has at least two
blocks that each contain exactly one cut vertex.

3.2.5 Show that the number of blocks in G is equal to w+ Zv(b(v)— 1),

where b(v) denotes the number of blocks of G containing v.

3.2.6* Let G be a 2-connected graph and let X and Y be disjoint subsets of
V, each containing at least two vertices. Show that G contains
disjoint paths R and Q such that

(i) the origins of P and Q belong to X,

(ii) the termini of P and Q belong to Y, and

(iii) no internal vertex of P or Q belongs to XU Y.

3.2.7* A nonempty graph G is k-critical if, for every edge e, k(G —e)<

k(G).

(a) Show that every k-critical 2-connected graph has a vertex of
degree two.
(Halin, 1969 has shown that, in general, every k-critical k-
connected graph has a vertex of degree k.)

(b) Show that if G is a k-critical 2-connected graph with v =4, then
eE<2v—4. . (G. A. Dirac)

3.2.8 Describe a good algorithm for finding the blocks of a graph.

APPLICATIONS

3.3 CONSTRUCTION OF RELIABLE COMMUNICATION NETWORKS

If we think of a graph as representing a communication network, the
connectivity (or edge connectivity) becomes the smallest number of com-
munication stations (or communication links) whose breakdown would
jeopardise communication in the system. The higher the connectivity and
edge connectivity, the more reliable the network. From this point of view, a
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tree network, such as the one obtained by Kruskal’s algorithm, is not very
reliable, and one is led to consider the following generalisation of the
connector problem.

Let k be a given positive integer and let G be a weighted graph.
Determine a minimum-weight k-connected spanning subgraph of G.

For k =1, this problem reduces to the connector problem, which can be
solved by Kruskal’s algorithm. For values of k greater than one, the
problem is unsolved and is known to be difficult. However, if G is a
complete graph in which each edge is assigned unit weight, then the problem
has a simple solution which we now present.

Observe that, for a weighted complete graph on n vertices in which each
edge is assigned unit weight, a minimum-weight m-connected spanning
subgraph is simply an m-connected graph on n vertices with as few edges as
possible. We shall denote by f(m,n) the least number of edges that an
m-connected graph on n vertices can have. (It is, of course, assumed that
m <n.) By theorems 3.1 and 1.1 -

f(m, n)={mn/2} | (3.1)

We shall show that equality holds in (3.1) by constructing an m-connected
graph H... on n vertices that has exactly {mn/2} edges. The structure of Hma
depends on the parities of m and n; there are three cases.

Case 1 m even. Let m =2r. Then H,.. is constructed as follows. It has
vertices 0,1,...,n—1 and two vertices i and j are joined if i—r=j<i+r
(where addition is taken modulo n). H,s is shown in figure 3.7a.

Case 2 m odd, n even. Let m =2r+1. Then H,.1,. is constructed by
first drawing H.. and then adding edges joining vertex i to vertex i+(n/2)
for 1=i=n/2. Hss is shown in figure 3.7b. |

Figure 3.7. (a) H.s; (b) Hsj; (¢) Hss
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Case 3 m odd, n odd. Let m =2r+1. Then Hy,..,, is constructed by first
drawing H,.. and then adding edges joining vertex 0 to vertices (n—1)/?
and (n+1)/2 and vertex i to vertex i+(n+1)/2 for 1=i<(n—1)/2. Hsg is
shown in figure 3.7c.

Theorem 3.3 (Harary, 1962) The graph H,, is m-connected.

Proof Consider the case m =2r. We shall show that Ha.. has no vertex
cut of fewer than 2r vertices. If possible, let V' be a vertex cut with |V’|<2r.
Let i and j be vertices belonging to different components of Hyn— V',
Consider the two sets of vertices

S={i,i+1,...,j—1,j}
and
T={,j+1,...,i—1,i}

where addition is taken modulo n. Since |V’| <2r, we may assume, without
loss of generality, that |V/NS|<r. Then there is clearly a sequence of
distinct vertices in S\'V' which starts with i, ends with j, and is such that the
difference between any two consecutive terms is at most r. But such a
sequence is an (i, j)-path in H,..— V', a contradiction. Hence H,, is
2r-connected.

The case m =2r+1 is left as an exercise (exercise 3.3.1) 0O

It is easy to see that & (Hnm.) ={mn/2}. Thus, by theorem 3.3,

f(m, n)={mn/2} (3.2)
It now follows from (3.1) and (3.2) that

f(m n) ={mn/2}

and that H..... is an m-connected graph on n vertices w1th as few edges as
possible.

We note that since, for any graph G, k =k’ (theorem 3.1), H,, . is also m-
edge-connected. Thus, denoting by g(m, n) the least possible number of
edges in an m-edge-connected graph on n vertices, we have, for l<m<n

g(m, n) ={mn/2} (3.3)

Exercises

3.3.1 Show that H,..,, is (2r+ 1)-connected.

3.3.2 Show that k(Hm,) = k' (Hn,) = m.

3.3.3 Find a graph with nine vertices and 23 edges that is 5-connected but
not isomorphic to the graph H;s, of figure 3.7c.

3.3.4 Show that (3.3) holds for all values of m and n withm>1and n>1.
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3.3.5 Find, for all =5, a 2-connected graph G of diameter two with
e=2v-35.
(Murty, 1969 has shown that every such graph has at least this
number of edges.)
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4 Euler Tours and Hamilton
Cycles

4.1 EULER TOURS

A trail that traverses every edge of G is called an Euler trail of G because
Euler was the first to investigate the existence of such trails in graphs. In the
earliest known paper on graph theory (Euler, 1736), he showed that it was
impossible to cross each of the seven bridges of Kénigsberg once and only
once during a walk through the town. A plan of Kdnigsberg and the river
Pregel is shown in figure 4.1a. As can be seen, proving that such a walk is
impossible amounts to showing that the graph of figure 4.1b contains no
Euler trail. ,

A tour of G is a closed walk that traverses each edge of G at least once.
An Euler tour is a tour which traverses each edge exactly once (in other
words, a closed Euler trail). A graph is eulerian if it contains an Euler tour.

Theorem 4.1 A nonempty connected graph is eulerian if and only if it has
no vertices of odd degree. '

Proof Let G be eulerian, and let C be an Euler tour of G with origin
(and terminus) u. Each time a vertex v occurs as an internal vertex of C, two
of the edges incident with v are accounted for. Since an Euler tour contains

C

(a) ' (b)

Figure 4.1. The bridges of Kénigsberg and their graph



52 | Graph Theory with Applications

every edge of G, d(v) is even for all v # u. Similarly, since C starts and ends
at u, d(u) is also even. Thus G has no vertices of odd degree.

- Conversely, suppose that G is a noneulerian connected graph with
at least one edge and no vertices of odd degree. Choose such a graph G with
as few edges as possible. Since each vertex of G has degree at least two, G
contains a closed trail (exercise 1.7.2). Let C be a closed trail of maximum
possible length in G. By assumption, C is not an Euler tour of G and so
G — E(C) has some component G' with ¢(G') >0. Since C is itself eulerian,
it has no vertices of odd degree; thus the connected graph G' also has no
vertices of odd degree. Since £(G') < &(G), it follows from the choice of G
that G' has an Euler tour C'. Now, because G is connected, there is a vertex
v in V(C)N V(C'), and we may assume, without loss of generality, that v

the origin and terminus of both C and C’. But then CC' is a closed trall of G'
with e(CC')>¢(C), contradlctlng the choice of C [

Corollary 4.1 A connected graph has an Euler trail if and only if it has at
most two vertices of odd degree.

Proof If G has an Euler trail then, as in the proof of theorem 4.1, each
vertex other than the origin and terminus of this trail has even degree.

Conversely, suppose that G is a nontrivial connected graph with at most
two vertices of odd degree. If G has no such vertices then, by theorem 4.1,
G has a closed Euler trail. Otherwise, G has exactly two vertices, u and v,
of odd degree. In this case, let G +e denote the graph obtained from G by
the addition of a new edge e joining u and v. Clearly, each vertex of G +e
has even degree and so, by theorem 4.1, G+e has an Euler tour C="
Vo€1V1 . . . €c+1Ve+1, Where e; =e. The trail v,e,v,. .. €..10..1 is an Euler trail
of G U | | - '

Exercises,

4.1.1 Which of the following figures can be drawn without lifting one’s pen
from the paper or covering a line more than once?

4.1.2 If possible, dfaw an eulerian graph G with v even and ¢ odd;
otherwise, explam why there is no such graph.
4.1.3 Show that if G is eulerian, then every block of G is eulerian.
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4.1.4 Show that if G has no vertices of odd degree, then there are
edge-disjoint  cycles C,,C,,...,Cn such that E(G)=
E(C)UE(C)U...UE(Cy).

4.1.5 Show that if a connected graph G has 2k > 0 vertices of odd degree,
then there are k edge-disjoint trails Qi, Q,, . . ., Q, in G such that
E(G) = E(Q1)) UE(Q)U . ..U E(Q)).

4.1.6* Let G be nontrivial and eulerian, and let v € V. Show that every trail
of G with origin v can be extended to an Euler tour of G if and only
if G—v is a forest. (O. Ore)

4.2 HAMILTON CYCLES

A path that contains every vertex of G is called a Hamilton path of G;
similarly, a Hamilton cycle of G is a cycle that contains every vertex of G.
Such paths and cycles are named after Hamilton (1856), who described, in a
letter to his friend Graves, a mathematical game on the dodecahedron
(figure 4.2a) in which one person sticks five pins in any five consecutive
vertices and the other is required to complete the path so formed to a

(a) (b)
Figure 4.2. (a) The dodecahedron; (b) the Herschel graph

spanning cycle. A graph is hamiltonian if it contains a Hamilton cycle. The
dodecahedron is hamiltonian (see figure 4.2a); the Herschel graph (figure
4.2b) is nonhamiltonian, because it is bipartite and has an odd number of
vertices. , .

In contrast with the case of eulerian graphs, no nontrivial necessary and
sufficient condition for a graph to be hamiltonian is known; in fact, the
problem of finding such a condition is one of the main unsolved problems of
graph theory. '

We shall first present a simple, but useful, necessary condition.

Theorem 4.2 If G is hamiltonian theh,' for every nonempty proper subset S
of V :

«(G-S)=<|S| (4.1)
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Proof Let C be a Hamilton cycle of G. Then, for every nonempty
proper subset S of V

w(C-S)=|S|
Also, C—S is a spanning subgraph of G—S and so
o(G-8)=w(C-S)
The theorem follows 0

As an illustration of the above theorem, consider the graph of figure 4.3.
This graph has nine vertices; on deleting the three indicated in black, four
components remain. Therefare (4.1) is not satisfied and it follows from
theorem 4.2 that the graph is nonhamiltonian.

We thus see that theorem 4.2 can sometimes be applied to show that a
particular graph is nonhamiltonian. However, this method does not always

Figure 4.3

work; for instance, the Petersen graph (figure 4.4) is nonhamiltonian, but
one cannot deduce this by using theorem 4.2.

We now discuss sufficient conditions for a graph G to be hamiltonian;
since a graph is hamiltonian if and only if its underlying simple graph is
hamiltonian, it suffices to limit our discussion to simple graphs. We start with
a result due to Dirac (1952).

Theorem 4.3 If G is a simple graph with »=3 and 8=v/2, then G is
hamiltonian. ‘ :

Proof By contradiction. Suppose that the theorem is false, and let G be
a maximal nonhamiltonian simple graph with v =3 and & = v/2. Since v =3,
G cannot be complete. Let u and v be nonadjacent vertices in G. By the
choice of G, G + uv is hamiltonian. Moreover, since G is nonhamiltonian,
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Figure 4.4. The Petersen graph

each Hamilton cycle of G +uv must contain the edge uv. Thus there is a
Hamilton path v,v;...v, in G with origin u =v, and terminus v = v,. Set

S={vi|uvi., € E} and T={v]|vwv €E}
Since v, S UT we have

ISUT|<v | 4.2)
Furthermore

ISNT|=0 4.3)

since if SNT contained some vertex v, then G would have the Hamilton

cycle v1vz ... VLV, ... ViV, coONtrary to assumption (see figure 4.5).
Using (4.2) and (4.3) we obtain

d(u)+d(v)=|S|+|T|=|SUT|+|SNT|<w (4.4)
But this contradicts the hypothesis that §=v/2 0O

Vi vz V3 Vi Visen Vi A

Figure 4.5

Bondy and Chvatal (1974) observed that the proof of theorem 4.3 can be
modified to yield stronger sufficient conditions than that obtained by Dirac.
The basis of their approach is the following lemma.

Lemma 4.4.1 Let G be a simple graph and let u and v be nonadjacent
vertices in G such that

d(u)+d@)=v (4.5)
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Then G is hamiltonian if and only if G+uv is hamiltonian. |

Proof If G is hamiltonian then, trivially, so too is G+ uv. Conversely,
suppose that G +uv is hamiltonian but G is not. Then, as in the proof of
theorem 4.3, we obtain (4.4). But this contradicts hypothesis (4.5) [

Lemma 4.4.1 motivates the following definition. The closure of G is the
graph obtained from G by recursively joining pairs of nonadjacent vertices
whose degree sum is at least v until no such pair remains. We denote the
closure of G by ¢(G). ‘

Lemma 4.4.2 ¢(G) is well defined.

Proof Let G; and G, be two graphs obtained from G by recursively
joining pairs of nonadjacent vertices whose degree sum is at least v until no
such pair remains. Denote by e, e, ..., €m and fi, f2, - . ., fo the sequences
of edges added to G in obtaining G, and G, respectively. We shall show
that each e is an edge of G, and each f; is an edge of G..

If possible, let ex.1=uv be the first edge in the sequence €, €z,... ;& that
is not an edge of G.. Set H= G+{es, e, ...,e. It follows from the
definition of G, that :

dH(u) + dH(‘U) =V
By the choice of ex., H is a subgraph of G.. Therefore
| do,(u) + do,(v) =V |

This is a contradiption, since u and v are nonadjacent in G,. Therefore each
e; is an edge of G, and, similarly, each f; is an edge of Gi. Hence G:= G,,
and ¢(G) is well defined 0O '

Figure 4.6 illustrates the construction of the closure of a graph G on six
vertices. It so happens that in this example ¢(G) is complete; note, however,
that this is by no means always the case.

G - | ¢ (G)
Figure 4.6. The closure of a graph
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" Figure 4.7. A hamiltonian graph

Theorem 4.4 A simple graph is hamiltonian if and only if its closure is
hamiltonian. - ,

Proof Apply lemma 4.4.1 each time an edge is added in the formation of
the closure 0 - o

Theorem 4.4 has a number of interesting consequences; 'First, upon
making the trivial observation that all complete graphs on at least three
vertices are hamiltonian, we obtain the following result.

Corollary 4.4 - Let G be av»simple graph with v=3. If,‘ c(G) is complete,
then G is hamiltonian. : S

~ Consider, for example, the graph of figure 4.7. One readily checks that its
‘closure is complete. Therefore, by corollary 4.4, it is hamiltonian. It is
perhaps interesting to note that the graph of figure 4.7 can be obtained from
the graph of figure 4.3 by altering just one end of one edge, and yet we have
results (corollary 4.4 and theorem 4.2) which tell us that this one is
hamiltonian whereas the other is not. - S
Corollary 4.4 can be used to deduce various sufficient conditions for a
graph to be hamiltonian in terms of its vertex degrees. For example, since
c(G) is clearly complete when 6 = v/2, Dirac’s condition (theorem 4.3) is an
immediate corollary. A more general condition than that of Dirac was
“obtained by Chvital (1972). S B o

Theorem 4.5 Let G be a simple graph with degree sequence
(d1,d2, ..., d,), where di=d,=...=<d, and v=3. Suppose that there is no
value of m less than v/2 for which dn=m and d,-.<v—m. Then G is
hamiltonian.
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Proof Let G satisfy the hypothesis of the theorem. We shall show that its
closure c(G) is complete, and the conclusion will then follow from corollary
4.4. We denote the degree of a vertex v in c(G) by d'(v).

Assume that c¢(G) is not complete, and let u and v be two nonadjacent
vertices in c(G) with

d'(u)=d’'(v) (4.6)

and d'(u)+d'(v) as large as possible; since no two ndnadjacent vertices in
c(G) can have degree sum v or more, we have

d'(u)+d'(v)<v | (4.7)

Now denote by S the set of vertices in V\{v} which are nonadjacent to v
in ¢(G), and by T the set of vertnces in V\{u} which are nonadjacent to u in
c(G). Clearly

|IS|=v—1-d'(v) and |T|=v-1-d'(u) (4.8)

Furthermore, by the choice of u and v, each vertex in S has degree at most
d'(u) and each vertex in TU{u} has degree at most d'(v). Setting d'(u)=m
and using (4.7) and (4.8), we find that ¢(G) has at least m vertices of degree
at most m and at least v —m vertices of degree less than v —m. Because G
is a spanning subgraph of ¢(G), the same is true of G; therefore d=m and
d,-=<v—m. But this is contrary to hypothesis since, by (4.6) and (4.7),
m < v/2. We conclude that ¢(G) is indeed complete and hence, by corollary
4.4, that G is hamiltonian 0

One can often deduce that a given graph is hamiltonian simply by
computing its degree sequence and applying theorem 4.5. This method
works with the graph of figure 4.7 but not with the graph G of figure
4.6, even though the closure of the latter graph is complete. From these
examples, we see that theorem 4.5 is stronger than theorem 4.3 but not as
strong as corollary 4.4.

A sequence of real numbers (p1, P2, - - - » o) is said to be majorised by
another such sequence (qi, g2, ..., qn) if pi=q; for 1=i=n. A graph G is
degree-majorised by a graph H if v(G)=v(H) and the nondecreasing
degree sequence of G is majorised by that of H. For instance, the 5-cycle is
degree-majorised by K, because (2, 2, 2, 2, 2) is majorised by (2, 2, 2, 3,
3). The family of degree-maximal nonhamiltonian graphs (those that are
degree-majorised by no others) admits of a simple description. We first
introduce the notion of the join of two graphs. The join G v H of disjoin
graphs G and H is the graph obtained from G + H by joining each vertex of
G toeachvertexof H; it is represented diagrammatically as in figure 4.8.

Now, for 1=m<n/2, let Cn. denote the graph Kunv (Kiu+Ka-2m), de-
picted in figure 4.9a; two specific examples, C,s and C,;s, are shown ir
figures 4.9b and 4.9c.
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Figure 4.8. The join of G and H

That Cy,. is nonhamiltonian follows immediately from theorem 4.2; for if
S denotes the set of m vertices of degree n—1 in Cn., we have
¢o((1nn—-S)==rn-+ﬁl:>|S|

Theorem 4.6 (Chvatal, 1972) I Gisa nonhamiltonian simple graph wnth
v=3, then G is degree-majorised by some Ch,,.

Proof Let G be a nonhamiltonian simple graph with degree sequence
(di, da, ...,d.), where d,<d,=...=<d, and v=3. Then, by theorem 4.5,
there exists m<v/2 such that do=m and d.-n<v—m. Therefore
(d1, dz, . .., d,) is majorised by the sequence

(m,...,m,v—m—l,...,v—m—l,v—l,...,v—l)

with m terms equal to m, v—2m terms equal to v—-m—1 and m terms
equal to v—1, and this latter sequence is the degree sequence of Cn, 0

K%-Zm

(a)

(c)

Figure 4.9. (a) Cy.; (b) Cis; (c) Cas
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. From theorem 4 6 we can deduce a result due to Ore (1961) and Bondy
(1972).

V2 1)+1, then G

is hamiltonian. Moreover, the only nonhamiltonian simple graphs with v

Corollary 4.6 If Gisa snmple graph with v=3 and ¢ >(

vertices and (v; 1)+1 edges are C,, and, for v=35, C,s.

Proof Let G be a nonhamiltonian simple graph with v=3. By theorem
4.6, G is degree-majorised by C,, for some positive integer m < /2.
Therefore, by theorem 1.1,

e(G)=e(Cn.) ' (4.9)

=i(m*+(v-2m)v-m-1)+m(v-1))

- (”'2‘ 1)+1--%(m--1)(m,—2)—(m—1)(1;—2m’—1)
s(”-;1)+1 | | . (4.10)

Furthermore, equality can only hold in (4.9) if G has the same degree
sequence as Cn,.; and equality can only hold in (4.10) if either m =2 and
v=5, or m=1. Hence &(G) can equal (v;

degree sequence as C;,, or C,;s, which is easnly seen to imply that G=C,, or
’ G Cys O

1)+1 only if G has the same

Exercises
4.2.1 Show that if either

(a) G is not 2-connected, or
(b) G is bipartite with bipartition (X, Y) where IXI #|Y],
then G is nonhamiltonian.

4.2.2 A mouse eats his way through a 3x3x3 cube of cheese by
tunnelling through all of the 27 1x1x 1 subcubes. If he starts at
one corner and always moves on to an uneaten subcube, can he
finish at the centre of the cube?

4.2.3  Show that if G has a Hamilton path then, for every proper subset S
of V, o(G-S)=|S|+1.

4.2.4* Let G be a nontrivial s1mple graph with degree sequence
(dy, ds,...,d,), where d;=d,=<...=<d,. Show that if there is no
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4.2.5

4.2.6*

value of m less than (v+1)/2 for which dn<m and d,_ 1 <v—m,

then G has a Hamilton path. (V. Chvatal)
(a) Let G be a simple graph with degree sequence (d;, ds, .. ., d.)
and let G° have degree sequence (d}, d3, . .., d.) where d,<d, <

..=d, and d,=d;=...=d,. Show that if du=dn for all
m=y/2, then G has a Hamllton path.

(b) Deduce that if G is self-complementary, then G has a Hamll-

ton path. - (C. R. J. Clapham)

Let G be a simple bipartite graph with bipartition (X, Y), where

|X|=1Y|=2, and let G have degree sequence (d,d,,...,d,),

427
4.2.8

4.2.9*

4.2.10

. 4.2.11

4.2.12

where d;=d,=<...=d,. Show that if there is no value of m less
than or equal to v/4 for which dn=m and d,,<v/2—m, then G is
hamiltonian. - (V. Chvatal)

Prove corollary 4.6 dlrectly from corollary 4.4.
Show that if G is simple with v=68 and .vs>(v;8)+82 then

G is hamiltonian. (P. Erdos)
Show that if G is a connected graph wrth v >28§, then G has a path
of length at least 28. (G. A. Dirac)

(Dirac, 1952 has also shown that if G is a 2-connected simple graph
with » =28, then G has a cycle of length at least 23.)
Using the remark to exercise 4.2.9, show that every 2k-regular
simple graph on 4k + 1 vertices is hamiltonian (k =1).

(C. St. J. A. Nash-Williams)
G is Hamilton-connected if every two vertices of G are connected
by a Hamilton path.

(a) Show that if G is Hamilton- connected and v=4, then e=
Gv+1)] : ‘

(b)* For v=4, construct a Hamrlton connected graph G with
e =[zGv+1)]. : - (J. W. Moon)

G is hypohamiltonian if G is not hamiltonian but G — v is hamilto-

nian for every v € V. Show that the Petersen graph (figure 4. 4) is

hypohamiltonian.

* (Herz, Duby and Vigué, 1967 have shown that it is, in fact, the

4.2.13*

4.2.14

smallest such graph.)

G is hypotraceable if G has no Hamilton path but G—v has a

Hamilton path for every v € V. Show that the Thomassen graph (p.

240) is hypotraceable. |

(a) Show that there is no Hamllton cycle in the graph Gl below
which contains exactly one of the edges e, and e,. |

(b) Using (a), show that every Hamilton cycle in G, includes the
edge e.

(c) Deduce that the Horton graph (p. 240) is nonhamiltonian.
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4.2.15 Describe a good algorithm for

(a) constructing the closure of a graph;
(b) finding a Hamilton cycle if the closure is complete.

APPLICATIONS

4.3 THE CHINESE POSTMAN PROBLEM

In his job, a postman picks up mail at the post office, delivers it, and then

returns to the post office. He must, of course, cover-each street in his area at

least once. Subject to this condition, he wishes to choose his route in such a

way that he walks as little as possible. This problem is known as the Chinese

postman problem, since it was first considered by a Chinese mathematician,
Kuan (1962).

- In a weighted graph, we define the weight of a tour vee v ... e,00 to be

n

Zl w(e;). Clearly, the Chinese postman problem is just that of finding a

minimum-weight tour in a weighted connected graph with non-negative
‘weights. We shall refer to such a tour as an optimal tour. ,

If G is eulerian, then any Euler tour of G is an optimal tour because an
Euler tour is a tour that traverses each edge exactly once. The Chinese
postman problem is easily solved in this case, since there exists a good
algorithm for determining an Euler tour in an eulerian graph. The al-
gorithm, due to Fleury (see Lucas, 1921), constructs an- Euler tour by
tracing out a trail, subject to the one condition that, at any stage, a cut edge
of the untraced subgraph is taken only if there is no alternative.

Fleury’s Algorithm

1. Choose an arbitrary vertex vo, and set Wy = v,. :
2. Suppose that the trail W= vee,v, ... e;v; has been chosen.
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Then choose an edge e, from E\{ey, e, ..., e} in such a way that
(i) e+ is incident with v;; |
(ii) unless there is no alternative, e, is not a cut edge of

Gi= G—{el, € ..., ei}
3. Stop when step 2 can no longer be implemented.

By its definition, Fleury’s algorithm constructs a trail in G.

Theorem 4.7 1If G is eulerian, then any trail in G constructed by Fleury’s
algorithm is an Euler tour of G.

Proof Let G be eulerian, and let W, = voe,v;...e,v, be a trail in G
constructed by Fleury’s algorithm. Clearly, the terminus v, must be of degree
zero in G,. It follows that v, = vo; in other words, W, is a closed trail.

Suppose, now, that W, is not an Euler tour of G, and let S be the set of
vertices of positive degree in G,.. Then S is nonempty and v, € S, where
S=V\S. Let m be the largest integer such that v, € S and vn.; € S. Since
W. terminates in S, en. is the only edge of [S, S] in G.., and hence is a cut
edge of Gn, (see figure 4.10). | |

Let e be any other edge of G., incident with v, It follows (step 2) that e
must also be a cut edge of G., and hence of G.[S]. But since G.[S]=
G.[S], every vertex in Ga.[S] is of even degree. However, this implies
(exercise 2.2.6a) that G.[S] has no cut edge, a contradiction [

The proof that Fleury’s algorithm is a good algorithm is left as an exercise
(exercise 4.3.2).

If G is not eulerian, then any tour in G and, in particular, an optimal tour
in G, traverses some edges more than once. For example, in the graph of
figure 4.11a xuywvzwyxuwuxzyx is an optimal tour (exercise 4.3.1). Notice
that the four edges ux, xy, yw and wo are traversed twice by this tour.

It is convenient, at this stage, to introduce the operation of duplication of
an edge. An edge e is said to be duplicated when its ends are joined by a

" Figure 4.10
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Figure 4.11

new edge of weight w(e). By duplicating the edges ux, xy, yw and wo in the
graph of figure 4.11a, we obtain the graph shown in figure 4.11b.

We may now rephrase the Chinese postman problem as follows: given a
weighted graph G with non-negative weights,

(i) find, 'by duplicating edges, an eulerian weighted supergraph G* of G

such that w(e) is as small as possible;

eEE(C;\E(G)
(ii) find an Euler tour in G*.

That this is equivalent to the Chinese postman problem follows from the
observation that a tour of G in which edge e is traversed m(e) times
corresponds to an Euler tour in the graph obtained from G by duphcatmg e
m(e)—1 times, and vice versa.

We have already presented a good algorithm for solving (ii), namely
Fleury’s algorithm. A good algorithm for solving (i) has been given by
Edmonds and Johnson (1973). Unfortunately, it is too involved to be
presented here. However, we shall consider one special case which affords.
an easy solution. This is the case where G has exactly two vertlces of odd
degree.

Suppose that G has exactly two vertices u and v of odd degree; let G* be
an eulerian spanning supergraph of G obtained by duplicating edges, and
write E* for E(G¥). Clearly the subgraph G*E*\E] of G* (induced by the
edges of G* that are not in G) also has only the two vertices u and v of odd
degree. It follows from corollary 1.1 that u and v are in the same compo-
nent of G*[E*\E] and hence that they are connected by a (u, v) -path P*.
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Clearly

et-___;\Ew(e) =w(P*)=w(P)

where P is a minimum-weight (u, v)-path in G. Thus Z w(e) is a minimum
€E"\E

when G* is obtained from G by duplicating each of the edges on a
minimum-weight (u, v)-path. A good algorithm for ﬁndmg such a path was
given in section 1.8.

-

Exercises

4.3.1 Show that xuywvzwyxuwovxzyx is an optimal tour in the weighted
graph of figure 4.11a.

4.3.2 Draw a flow diagram summarising Fleury’s algorithm, and show that
it is a good algorithm.

4.4 THE TRAVELLING SALESMAN PROBLEM

A travelling salesman wishes to visit a number of towns and then return to
his starting point. Given the travelling times between towns, how should he
plan his itinerary so that he visits each town exactly once and travels in all
for as short a time as possible? This is known as the travelling salesman
problem In graphical terms, the aim is to find a minimum-weight Hamilton
cycle in a weighted complete graph. We shall call such a cycle an optimal
cycle. In contrast with the shortest path problem and the connector problem,
no efficient algorithm for solving the travelling salesman problem is known.
It is therefore desirable to have a method for obtaining a reasonably good
(but not necessarily optimal) solution. We shall show how some of our
previous theory can be employed to this end.

One possible approach is to first find a Hamilton cycle C, and then search
for another of smaller weight by suitably modifying C. Perhaps the simplest
such modification is as follows.

Let C=v,v,...0,0,. Then, for all i and i such that 1<z+1<]<v, we
can obtain a new Hamnlton cycle

Ci=v10;... v.v,v,_ - Vis1Vjs1Vjsz . XN

by deleting the edges v;vi.; and v;v;+, and addmg the edges viv; and Vi1 Vjus,
as shown in figure 4.12.
If, for some i and j

W(0:0;) + W(0i410541) < W(0:0141) + W(V;0541)

the cycle C; will be an improvement on C.
After performing a sequence of the above modifications, one is left with a
cycle that can be improved no more by these methods. This final cycle will
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4 Viset
Visr Yi
_ Figure 4.12

almost certainly not be optimal, but it is a reasonable assumption that it will
often be fairly good; for greater accuracy, the procedure can be repeated
several times, starting with a different cycle each time.

As an example, consider the weighted graph shown in figure 4.13; it is the
same graph as was used in our illustration of Kruskal’s algorithm in section
2.5.

Starting with the cycle L MC NY Pa Pe T L, we can apply a sequence of
three modifications, as illustrated in figure 4.14, and end up with the cycle
LNYMCTPePalL of weight 192.

An indication of how good our solution is can sometimes be obtained by
applying Kruskal’s algorithm. Suppose that C is an optimal cycle in G.
Then, for any vertex v, C—v is a Hamilton path in G — v, and is therefore a

Pa

Figure 4.13
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Figure 4.14

spanning tree of G —v. It follows that if T is an optimal tree in G — v, and if
e and f are two edges incident with v such that w(e)+w(f) is as small as
possible, then w(T)+ w(e)+w(f) will be a lower bound on w(C). In our
example, taking NY as the vertex v, we find (see figure 4.15) that

w(T)=122  w(e)=21 and w(f)=35

Figure 4.15
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We can therefore conclude that the weight w(C) of an optimal cycle in the
graph of figure 4.13 satisfies

178 = w(C) =192

The methods described here have been further developed by Lin (1965)
and Held and Karp (1970; 1971). In particular, Lin has found that the cycle
modification procedure can be made more efficient by replacing three edges
at a time rather than just two; somewhat surprisingly, however, it is not
advantageous to extend this same idea further. For a survey of the travelling
salesman problem, see Bellmore and Nemhauser (1968).

Exercise

4.4.1* Let G be a weighted complete graph in which the weights satisfy the
triangle inequality: w(xy)+ w(yz)=w(xz) for all x, y, z€ V. Show
that an optimal cycle in G has weight at most 2w(T), where T is an
optimal tree in G.

(D. J. Rosencrantz, R. E. Stearns, P. M. Lewis)
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S5 Matchings
5.1 MATCHINGS

A subset M of E is called a matching in G if its elements are links and no
two are adjacent in G; the two ends of an edge in M are said to be matched
under M. A matching M saturates a vertex v, and v is said to be M-
saturated, if some edge of M is incident with v; otherwise, v is M-
unsaturated. If every vertex of G is M-saturated, the matching M is perfect.
M is a maximum matching if G has no matching M’ with [M'|>|M|; clearly,
every perfect matching is maximum. Maximum and perfect matchings in
graphs are indicated in figure 5.1.

Let M be a matching in G. An M-alternating path in G is a path whose
edges are alternately in E\M and M. For example, the path vsvgv,0,06 in the
graph of figure 5.1a is an M-alternating path. An M-augmenting path is an
M-alternating path whose origin and terminus are M-unsaturated.

Theorem 5.1 (Berge, 1957) A matching M in G is a maximum matching if
and only if G contains no M-augmenting path.

Proof Let M be a matching in G, and sup_pdse that G contains an
M-augmenting path vov; ... Uzm+1. Define M'c E by

M'= (M\{vlvz, VaV4y ..., Uzm—mzm}) U{Uovl, U203, ..., Uzmvzm+1}

Then M’ is a matching in G, and |M’|=|M|+ 1. Thus M is not a maximum
matching. . ‘
Conversely, suppose that M is not a maximum matching, and let M’ be a
maximum matching in G. Then |
IM'|>|M| | - (5.)
Set H= G[M AM’], where M AM’' denotes the symmetric difference of M
and M’ (see figure 5.2). | :

Figure 5.1. (a) A maximum matching; (b) a perfect matching
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(a) , (b)
Figure 5.2. (a) G, with M heavy and M’ broken; (b) G[M AM']

Each vertex of H has degree either one or two in H, since it can be
incident with at most one edge of M and one edge of M'. Thus each
component of H is either an even cycle with edges alternately in M and M’,
or else a path with edges alternately in M and M'. By (5.1), H contains
more edges of M’ than of M, and therefore some path component P of H
must start and end with edges of M'. The origin and terminus of P, being
M'-saturated in H, are M-unsaturated in G. Thus P is an M-augmenting
pathin G 0

Exercises

5.1.1 (a) Show that every k-cube has a perfect matching (k =2).
(b) Find the number of different perfect matchings in K, and K.

5.1.2 Show that a tree has at most one perfect matching.

5.1.3 For each k >1, find an example of a k-regular simple graph that has

’ no perfect matching.

5.1.4 Two people play a game on a graph G by alternately selecting
distinct vertices vo, vy, U, . . . such that, for i >0, v; is adjacent to v;_;.
The last player able to select a vertex wins. Show that the first player
has a winning strategy if and only if G has no perfect matching.

5.1.5 A k-factor of G is a k-regular spanning subgraph of G, and G is
k-factorable if there are edge-disjoint k-factors H,, H,, ..., H, such
that G=H,UH,U.. -UH,.

(a)* Show that :

() Ka. and K, are 1-factorable;

(ii) the Petersen graph is not 1-factorable.
(b) Which of the following graphs have 2-factors?

N 7
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(c) Using Dirac’s theorem (4.3), show that if G is simple, with v
even and 6 =(v/2)+1, then G has a 3-factor.
5.1.6* Show that Ki..1 can be expressed as the union of n connected
2-factors (n=1).

5.2 MATCHINGS AND COVERINGS IN BIPARTITE GRAPHS

For any set S of vertices in G, we define the neighbour set of S in G to be
the set of all vertices adjacent to vertices in S; this set is denoted by Ng(S).
Suppose, now, that G is a bipartite graph with bipartition (X, Y). In many
applications one wishes to find a matching of G that saturates every vertex
in X; an example is the personnel assignment problem, to be discussed in
section 5.4. Necessary and sufficient conditions for the existence of such a
matching were first given by Hall (1935).

Theorem 5.2 Let G be a bipartite graph with bipartition (X, Y). Then'G
contains a matching that saturates every vertex in X if and only if

IN(S)|=|S| forall ScX | (5.2)

- Proof Suppose that G contains a matching M- which saturates every
vertex in X, and let S be a subset of X. Since the vertices in S are matched
under M with distinct vertices in N(S), we clearly have |N(S)|=|S]|.
~ Conversely, suppose that G is a bipartite graph satisfying (5.2), but that G
contains no matching saturating all the vertices in X. We shall obtain a
contradiction. Let M* be a maximum matching in G. By our supposition,
M?* does not saturate all vertices in X. Let u be an M*-unsaturated vertex
in X, and let Z denote the set of all vertices connected to u by M*-
alternating paths. Since M* is a maximum matching, it follows from theorem
5.1 that u is the only M*-unsaturated vertex in Z. Set S=ZNX and
T=ZNY (see figure 5.3).

Clearly, the vertices in S\{u} are matched under M* with the vertlces in
T Therefore

IT|=1]S]-1 | | (5.3)
and N(S)=2T. In fact, we have
N@©S)=T (54

since every vertex in N(S) is connected to u by an M*-alternating path. But
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(5.3) and (5.4) imply that
IN(S)|=18]-1<[$|
contradicting assumption (5.2) O

The above proof provides the basis of a good algorithm for finding a
maximum matching in a bipartite graph. This algorithm will be presented in
section 5.4. '

Corollary 5.2 If G is a k-regular bipartite graph with k >0, then G has a
perfect matching.

Proof Let G be a k-regular bipartite graph with bipartition (X, Y). Since
G is k-regular, k | X|=|E|=k |Y| and so, since k >0, |X|=]|Y|. Now let S
be a subset of X and denote by E; and E, the sets of edges incident with
vertices in S and N(S), respectively. By definition of N(S), E;< E, and
therefore

k [N(S)|=|E:| =|E\| =k |S]

It follows that |[N(S)|=|S| and hence, by theorem 5.2, that G has a matching
M saturating every vertex in X. Since |X|=|Y|, M is a perfect matching [

Corollary 5.2 is sometimes known as the marriage theorem, since it can be
more colourfully restated as follows: if every girl in a village knows exactly k
boys, and every boy knows exactly k girls, then each girl can marry a boy
she knows, and each boy can marry a girl he knows.

A covering of a graph G is a subset K of V such that every edge of G has
at least one end in K. A covering K is a minimum covering if G has no
covering K’ with |K'|<|K| (see figure 5.4).

If K is a covering of G, and M is a matching of G, then K contains at
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(a) , (b)

Figure 5.4. (a) A covering; (b) a minimum covering

least one end of each of the edges in M. Thus, for any matching M and any
covering K, |M|=<|K|. Indeed, if M* is a maximum matching and K is a
minimum covering, then

IM¥<|R| | '(55)

In general, equahty does not hold in (5.5) (see, for example, ﬁgure 5.4).
However, if G is bipartite we do have |M*|=|K|. This result, due to K6nig
(1931), is closely related to Hall’s theorem. Before presenting its proof we
make a simple, but important, observatxon

Lemma 5.3 Let M be a matching and K be a covering such that |M|=|K]|.
Then M is a maximum matching and K is a minimum covering.

Proof If M* is a maximum matching and Kisa minimum covering then,
by (5.5),

IM|=|M*|=|K|=|K|
~ Since |[M|=|K]|, it follows that |M|=|M*| and |K|=|K| O

Theorem 5.3 In a bipartite graph, the number of edges in a maximum
matching is equal to the number of vertices in a minimum covering.

Proof Let G be a bipartite graph with bipartition (X, Y), and let M* be
a maximum matching of G. Denote by U the set of M*-unsaturated vertices
in X, and by Z the set of all vertices connected by M*-alternating paths to
vertices of U. Set S=ZNX and T=ZNY. Then, as in the proof of
theorem 5.2, we have that every vertex in T is M*-saturated and N(S) =
Define K = (X\S)UT (see figure 5.5). Every edge of G must have at least
one of its ends in K. For, otherwise, there would be an edge with one end in
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S and one end in Y\T, contradicting N(S)=T. Thus K is a covering of G
and clearly

IM* = K|

By lemma 5.3, K is a minimum covering, and the theorem follows [

Exercises

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

Show that it is impossible, using 1 X 2 rectangles, to exactly cover an

8 X 8 square from which two opposite 1X 1 corner squares have been

removed.

(a) Show that a bipartite graph G has a perfect matching if and only
if IN(S)|=|S| for all Sc V.

(b) Give an example to show that the above statement does not
remain valid if the condition that G be bipartite is dropped.

For k >0, show that

(a) every k-regular bipartite graph is 1-factorable;
(b)* every 2k-regular graph is 2-factorable. (J. Petersen)

Let A, As...,A, be subsets of a set S. A system of distinct
representatives for the family (A,, A,,...,A.) is a subset
{ai, az, ..., ax} of S such that ;e A;, 1<i<m, and a; # a; for i#j.
Show that (A,, A,, ..., A.) has a system of distinct representatives if
U Ai|=|J| for all subsets J of {1,2, ..., m}. (P.Hall

i€J

and only if

A line of a matrix is a row or a column of the matrix. Show that the
minimum number of lines containing all the 1’s of a (0, 1)-matrix is
equal to the maximum number of 1’s, no two of which are in the
same line. |
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5.2.6 (a) Prove the following generalisation of Hall’s theorem (5.2): if G
is a blpartlte graph with bipartition (X, Y), the number of edges
in a maximum matching of G is

X~ max {IS| - IN(S)}

(D. Kénig, O. Ore)
(b) Deduce that if G is simple with |X|=|Y|=n and &> (k—1)n,
then G has a matching of cardinality k.

5.2.7 Deduce Hall’s theorem (5.2) from Konig’s theorem (5.3).

5.2.8*% A non-negative real matrix Q is doubly stochastic if the sum of the
entries in each row of Q is 1 and the sum of the entries in each
column of Q is 1. A permutation matrix is a (0, 1)-matrix which has
exactly one 1 in each row and each column. (Thus every permutation
matrix is doubly stochastic.) Show that

(a) every doubly stochastic matrix is necessarily square;
(b) every doubly stochastic matrix Q can be expressed as a convex
linear combination of permutation matrices; that is

Q = clel + C2P2+ ...t CkPk
where each P; 1s a permutation matrix, each ¢; 1s a non-negative real

number, and }; c¢=1. (G. Birkhoff, J. von Neumann)

5.2.9 Let H be a finite group and let K be a subgroup of H. Show that
there exist elements hy, h,, ..., ho€ H such that h;K, h:K, ..., h,K
are the left cosets of K and Khl, Khz, ..., Kh, are the right cosets
of K. (P. Hall)

5.3 PERFECT MATCHINGS

A necessary and sufficient condition for a graph to have a perfect matching

- was obtained by Tutte (1947). The proof given here is due to Lovasz (1973).
A component of a graph is odd or even according as it has an odd or even

number of vertices. We denote by o(G) the number of odd components of G.

Theorem 5.4 G has a perfect matching if and only if |
| o(G-S)=<|S| forall ScV ~ (5.6)

Proof It clearly suffices to prove the theorem for simple graphs.

Suppose first that G has a perfect matching M. Let S be a proper subset
of V, and let G,, G, . ..., G, be the odd components of G —S. Because G; is
odd, some vertex u; of Gi must be matched under M with a vertex v; of S
(see figure 5.6). Therefore, since {vy, va, ..., 0} S S

0(G-8)=n={vy, vy, ..., va}| =|S|




Matchings : 77

Odd components of G-S Even components of G-S

r

A A
D r A\
Gy
(TY Y] u eoee

Figure 5.6

Conversely, suppose that G satisfies (5.6) but has no perfect matching.
Then G is a spanning subgraph of a maximal graph G* having no perfect
matching. Since G—S is a spanning subgraph of G*-—S we have
0(G*~-S)=0(G—S) and so, by (5.6),

o(G*-S)=|S| forall Sc< V(G* (5.7)

In particular, setting S =@, we see that o(G*) =0, and so v(G*) is even.
Denote by U the set of vertices of degree v—1 in G*. Since G* clearly
has a perfect matching if U= V, we may assume that U# V. We shall show
that G*— U is a disjoint union of complete graphs. Suppose, to the contrary,
that some component of G*— U is not complete. Then, in this component,
there are vertices x, y and z such that xye E(G¥*), yze E(G*) and
xz& E(G*) (exercise 1.6.14). Moreover, since y€ U, there is a vertex w in
G*—U such that ywe E(G¥). The situation is illustrated in figure 5.7.
Since G* is a maximal graph containing no perfect matching, G*+ e has a
perfect matching for all e¢ E(G*). Let M, and M, be perfect matchings in
G*+xz and G*+yw, respectively, and denote by H the subgraph of

y w

Figure 5.7
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X 4

M, heavy

M, wavy

(a) (b)
Figure 5.8

G*U{xz, yw} induced by M, AM,. Since each vertex of H has degree two,
H is a disjoint union of cycles. Furthermore, all of these cycles are even,
since edges of M, alternate with edges of M, around them. We distinguish
two cases:

Case 1 xz and yw are in different components of H (figure 5.8a). Then,
if yw is in the cycle C of H, the edges of M, in C, together with the edges of
M, not in C, constitute a perfect matching in G*, contradicting the defini-
tion of G*. |

Case 2 xz and yw are in the same component C of H. By symmetry of x
and z, we may assume that the vertices x, y, w and z occur in that order on
C (figure 5.8b). Then the edges of M, in the section yw... 2 of C, together
with the edge yz and the edges of M, not in the section yw...z of C,

Odd components of G -U Even components of G*-U
) A

—
r )
Ommmmm() oooo
[o o]
(o o] A O
N
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constitute a perfect matching in G*, again contradicting the definition of
G*.

Since both case 1 and case 2 lead to contradictions, it follows that G*— U
is indeed a disjoint union of complete graphs.

Now, by (5.7), o(G*- U)=|U|. Thus at most |U| of the components of
G*-U are odd. But then G* clearly has a perfect matching: one vertex in
each odd component of G*-U is matched with a vertex of U; the
remaining vertices in U, and in components of G*— U, are then matched as
indicated in figure 5.9.

Since G* was assumed to have no perfect matching we have obtained the
desired contradiction. Thus G does indeed have a perfect matching 0

The above theorem can also be proved with the aid of Hall’s theorem (see
Anderson, 1971). | |
From Tutte’s theorem, we now deduce a result first obtained by Petersen
(1891).

Corollary 5.4 Every 3-regular graph without cut edges has a perfect
matching.

Proof Let G be a 3-regular graph without cut edges, and let S be a
- proper subset of V. Denote by G,, G,,...,G, the odd components of
G - S, and let m; be the number of edges with one end in G; and one end in
S, 1=i=n. Since G is 3-regular

Z;Go d(v)=3v(G) for 1<i=<n (5.8)
and
T d(v)=3s| (5.9)

By (58), m= ¥ d(v)~2e(G) is odd. Now m,#1 since G has no cut
veV(Gy

edge. Thus L

i=3 for 1=i=n (5.10)

It follows from (5.10) and (5.9) that

i=1

oG-S)=n=1¥ mi_%‘;s d(v) =S|

Therefore, by theorem 5.4, G has a perfect matching 0

A 3-regular graph with cut edges need not have a perfect matching. For
example, it follows from theorem 5.4 that the graph G of figure 5.10 has no
perfect matching, since 0(G —v) =3. | ‘
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Figure 5.10

Exercises

5.3.1* Derive Hall’s theorem (5.2) from Tutte’s theorem (5.4).
5.3:2 Prove the following generalisation of corollary 5.4: if G is a(k—1)-
edge-connected k-regular graph wnth v even, then G has a perfect

matching.
5.3.3 Show that a tree G has a perfect matchmg if and only if o(G—v)=
for all ve V. - (V. Chungphalsan)

5.3.4* Prove the following generalisation of Tutte’s theorem (5.4): the
number of edges in a maximum matching of G is 3(v—d), where
d= rgl'__avx{o(G -S)—|S|}. | (C. Berge)

5.3.5 (a) Using Tutte’s theorem (5.4), eharacterise the maximal simple
graphs which have no perfect matching.
(b) Let G be simple, with v even and 8 <v/2. Show that if ¢ >

(g) + (v ) 228 B l) +8(v—8), then G has a perfect matching.

APPLICATIONS

5.4 THE PERSONNEL ASSIGNMENT PROBLEM

In a certain company, n workers X, X, ..., X. are available for n jobs
Y1, Y,..., Y., each worker being qualified for one or more of these jobs.
Can all the men be assigned, one man per job, to jobs for which they are
qualified? This is the personnel assignment problem.
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We construct a bipartite graph G with bipartition (X, Y), where X =
{x1, X2, ..., %o}, Y={y1, y2,...,ya}, and x; is joined to y; if and only if
worker X; is qualified for job Y;. The problem becomes one of determining
whether or not G has a perfect matching. According to Hall’s theorem (5.2),
either G has such a matching or there is a subset S of X such that
IN(S)|<|S|. In the sequel, we shall present an algorithm to solve the
personnel assignment problem. Given any bipartite graph G with bipartition
(X, Y), the algorithm either finds a matching of G that saturates every
vertex in X or, failing this, finds a subset S of X such that [N(S)|<|S|.

The basic idea behind the algorithm is very simple. We start with an
arbitrary matching M. If M saturates every vertex in X, then it is a matching
of the required type. If not, we choose an M-unsaturated vertex u in X and
systematically search for an M-augmenting path with origin u. Our method
of search, to be described in detail below, finds such a path P if one exists;
in this case M =M AE(P) is a larger matching than M, and hence saturates
more vertices in X. We then repeat the procedure with M instead of M. If
such a path does not exist, the set Z of all vertices which are connected to u
by M-alternating paths is found. Then (as in the proof of theorem 5.2)
S =ZNX satisfies [N(S)|<|S]|. |

Let M be a matching in G, and let u be an M-unsaturated vertex in X. A
tree H < G is called an M-alternating tree rooted at u if (i) u e V(H), and (ii)
for every vertex v of H, the unique (u, v)-path in H is an M-alternating
path. An M-alternating tree in a graph is shown in figure 5.11.

Xg

(a) (b)

Figure 5.11. (a) A matching M in G; (b) an M-alternating tree in G
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(a)
Figure 5.12. (a) Case (i); (b) case (ii)

~ The search for an M-augmenting path with origin u involves ‘growing’ an
M-alternating tree H rooted at u. This procedure was first suggested by
Edmonds (1965). Initially, H consists of just the single vertex u. It is then
grown in such a way that, at any stage, either

(i) all vertices of H except u are M-saturated and matched under M (as in
figure 5.12a), or '

(i) H contains an M-unsaturated vertex different from u (as in figure
5.12b).

If (i) is the case (as it is initially) then, setting S=V(H)NX and T=
V(H)N'Y, we have N(S)2T; thus either N(S)=T or N(S)>T.

(a) If N(S)=T then, since the vertices in S\{u} are matched with the
vertices in T, |[N(S)|=|S|— 1, indicating that G has no matching saturat-
ing all vertices in X. '

(b) If N(S) > T, there is a vertex y in Y\T adjacent to a vertex x in S. Since
all vertices of H except u are matched under M, either x = u or else x is
matched with a vertex of H. Therefore xy€ M. If y is M-saturated, with
yz € M, we grow H by adding the vertices y and z and the edges xy and
yz. We are then back in case (i). If y is M-unsaturated, we grow H by
adding the vertex y and the edge xy, resulting in case (ii). The (u, y)-
path of H is then an M-augmenting path with origin u, as required.

Figure 5.13 illustrates the above tree-growing procedure.
The algorithm described above is known as the Hungarian method, and
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z
: M- saturated
y y
? X X
_ _—
¢ o
u u , u
Case (|) Case(i)
y .
‘M- unsaturated
X
or —_—
u u
Case (i) Case(ii)

Figure 5.13. The tree-growing procedure

can be summarised as follows:

Start with an arbitrary matching M.

1.

2.

If M saturates every vertex in X, stop. Otherwise, let u be an M-
unsaturated vertex in X. Set S={u} and T =40.

If N(S)=T then |N(S)|<|S|, since. |T|=|S|—1. Stop, since by Hall’s
theorem there is no matching that saturates every vertex in X. Other-
wise, let y e N(S)\T.

. If y is M-saturated, let yze M. Replace S by SU{z} and T by T U{y}

and go to step 2. (Observe that |T|=|S|—1 is maintained after this
replacement.) Otherwise, let P be an M-augmenting (u, y)-path. Replace
M by M =M AE(P) and go to step 1. | }

Consider, for example, the graph G in figure 5.144, with initial matching

M ={x.y,, x3y3, x5ys}. In figure 5.14b an M-alternating tree is grown, start-
ing with x,, and the M-augmenting path x,y,x,y, found. This results in a
new matching M = {x,y,, Xy1, x5, xsys}, and an M-alternating tree is now
grown from x, (figures 5.14c and 5.14d) Since there is no M-augmenting
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X1 X2 ) X3 Xq Xs
¥ y2 Y3 Ya Ys
(a)

(d)

Figure 5.14. (a) Matching M; (bl an M-alternating tree; (c) matching M; (d) an
: ' M-alternating tree :

path with origin x4, the algorithm terminates. The set S ={x;, X3, X4}, With
~ neighbour set N(S) ={y,, ys}, shows that G has no perfect matching.

- A flow diagram of the Hungarian method is given in figure:5.15. Since the
algorithm can cycle through the tree-growing procedure, I, at most | X| times
before finding either an S < X such that |[N(S)|<|S| or an M-augmenting
‘path, and since the initial matching can be augmented at most |X| times
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before a matching of the required type is found, it is clear that the
Hungarian method is a good algorithm.

One can find a maximum matching in a bipartite graph by slightly
modifying the above procedure (exercise 5.4.1). A good algorithm that

determines such a matchin

(1965).

Exercise

g in any graph has been given by Edmonds

5.4.1 Describe how the Hungarian method can be used to find a maximum
matching in a bipartite graph.
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5.5 THE OPTIMAL ASSIGNMENT PROBLEM

The Hungarian method, described in section 5.4, is an efficient way of
determining a feasible assignment of workers to jobs, if one exists. However
one may, in addition, wish to take into account the effectiveness of the
workers in their various jobs (measured, perhaps, by the profit to the
company). In this case, one is interested in an assignment that maximises the
total effectiveness of the workers. The problem of finding such an assign-
ment is known as the optimal assignment problem.

Consider a weighted complete bipartite graph with bipartition (X, Y),
where X ={xy,x5,...,%a}, Y={y1, y2,...,y.} and edge xiy; has weight
wi;= w(x:y;), the effectiveness of worker X, in job Y;. The optimal assign-
ment problem is clearly equivalent to that of finding a maximum-weight
perfect matching in this weighted graph. We shall refer to such a matching
as an optimal matching. A

To solve the optimal assignment problem it is, of course, possible to
enumerate all n! perfect matchings and find an optimal one among them.
However, for large n, such a procedure would clearly be most inefficient. In
this section we shall present a good algorithm for finding an optlmal
matching in a weighted complete bipartite graph.

We define a feasible vertex labelling as a real-valued function | on the
vertex set XU Y such that, for all xe X and yeY

1(x)+ 1(y) = w(xy) | (5.11)

(The real number [(v) is called the label of the vertex v.) A feasible vertex
labelling is thus a labelling of the vertices such that the sum of the labels of
the two ends of an edge is at least as large as the weight of the edge. No
matter what the edge weights are, there always exists a feasible vertex
labelling; one such is the function I given by

I(x)= nya%ayx w(xy) if xe X}
I(y)=0 i yeY

If | is a feasible vertex labelling, we denote by E, the set of those edges for
which equality holds in (5.11); that is -

"Ei={xyeE|I(x)+ i(y) =w(xy)}

The spanning subgraph of G with edge set E, is referred to as the equality

- subgraph corresponding to the feasible vertex labelling I, and is denoted by

Gi. The connection between equality subgraphs and optimal matchings is
provided by the following theorem.

(5.12)

Theorem 5.5 Let | be a feasible vertex labelling of G. If G, contains a
perfect matching M*, then M* is an optimal matching of G.
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Proof Suppose that G, contains a perfect matching M*. Since G; is a
spanning subgraph of G, M™ is also a perfect matching of G. Now
w(M* =) w(e)= le(v) (5.13)

eEM*

since each e e M* belongs to the equality subgraph and the ends of edges of
M* cover each vertex exactly once. On the other hand, if M is any perfect

matching of G, then
w(M) = Zw w(e)SV;' l(v) (5.14)

It follows from (5.13) and (5.14) that w(M*) = w(M). Thus M* is an optimal
matching [

The above theorem is the basis of an algorithm, due to Kuhn (1955) and
Munkres (1957), for finding an optimal matching in a weighted complete
bipartite graph. Our treatment closely follows Edmonds (1967).

Starting with an arbitrary feasible vertex labelling | (for example, the one
given in (5.12)), we determine G, choose an arbitrary matching M in G, and
apply the Hungarian method. If a perfect matching is found in G, then, by
theorem 5.5, this matching is optimal. Otherwise, the Hungarian method
terminates in a matching M’ that is not perfect, and an M'-alternating tree
H that contains no M’'-augmenting path and cannot be grown further (in
G,). We then modify [ to a feasible vertex labelling { with the property that
both M’ and H are contained in G; and H can be extended in G Such
modifications in the feasible vertex labelling are made whenever necessary,
until a perfect matching is found in some equality subgraph.

The Kuhn—-Munkres Algorithm

Start with an "arbitrary feasible vertex labelling I, determine G, and
choose an arbitrary matching M in G,

1. If X is M-saturated, then M is a perfect matching (since |X|=]Y]) and
hence, by theorem 5.5, an optimal matching; in this case, stop. Other-
wise, let u be an M-unsaturated vertex. Set S ={u} and T =40.

2. If N(S)>T, go to step 3. Otherwise, Ng(S) = T. Compute

= min{l(x) +I(y) — w(xy)}

ye&T
and the feasible vertex labelling [ given by
" I(v)—a, if vES
) =5 l(v)+e if veT

I(v) otherwise

(Note that a,>0 and that Ng{S) > T.) Replace | by [ and G, by Gi.
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(b)

(35541 4
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01100/ 0
121333
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(d)
Figure 5.16

3. Choose a vertex y in Ng(S)\T. As in the tree-growing procedure of
section - 5.4, consider whether or not y is M-saturated. If y is M-
saturated, with yz e M, replace S by SU{z} and T by TU{y}, and go to
step 2. Otherwise, let P be an M-augmenting (u, y)-path in G,, replace M
by M =M AE(P), and go to step 1. |

In illustrating the Kuhn-Muinkres algorithm, it is convenient to represent
a weighted complete bipartite graph G by a matrix W = [w;;], where wy; is
the weight of edge xiy; in G. We shall start with the matrix of figure 5.16a.
In figure 5.16b, the feasible vertex labelling (5.12) is shown (by placing the
label of x; to the right of row i of the matrix and the label of y; below
column j) and the entries corresponding to edges of the associated equality
subgraph are indicated; the equality subgraph itself is depicted (without
weights) in figure 5.16¢. It was shown in the previous section that this graph
has no perfect matching (the set S ={x,, xs, xs} has neighbour set {y, ys}).
We therefore modify our initial feasible vertex labelling to the one given in
figure 5.16d. An application of the Hungarian method now shows that the
associated equality subgraph (figure 5.16e) has the perfect matching
{X1y4, X2¥1, X3y3, X4y2, Xsys}. This is therefore an optimal matching of G.
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Figure 5.17. The Kuhn-Munkres algorithm
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A flow diagram for the Kuhn-Munkres algorithm is given in figure 5.17.
In cycle II, the number of computations required to compute G is clearly of
order v Since the algorithm can cycle through I and II at most |X| times
before finding an M-augmenting path, and since the initial matching can be
augmented at most |X| times before an optimal matching is found, we see
that the Kuhn—Munkres algorithm is a good algorithm.

Exercise

5.5.1 A diagonal of an n Xn matrix is a set of n entries no two of which
belong to the same row or the same column. The weight of a
diagonal is the sum of the entries in it. Find a minimum-weight
diagonal in the following matrix:

4 5 8 10 11|
7 6 5 7 4
8 5 12 9 6
le 6 13 10 7
4 5 7 9 8
- -
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6 Edge Colourings

6.1 EDGE CHROMATIC NUMBER

A k-edge colouring € of a loopless graph G is an assignment of k colours,
1,2,...,k, to the edges of G. The colouring € is proper if no two adjacent
edges have the same colour.

Alternatively, a k-edge colouring can be thought of as a partition
(Ey, E,, ..., Ey) of E, where E denotes the (possibly empty) subset of E
assigned colour i. A proper k-edge colouring is then a k-edge colouring
(Ey, E,, ..., Ey) in which each subset E; is a matching. The graph of figure
6.1 has the proper 4-edge colouring ({a, g}, {b, e}, {c, f}, {d}). |

G is k-edge colourable if G has a proper k-edge-colouring. Trivially, every
loopless graph G is e-edge-colourable; and if G is k -edge-colourable, then
G is also l-edge-colourable for every I>k. The edge chromatic number
x'(G), of a loopless graph G, is the minimum k for which G is k-edge-
colourable. G is k-edge-chromatic if x'(G)=k. It can be readily verified
that the graph of figure 6.1 has no proper 3-edge colouring. This graph is
therefore 4-edge-chromatic. ‘ ,

Clearly, in any proper edge colouring, the edges incident with any one
vertex must be assigned different colours. It follows that

X'=A (6.1)

Referring to the example of figure 6.1, we see that inequality (6.1) may be
strict. However, we shall show that, in the case when G is bipartite, x' = A.
- The following simple lemma is basic to our proof. We say that colour i is
represented at vertex v if some edge incident with v has colour i.

Lemma 6.1.1 Let G be a connected graph that is not an odd cycle. Then

Figure 6.1
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G has a 2-edge colouring in which both colours are represented at each
vertex of degree at least two. '

Proof We may clearly assume that G is nontrivial. Suppose, first, that G __
is eulerian. If G is an even cycle, the proper 2-edge colouring of G has the
required property. Otherwise, G has a vertex v, of degree at least four. Let
Vo1V: . . . €.Vo be an Euler tour of G, and set

E,={e;|i odd} and E,={e|i even} (6.2)

Then the 2-edge colouring (E,, E;) of G has the required property, since
each vertex of G is an internal vertex of vee,v; ... eo.

If G is not eulerian, construct a new graph G* by adding a new vertex vo
and joining it to each vertex of odd degree in G. Clearly G*™ is eulerian. Let
Dol1D1 . . . €. Vo be an Euler tour of G* and define E; and E; as in (6.2). It is
then easnly verified that the 2-edge colouring (E;NE, E.NE) of G has the
required property [ |

Given a k-edge colouring € of G we shall denote by c(v) the number of
distinct colours represented at v. Clearly, we always have

c()=d) 6.3)

Moreover, € is a proper k-edge colouring if and only if equahty holds in
(6.3) for all vertices v of G. We shall call a k-edge colouring €’ an
improvement on € if

&0 L c)

where ¢'(v) is the number of distinct colours represented at v in the

colouring €’. An optimal k-edge colourmg is one which cannot be im-
proved. '

Lemma 6.1.2 Let € =(E, E,, ..., E,) be an Aoptir’nal k-edge Colouring of
G. If there is a vertex u in G and colours i and j such that i is not

represented at u and j is represented at least twice at u, then the component.
of G[E U E;] that contains u is an odd cycle.

Proof Let u be a vertex that satisfies the hypothesis of the lemma, and
denote by H the component of G[E;U E;] containing u. Suppose that H is
not an odd cycle. Then, by lemma 6.1.1, H has a 2-edge colouring in which
both colours are represented at each vertex of degree at least two in H.
When we recolour the edges of H with colours i and j in this way, we obtain
a new k-edge colouring €'=(Ej{, E3, ..., Ei) of G. Denoting by c'(v) the
number of distinct colours at v in the colouring €', we have

c’(u) =c(u)+1
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since, now, both i and j are represented at u, and also
c'(v)=c(v) for v#u

Thus Z c'(v)> Z c(v), contradicting the choice of €. It follows that H is

vVEV

indeed an odd cycle 0

Theorem 6.1 If G is bipartite, then x' = A. |

Proof Let G be a graph with x'>A, let € =(E,, E,, ..., Es) be an
optimal A-edge colouring of G, and let u be a vertex such that c(u)<d(u).
Clearly, u satisfies the hypothesis of lemma 6.1.2. Therefore G contains an
odd cycle and so is not bipartite. It follows from (6.1) that if G is bipartite,
then y'=4A O

An alternative proof of theorem 6.1, using exercise 5.2.3a, is outlined in
exercise 6.1.3.

Exercises

6.1.1 Show, by finding an appropriate edge colouring, that x'(Km.) =
A(Kin.n).
6.1.2 Show that the Petersen graph is 4-edge-chromatlc.
6.1.3 (a) Show that if G is bipartite, then G has a A-regular bipartite
supergraph.
(b) Using (a) and exercise 5.2.3a, give an alternative proof of
theorem 6.1.
6.1.4 Describe a good algorithm for ﬁndlng a proper A-edge colouring of a
bipartite graph G.
6.1.5 Using exercise 1.5.8 and theorem 6.1, show that if G is loopless with
A =3, then x'=4.
6.1.6 Show that if G is bipartite with 8 >0, then G has a §-edge colouring
such that all § colours are represented at each vertex.
(R. P. Gupta)

6.2 VIZING’S THEOREM

As has already been noted, if G is not bipartite then we cannot necessarily
conclude that x'=A. An important theorem due to Vizing (1964) and,
independently, Gupta (1966), asserts that, for any simple graph G, either
x'=A or x'=A+1. The proof given here is by Fournier (1973).

Theorem 6.2 If G is simple, then either x'=A or y'=A+1. |

Proof Let G be a simple graph. By virtue of (6.1) we need only show
that x'=A+1. Suppose, then, that x'>A+1. Let € =(E,, E., .. ., Ea+1) be
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(b) | . (¢)
Figure 6.2

an optimal (A+ 1)-edge colouring of G and let u be a vertex such that
¢(u)<d(u). Then there exist colours i, and i, such that i, is not represented
at u, and i, is represented at least twice at u. Let uv, have colour iy, as in
figure 6.2a. . ' | |

Since d(v,) <A+ 1, some colour i, is not represented at v;. Now i, must be
represented at u since otherwise, by recolouring uv, with i, we would
obtain an improvement on 6. Thus some edge uv, has colour i,. Again,
since d(v,) <<A+1, some colour i; is not represented at v.; and i; must be
represented at u since otherwise, by recolouring uv, with i; and uv, with i,
~we would obtain an improved (A +1)-edge colouring. Thus some edge uvs
has colour is. Continuing this procedure we construct a sequence vy, vs, . . .
of vertices and a sequence i, iz, ... of colours, such that

(i) uv; has colour i;, and
(ii) i1 is not represented at v;.

Since the degree' of u is finite, there exists a smallest integer | such that, for
some k <1, : ~

(ill) i1+1 = ik.
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The situation is depicted in figure 6.2a.

We now recolour G as follows. For 1=<j=<k —1, recolour uv; with colour
ij1, yielding a new (A+1)-edge colounng %'=(Ei,E3,...,Ein) (figure
6.2b). Clearly |

c'(v)=c(v) forall veV

and therefore €’ is also an optimal (A+ 1)-edge colouring of G. By lemma
6.1.2, the component H' of G[Ei{,UE;] that contains u is an odd cycle.

Now, in addition, recolour uv; with colour i.;, k <j=<1-1, and uv, with
colour iy, to obtain a (A+ 1)-edge colouring €"=(E%, E3, ..., E4.1) (figure
6.2¢). As above

c"(v)=c(v) forall veV

and the component H" of G[E’,U Ef,] that contains u is an odd cycle. But,
since vx has degree two in H’', v, clearly has degree one in H". This
contradiction establishes the theorem U

Actually, Vizing proved a more general theorem than that given above,
one that is valid for all loopless graphs. The maximum number of edges
joining two vertices in G is called the multzphaty of G, and denoted by
p(G). We can now state Vizing’s theorem in its full generahty if G is
loopless, then A< y'=A+p.

This theorem is best possible in the sense that, for any u, there exists a
graph G such that x'= A+ u. For example, in the graph G of figure 6. 3,
A=2p and, since any two edges are adjacent, x'=¢ =3pu.

Strong as theorem 6.2 is, it leaves open one interesting question: which
simple graphs satisfy x'= A? The significance of this question will become
apparent in chapter 9, when we study edge colourings of planar graphs.

Figure 6.3. A graph G with x'=A+p
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Exercises |

6.2.1* Show, by finding appropriate edge colourmgs, that x'(Kzu-1) =
X(Kz)=2n-1.

6.2.2 Show that if G is a nonempty regular snmple graph with v odd, then
X' =A+1.

6.2.3 (a) Let G be a simple graph. Show that if v = 2n + 1 and & > nA,

then x'=A+1. . (V. G. Vizing)
(b) Using (a), show that

(i) if G is obtained from a simple regular graph with an even

number of vertices by subdividing one edge, then x'=A+1;

(ii) if G is obtained from a simple k-regular graph with an odd

number of vertices by deleting fewer than k/2 edges, then x'=

A+1. (L. W. Beineke and R. J. Wilson)
6.2.4 (a) Show that if G is loopless, then G has a A-regular loopless
supergraph.

(b) Using (a) and exercise 5.2.3b, show that if G is loopless and A is
even, then x'<3A/2.
(Shannon, 1949 has shown that this inequality also holds when
A is odd.)

6.2.5 G is called uniquely k-edge-colourable if any two proper k-edge
colourings of G induce the same partition of E. Show that every
uniquely 3-edge-colourable 3-regular graph is hamiltonian.

A ~ (D. L. Greenwell and H. V. Kronk)

© 6.2.6 The product of simple graphs G and H is the simple graph GXH

- with vertex set V(G) X V(H), in which (u, v) is ad]acent to (u', v") if

and only if either u = u’ and vv’'€ E(H) or v=1v' and uu’' € E(G).

(a) Using Vizing’s theorem (6.2), show that x'(G X K;) = A(G X Kb).
(b) Deduce that if H is nontrivial with x'(H)=A(H), then
x'(G xH)=A(G x H).
6.2.7 Describe a good algorithm for finding a proper (A+1)-edge colour-
ing of a simple graph G.
6.2.8* Show that if G is simple with §>1, then G has a (6—1)- edge
colouring such that all § — 1 colours are represented at each vertex.

(R. P. Gupta)
APPLICATIONS
.6.3 THE TIMETABLING PROBLEM e
In a school, there are m teachers X, X3,...,Xm, and n classes
Yy, Y2, ..., Y. Given that teacher X is required to teach class Y; for p;

periods, schedule a complete timetable in the minimum possible number of
periods.
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The above problem is known as the timetabling problem, and can be solved
completely using the theory of edge colourings developed in this chapter.
We represent the teaching requirements by a bipartite graph G with
bipartition (X, Y), where X ={x, X2,..., Xm}, Y={y1, y2,..., Yo} and ver-
tices x; and y; are joined by p; edges. Now, in any one period, each teacher
can teach at most one class, and each class can be taught by at most one
teacher—this, at least, is our assumption. Thus a teaching schedule for one
period corresponds to a matching in the graph and, conversely, each
matching corresponds to a possible assignment of teachers to classes for one
period. Our problem, therefore, is to partition the edges of G into as few
matchings as possible or, equivalently, to properly colour the edges of G
with as few colours as possible. Since G is bipartite, we know, by theorem
6.1, that x'=A. Hence, if no teacher teaches for more than p periods, and if
no class is taught for more than p periods, the teaching requirements can be
scheduled in a p-period timetable. Furthermore, there is a good algorithm
for constructing such a timetable, as is indicated in exercise 6.1.4. We thus
have a complete solution to the timetabling problem.

However, the situation might not be so straightforward. Let us assume
that only a limited number of classrooms are available. With this additional
constraint, how many periods are now needed to schedule a complete
timetable?

Suppose that altogether there are [ lessons to be given, and that they have
been scheduled in a p-period timetable. Since this timetable requires an

~average of Il/p lessons to be given per period, it is clear that at least {l/p}
rooms will be needed in some one period. It turns out that one can always
arrange | lessons in a p-period timetable so that at most {l/p} rooms are
occupied in any one period. This follows from theorem 6.3 below. We first
have a lemma.

Lemma 6.3 Let M and N be disjoint matchings of G with [M|>|N|. Then
there are disjoint matchings M’ and N’ of G such that |M'|=|M|-
IN'|=|N|+1 and M'UN'=MUN.

Proof Consider the graph H=G[MUN]. As in the proof of theorem
5.1, each component of H is either an even cycle, with edges alternately in
M and N, or else a path with edges alternately in M and N. Since |M|>|N]|,
some path cornponent P of H must start and end with edges of M. Let
P = voe1v; . . . €20+1V20+1, and set

v M = (M\{ex,' €3 ..., ezu+1}) U{ez, €4y o0 oy ez,.}’
N'=(N\{ez, €4, ..., e})U{e1, €3,. .., €2ns1}

Then M’ and N’ are matchings of G that satisfy the conditions of the
lemma O
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- Period

Y, Y, Ys Y4 Ve 12 3 4
x[2 0 1 1 0] xnnlnlv
X0 1 0 1 0| Xle|-|v|-
P"x30111o Xs|Ys|Yal = |72
X|0 0 0 1 1] X|¥a|vs|-|-

Figure 6.4

Theorem 6.3 If G is bipartite, and if p=A, then there exist p disjoint
matchings M,, M,, ..., M, of G such that

E=‘M1UM2U...UMP (64)
and, for 1=i=p '

[e/p]=|Mi|={e/p} (6.5)

(Note: condition (6.5) says that any two matchmgs M; and M; differ in size
by at most one.)

Proof Let G bea bipartite graph. By theorem 6.1, the edges of G can be
partitioned into A matchings Mi, M;, ..., Mi. Therefore, for any p=A,
there exist p disjoint matchings M3, Mz, ..., M, (with M!=@ for i >A) such
that

E=M{UM}U...UM,

By repeatedly applying lemma 6.3 to pairs of these matchings that differ in
size by more than one, we eventually obtain p disjoint matchings
My, M, ..., M, of G satlsfymg (6.4) and (6 5), as required 0

Figure 6.5
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(b)

Figure 6.6

As an example, suppose that there are four teachers and five classes, and
that the teaching requirement matrix P =[p,] is as given in figure 6.4a. One
possible 4-period timetable is shown in figure 6.4b.

We can represent the above timetable by a decomposition into matchings
of the edge set of the bipartite graph G corresponding to P, as shown in
figure 6.5a. (Normal edges correspond to period 1, broken edges to period
2, wavy edges to period 3, and heavy edges to period 4.)

From the timetable we see that four classes are taught in period 1, and so
four rooms are needed. However ¢ = 11 and so, by theorem 6.4, a 4-period
timetable can be arranged so that in each period either 2(=[11/4]) or
3(={11/4}) classes are taught. Let M, denote the normal matching and M,
the heavy matching; notice that [M,|=4 and |M,]=2. We can now find a
4-period 3-room timetable by considering G[M,UM.,] (figure 6.5b).
G[M, UM,] has two components, each consisting of a path of length three.
Both paths start-and end with normal edges and so, by interchanging the
matchings on one of the two paths, we shall reduce the normal matching to
one of three edges, and-at the same time increase the heavy matching to one
of three edges. If we choose the path y.x,y.x., making the edges y;x; and
yaxs heavy and the edge x,y. normal, we obtain the decomposition of E
shown in figure 6.6a. This then gives the revised timetable shown in figure
6.6b; here, only three rooms are needed at any one time.

Period
1 2 3 4 5 6

Figure 6.7
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However, suppose that there are just two rooms available. Theorem 6.4
tells us that there must be a 6-period timetable that satisfies our require-
ments (since {11/6}=2). Such a timetable is given in figure 6.7.

In practice, most problems on timetabling are complicated by preassign-
ments (that is, conditions specifying the periods during which certain
teachers and classes must meet). This generalisation of the timetabling
problem has been studied by Dempster (1971) and de Werra (1970).

Exercise

6.3.1 In a school there are seven teachers and twelve classes. The teaching
requirements for a five-day week are given by the matrix

Y1 Yz Y3 Y4 Ys Ys Y7 Ys Y9 Ylo Yll Y12

-

il

e
S WUN WM L =W
WSO WN
WONRARLNUOW
ALAONO AW

HPOBNDNMNDUVAW
PO Rr NNV W
WWndphOomW
_hOANM.uu
UJUIDJAO.U)M
WU WnO W
CSCOoOUNMWUKL AW

where p;; is the number of periods that teacher X; must teach class

Y;.

(a) Into how many periods must a day be divided so that the
requirements can be satisfied?

(b) If an eight-period/day timetable is drawn up, how many class-
rooms will be needed?
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7 Independent Sets and
Cliques

7.1 INDEPENDENT SETS

A subset S of V is called an independent set of G if no two vertices of S are
adjacent in G. An independent set is maximum if G has no independent set
S’ with |S|>|S|. Examples of independent sets are shown in figure 7.1.

Recall that a subset K of V such that every edge of G has at least one end
in K is called a covering of G. The two examples of independent sets given
in figure 7.1 are both complements of coverings. It is not difficult to see that
this is always the case.

Theorem 7.1 A set S< V is an independent set of G if and only if V\S is a
covering of G.

Proof By definition, S is an independent set of G if and only if no edge
of G has both ends in S or, equivalently, if and only if each edge has at least
~one end in V\S. But this is so if and only if V\S is a covering of G [

The number of vertices in a maximum independent set of G is called the
independence number of G and is denoted by a(G); similarly, the number of
vertices in a minimum covering of G is the covering number of G and is
denoted by B(G).

Corollary 7.1 a+B=v.

Proof Let S be a maximum independent set of G, and let K be a
minimum covering of G. Then, by theorem 7.1, V\K is an independent set

(a) ()

Figure 7.1. (a) An independent set; (b) a maximum independent set
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and V\S is a covering. Therefore

= |V\K|$a (7.1)
and
= |V\S|2 ' (7.2)

Combmmg (7.1) and (7.2) we have a+B=v 0

The edge analogue of an independent set is a set of links no two of which
are adjacent, that is, a matching. The edge analogue of a covering is called
an edge covering. An edge covering of G is a subset L of E such that each
vertex of G is an end of some edge in L. Note that edge coverings do not
always exist; a graph G has an edge covering if and only if 6 >0. We denote
the number of edges in a maximum matching of G by a'(G), and the
number of edges in a minimum edge covering of G by B'(G); the numbers
a'(G) and B'(G) are the edge independence number and edge covering
number of G, respectively.

Matchings and edge coverings are not related to one another as simply as
are independent sets and coverings; the complement of a matching need not
be an edge covering, nor is the complement of an edge covering necessarily
a matching. However, it so happens that the parameters a' and B’ are
related in precisely the same manner as are a and 3.

Theorem 7.2 (Gallai, 1959) If 6§ >0, then o'+ 8= .

Proof Let M be a maximum matching in G and let U be the set of
M-unsaturated vertices. Since 8 >0 and M is maximum, there exists a set E’
of |U| edges, one incident with each vertex in U. Clearly, MU E’ is an edge
covering of G, and so
B'=MUE'|=a'+(v—2a)=v—-a'
or '

a'+B'=v (7.3)

Now let L be a minimum edge covering of G, set H=G[L] and let M be
a maximum matching in H. Denote the set of M-unsaturated vertices in H
by U. Since M is maximum, H[U] has no links and therefore

IL|=|M|=|L\M|=|U|=v-2|M]|
Because H is a subgraph of.G, M is a matching in G and so
. o' +B'=|M|+|L|= a4
Combining (7.3) and (7.4), we have a'+B'=v 0O

We can now prove a theorem that bears a striking formal resemblance to
Konig’s theorem (5.3).
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Theorem 7.3 In a bipartite graph G with 8 >0, the number of vertices in a
maximum independent set is equal to the number of edges in a minimum
edge covering. |

Proof Let G be a bipartite graph with §>0. By corollary 7.1 and
theorem 7.2, we have

at+B=ao+p

and, since G is bipartite, it follows from theorem 5.3 that a'=pB. Thus
a=p" 0

Even though' the concept of an independent set is analogous to that of a
matching, there exists no theory of independent sets comparable to the
theory of matchings presented in chapter 5; for example, no good algorithm
for finding a maximum independent set in a graph is known. However, there
are two interesting theorems that relate the number of vertices in a max-
imum independent set of a graph to various other parameters of the graph.
These theorems will be discussed in sections 7.2 and 7.3.

Exercises

7.1.1 (a) Show that G is blpartlte if and on]y if a(H)=1v(H) for every
subgraph H of G.
(b) Show that G is bipartite if and only if «(H)=B'(H) for every
subgraph H of G such that 8§(H)>0.
7.1.2 A graph is a-critical if a(G—e)>a(G) for all ec E. Show that
a connected a-critical graph has no cut vertices.
7.1.3 A graph G is B-critical if B(G —e)<B(G) for all e E. Show that

(a) & connected B-critical graph has no cut vertices;
(b)* if G is connected, then B=%e +1).

7.2 RAMSEY'S THEOREM

In this section we deal only with simple graphs. A clique of a simple graph G
is a subset S of V such that G[S] is complete. Clearly, S is a clique of G if
and only if S is an independent set of G°, and so the two concepts are
complementary.

If G has no large cliques, then one might expect G to have a large
independent set. That this is indeed the case was first proved by Ramsey
(1930). He showed that, given any positive integers k and I, there exists a
smallest integer r(k,l) such that every graph on r(k,[) vertices contains
either a clique of k vertices or an independent set of | vertlces For example,
it is easy to see that

r(l, )=rk,1)=1 (7.5)
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and , _
r2, D=1  rk,2)=k ' (7.6)

The numbers r(k,l) are known as the Ramsey numbers. The following
theorem on Ramsey numbers is due to Erdos and Szekeres (1935) and
Greenwood and Gleason (1955).

Theorem 7.4 For any two integers k =2 and [ =2
rk, D)=r(k,l-1)+r(k—1,1) (7.7)

Furthermore, if r(k, | —1) and r(k — 1, l) are both even, then strict inequality
holds in (7.7).

Proof Let G be a graph on r(k,l—1)+r(k—1,1) vertices, and let ve V.
We distinguish two cases:

(i) v is nonadjacent to a set S of at least r(k,l—1) vertices, or
(ii) v is adjacent to a set T of at least r(k —1, ) vertices.

Note that either case (i) or case (ii) must hold because the number of
vertices to which v is nonadjacent plus the number of vertices to which v is
adjacent is equal to r(k,l—1)+r(k—1,1)—1. -
In case (i), G[S] contains either a clique of k vertices or an independent
set of I —1 vertices, and therefore G[S U{v}] contains either a clique of k -
vertices or an independent set of | vertices. Similarly, in case (ii), G[T U{v}]
contains either a clique of k vertices or an independent set of | vertices.
Since one of case (i) and case (ii) must hold, it follows that G contains either
a clique of k vertices or an independent set of I vertices. This proves (7.7).
Now suppose that r(k,l—1) and r(k — 1, I) are both evén, and let G be a
graph on r(k,1—1)+r(k—1,1)—1 vertices. Since G has an odd number of
vertices, it follows from corollary 1.1 that some vertex v is of even degree;
in particular, v cannot be adjacent to precisely r(k—1,1)—1 vertices.
Consequently, either case (i) or case (ii) above holds, and therefore G

‘contains either a chque of k vertices or an independent set of | vertices.
Thus

| rik, )<r(k,l1-1)+r(k—-1,1)—1
as stated O

The determination of the Ramsey numbers in general is a very difficult
unsolved problem. Lower bounds can be obtained by the construction of
suitable graphs. Consider, for example, the four graphs in figure 7.2.

- The 5-cycle (figure 7.2a) contains no clique of three vertices and no
‘independent set of three vertices. It shows, therefore, that

r(3,3)=6 (7.8)
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(a) (b)

(c) (d)
Figure 7.2. (a) A (3,3)-Ramsey graph; (b) a (3,4)-Ramsey graph; (c) a (3,5)-Ramsey
' graph; (d) a (4,4)-Ramsey graph

The graph of figure 7.2b contains no clique of three vertices and no
independent set of four vertices. Hence

r(3,4)=9 (7.9)
Similarly, the graph of figure 7.2¢ shows that
| r(3,5)=14 (7.10)
" and the graph of figure 7.2d yields
| r(4,4)=18 (7.11)

With the aid of theorem 7.4 and equations (7.6) we can now show that

equality in fact holds in (7.8), (7.9), (7.10) and (7.11). Firstly, by (7.7) and
(7.6)

r(3,3)=r(3,2)+1r(2,3)=6
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and therefore, using (7.8), we have r(3, 3) = 6. Noting that r(3, 3) and r(2, 4)
are both even, we apply theorem 7.4 and (7.6) to obtain

r(3,4)=<r(3,3)+r(2,4)—-1=9
With (7.9) this gives (3, 4) = 9. Now we again apply (7.7) and (7.6) to obtain
r(3,5)=r(3,4)+r(2,5 =14

and
r(4,4)=<r(4,3)+r(3,4)=18

which, together with (7.10) and (7.11), respectively, yield r(3, 5)=14 and
r(4,4)=18. ,
The following table shows all Ramsey numbers r(k, I) known to date.

11234567

k.

11 11 1 1 1 1
211 2 3 4 5 6 7
311 3 6 9 14 18 23
411 4 9 18 :

A (k,l)-Ramsey graph is a graph on r(k,1)—1 vertices that contains
neither a clique of k vertices nor an independent set of | vertices. By
definition of r(k, l) such graphs exist for all k =2 and [ =2. Ramsey graphs
often seem to possess interesting structures. All of the graphs in figure 7.2
are Ramsey graphs; the last two can be obtained from finite fields in the
following way. We get the (3, 5)-Ramsey graph by regarding the thirteen
vertices as elements of the field of integers modulo 13, and joining two
vertices by an edge if their difference is a cubic residue of 13 (either 1, 5, 8
or 12); the (4, 4)-Ramsey graph is obtained by regarding the vertices as
elements of the field of integers modulo 17, and joining two vertices if their
difference is a quadratic residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). It
has 'been conjectured that the (k, k)-Ramsey graphs are always self-
complementary (that is, isomorphic to their complements) this is true for
k=2, 3 and 4.

In general, theorem 7.4 yields the following upper bound for r(k, I).
’{‘heorem 7.5 rk )= (k;i 1 2)

Proof By ‘induction on k+1 Using (7.5) and (7.6) we see that the
theorem holds when k +1=<5. Let m and n be positive integers, and assume
that the theorem is valid for all positive integers k and ! such that
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5=k+1<m+n. Then, by theorem 7.4 and the induction hypothesis
rim,n)<r(m,n—1)+r(m—1, n)
s(m+f—3)+(m+f-3)= (m+f-2)
m-—1 m-—2 m-—1
Thus the theorem holds for all values of k and | [

A lower bound for r(k, k) is given in the next theorem. It is obtained by
means of a powerful technique known as the probabilistic method (see Erdos
and Spencer, 1974). The probabilistic method is essentially a crude counting
argument. Although nonconstructive, it can often be applied to assert the
existence of a graph with certain specified properties.

Theorem 7.6 (Erdos, 1947) r(k, k) = 2+
Proof. Since r(1,1)=1 and r(2,2)=2, we may assume that k =3. De-

note by 4. the set of simple graphs with vertex set {v;, vs, . . ., v}, and by
%, the set of those graphs in %, that have a clique of k vertices. Clearly
|G| =22 (7.12)

since each subset of the (g) possible edges viv; determines a graph in %..
Similarly, the number of graphs in %. having a particular set of k vertices as

a clique is 20~(), Since there are (;:) distinct k-element subsets of
{vi, v2, . . ., v}, we have

@=(F)a0-0 (7.13)
By (7.12) and (7.13)
et o n2-®
rg—js(z)z-(zk" 2 (7.14)

Suppose, now, that n <2?, From (7.14) it follows that

|<9:| ‘ 2k2/22—(§) B /2
N D T

Therefore, fewer than half of the graphs in %, contain a clique of k vertices.
Also, because 4,={G|G°€%.}, fewer than half of the graphs in %,
contain an independent set of k vertices. Hence some graph in %, contains
neither a clique of k vertices nor an independent set of k vertices. Because
this holds for any n <2*?, we have r(k, k)=2> [

N

<

From theorem 7.6 we can immediately deduce a lower bound for r(k, ).
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Corollary 7.6 1f m =min{k, I}, then r(k, |) = 2™

All known lower bounds for r(k,!) obtained by constructive arguments
are much weaker than that given in corollary 7.6; the best is due to Abbott
(1972), who shows that r(2"+1, 2" +1)=5"+1 (exercise 7.2.4).

The Ramsey numbers r(k, I) are sometimes defined in a slightly different
way from that given at the beginning of this section. One easily sees that
r(k, ) can be thought of as the smallest integer n such that every 2-edge
colouring (E;, E) of K, contains either a complete subgraph on k vertices,
all of whose edges are in colour 1, or a complete subgraph on [ vertices, all
of whose edges are in colour 2. Expressed in this form, the Ramsey numbers
have a natural generalisation. We define r(ky, ko, . . ., km) to be the smallest
integer n such that every m-edge colouring (E;, Ez, ..., Em) of K, contains,
for some i, a complete subgraph on k; vertices, all of whose edges are in
colour i.

The following theorem and corollary generalise (7.7) and theorem 7.5,
and can be proved in a similar manner. They are left as an exercise (7.2.2).

Theorem 7.7 r(ki, ka ..., ke)=<r(ki—1, ks, ..., ka)+
Pk, ka—1,... , kn)+...+r(ky, kzy, ..., km—1)—m+2

(ki +ko+.. +km)!

Corollary 7.7 r(ki+1,ka+1,..., km +1)—- KUk k!
. 1 2. me

Exercises

7.2.1 Show that, for all k and [, r(k, 1) =r(l, k).
7.2.2 Prove theorem 7.7 and corollary 7.7.
7.2.3 Let r, denote the Ramsey number r(k, ks, . . ., ko) with k;=3 for all
i. aE
(a) Show that ro,=n(r...—1)+2.
(b) Noting that r,= 6, use (a) to show that r.<[n!e]+1.
(c) Deduce that r;=17.
(Greenwood and Gleason, 1955 have shown that r;= 17.)
7.2.4 The composition of simple graphs G and H is the simple graph G[H]
: with vertex set V(G)X V(H), in which (u, v) is adjacent to (u', v') if
and only if either uu'e E(G) or u=u' and wvv'e E(H).

(a) Show that a(G[H])= a(G)a(H).
(b) Using (a), show that

Pkl +1, kI +1)— 1= (r(k+1,k + 1) = )X (r(1+1, 1 +1)—1)

(c) Deduce that r(2"+1,2"+1)=5"+1 for all n=0. |
| : ' | - (H.L. Abbott)
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7.2.5 Show that the join of a 3-cycle and a 5-cycle contains no K, but that
every 2-edge colouring yields a monochromatic triangle.

(R. L. Graham)

(Folkman, 1970 has constructed a graph containing no K, in which

every 2-edge colouring yields a monochromatic triangle—this graph
has a very large number of vertices.)

7.2.6 Let G1,G,,...,Gn be s1mple graphs. The generalised Ramsey
number r(G,, Gz, ..., Gm) is the smallest integer n such that every
m-edge colouring (El, E,,...,Es) of K, contains, for some i, a
subgraph isomorphic to G; in colour i. Show that

(a) if G is a path of length three and H is a 4-cycle, then
r(G,G)=5, r(G,H)=5 and r(H, H) = 6;
(b)* if T is any tree on m vertices and if m —1 divides n—1, then
NT,Kis)=m+n—-1;
(c)* if T is any tree on m vertices, then r(T, K.)=(m -1)(n—1)+1.
(V. Chvatal)

7.3 TURAN'S THEOREM

In this section, we shall prove a well-known theorem due to Turdn (1941).
It determines the maximum number of edges that a simple graph on v
vertices can have without containing a clique of size m + 1. Turdn’s theorem
has become the basis of a significant branch of graph theory known as
extremal graph theory (see Erdds, 1967). We shall derive it from the
following result of Erdos (1970). |

Theorem 7.8 1If a simple graph G contains no Kp+:, then G is degree-
majorised by some complete m-partite graph H. Moreover, if G has the
same degree sequence as H, then G=H.

Proof By induction on m. The theorem is trivial for m = 1. Assume that
it holds for all m <n, and let G be a simple graph which contains no K,.,.
Choose a vertex u of degree A in G, and set G,= G[N(u)]. Since G
contains no K.,.;, G; contains no K, and therefore, by the induction
hypothesis, is degree-majorised by some complete (n — 1)-partite graph H,.

Next, set V,=N(u) and V,= V\V;, and denote by G, the graph whose
vertex set is V> and whose edge set is empty Consider the join G,v G; of
G; and G.. Smce

NG(v) € Ng,vc,(v) for veV, (7.15)

and since each vertex of V, has degree A in G,v G., G is degree-majorised
by G.v G.. Therefore G is also degree-majorised by the complete n-partite
graph H = H;v G,. (See figure 7.3 for illustration.)
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u

Another diagram of G
with G,=G[N(u)] indicated

NN

H, G, v G, (55,5,5,5,5,5,5) H=H,v G,(5,5,5,5, 5,5,6,6)
Figure 7.3

Suppose, now, that G has the same degree sequence as H. Then G has
the same degree sequence as G, v G, and hence equality must hold in (7.15).
Thus, in G, every vertex of V, must be joined to every vertex of V. It
follows that G = G,V G.. Since G = G,V G; has the same degree sequence
as H = H,v G,, the graphs G, and H, must have the same degree sequence

and therefore, by the induction hypothesis, be isomorphic. We conclude that
G=H 0

It is interesting to note that the above theorem bears a striking similarity
to theorem 4.6.

Let T.. denote the complete m-partite graph on n vertices in which all -
parts are as equal in size as possible; the graph H of figure 7.3 is Tsgs.

Theorem 7.9 If G is simple and contains no K., then e(G)=e(Tm.).
Moreover, €(G) = &(Tn,.) only if G=Tha..
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Proof Let G be a simple graph that contains no K... By theorem 7.8, G
is degree-majorised by some complete m-partite graph H. It follows from
theorem 1.1 that

e(G)=e(H) (7.16)
But (exercise 1.2.9)

e(H)=<&(Tm,) (7.17)
Therefore, from (7.16) and (7.17) |

£(G)=€(Tumy) (7.18)

proving the first assertion.

Suppose, now, that equality holds in (7.18). Then equality must hold in
both (7.16) and (7.17). Since e(G)=¢(H) and G is degree-majorised by H,
G must have the same degree sequence as H. Therefore, by theorem 7.8,
G =H. Also, since ¢(H) = &(Ta,), it follows (exercise 1.2.9) that H = T,,..
We conclude that G=T,, 0

Exercises

7.3.1 In a group of nine people, one person knows two of the others, two
people each know four others, four each know five others, and the
remaining two each know six others. Show that there are three
people who all know one another.

7.3.2 A certain bridge club has a special rule to the effect that four
members may play together only if no two of them have previously
partnered one another. At one meeting fourteen members, each of
whom has previously partnered five others, turn up. Three games are
played, and then proceedings come to a halt because of the club rule.
Just as the members are preparing to leave, a new member, unknown
to any of them, arrives. Show that at least one more game can now

be played.
- 7.3.3 (a) Show that if G is snmple and 8>v2/4 then G contains a
- triangle.

(b) Find a simple graph G with ¢ =[v?/4] that contains no triangle.

(c)* Show that if G is simple and not bipartite with £>
((v—1)’/4)+ 1, then G contains a triangle.

(d) Find a simple non- bipartite graph G with & =[(v—1)*/4]+1
that contains no triangle. | (P. Erdos)

7.3.4 (a)* Show that if G is snmple andZ( (v)) (m —1)(v), then G
contains K, m(m>2) vev
(m—1)hy?

) | Z, then G

(b) Deduce that if G is simple and &>
contains K, ..(m=2). _
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(c) Show that, given a set of n points in the plane, the number of
pairs of points at distance exactly 1 is at most niy2+n/4.

1/m 2-1/m
(m = 1)2 +(m 21)v then G

7.3.5 Show that if G is simple and &>

contains K m.

APPLICATIONS

7.4 SCHUR'S THEOREM

Consider the partition ({1, 4, 10, 13}, {2,3,11,12}, {5,6,7,8,9}) of the set
of integers {1, 2, ..., 13}. We observe that in no subset of the partition are
there integers x, y and z (not necessarily distinct) which satisfy the equation

x+y=1z (7.19)

Yet, no matter how we partition {1, 2,...,14} into three subsets, there
always exists a subset of the partition which contains a solution to (7.19).
Schur (1916) proved that, in general, given any positive integer n, there
‘exists an integer f, such that, in any partition of {1, 2, ..., f.} into n subsets,
there is a subset which contains a solution to (7.19). We shall show how
Schur’s theorem follows from the existence of the Ramsey numbers r,
(defined in exercise 7.2. 3).

Theorem 7.10 Let (S, S,,...,S.) be any partition of the set of integers
{1,2,...,r}. Then, for some i, S; contains three integers x, y and z
satisfying the equation x+y = z.

Proof Consider the complete graph whose vertex set is {1,2,...,r.}.
Colour the edges of this graph in colours 1,2,...,n by the rule that the
edge uv is assigned colour j if and only if |u —v|€ S;. By Ramsey’s theorem
(7.7) there exists a monochromatic triangle; that is, there are three vertices
a, b and ¢ such that ab, bc and ca have the same colour, say i. Assume,
without loss of generality that a>b>c¢ and write x=a—-b, y=b—c and
z=a-c. Then x,y,zeS;and x+y=2 [

Let s, denote the least integer such that, in any partition of {1,2, ..., s,}
into n subsets, there is a subset which contains a solution to (7.19). It can be
easily seen that s, =2, s, =5 and s; = 14 (exercise 7.4.1). Also, from theorem
7.10 and exercise 7.2.3 we have the upper bound

Sn = r.,<[n' e]+1

Exercise 7.4.2b provides a lower bound for s..
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Exercises

7.4.1 Show that s,=2, s,=35 and s;=14.
7.4.2 (a) Show that s,=3s,.,—1.
(b) Using (a) and the fact that s;= 14, show that s, =3(27(3)">+1).
(A better lower bound has been obtained by Abbott and Moser,
1966.) '

7.5 A GEOMETRY PROBLEM

The diameter of a set S of points in the plane is the maximum distance
“between two points of S. It should be noted that this is a purely geometric
notion and is quite unrelated to the graph-theoretic concepts of diameter
and distance. |

We shall discuss sets of diameter 1. A set of n points determines (;)

distances between pairs of these points. It is intuitively clear that if n is
‘large’, then some of these distances must be ‘small’. Therefore, for any d
between 0 and 1, we can ask how many pairs of points in a set
{x1, X2, ..., xa} of diameter 1 can be at distance greater than d. Here, we
shall present a solution to one special case of this problem, namely when
d=1/V2.

As an illustration, consider the case n = 6. We then have six points x;, x.,
X3, X4, Xs and xs. If we place them at the vertices of a regular hexagon so that
the pairs (x1, x4), (x2, xs) and (xs, x¢) are at distance 1, as shown in figure
7.4a, these six points constitute a set of diameter 1.

It is easily calculated that the pairs (x1, x2), (X2, X3), (X3, X4), (X4, Xs), (Xs, Xs)
and (xs, x,) are at distance 1/2, and the pairs (x,, x3), (X2, X4), (X3, Xs), (X4, Xs),
(xs, x1) and (xs, x;) are at distance v3/2. Since v3/2>+/2/2 = 1/v/2, there are
nine pairs of points at distance greater than 1/v/2 in this set of diameter 1.

X X2

(a)
Figure 7.4
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However, nine is not the best that we can do with six points. By placing the
points in the configuration shown in figure 7.4b, all pairs of points except
(x1, X2), (x3, x4) and (xs, Xe) are at distance greater than 1/+v/2. Thus we have
twelve pairs at distance greater than 1/v/2; this is, in fact, the best we can do.
The solution to the problem in general is given by the following theorem.

Theorem 7.11 If {xi, X2,..., xa} is a set of diameter 1 in the plane, the
maximum possible number of pairs of points at distance greater than 1/v2 is
[n?/3]. Moreover, for each n, there is a set {xi, xs, . . ., X} of diameter 1 with
exactly [n?*/3] pairs of points at distance greater than 1/v2.

Proof Let G be the graph defined by

V(G)={x1, X2, ..., Xa}
and
E(G)={xux;| d(x:, x;)>1/¥2}

where d(x;, x;) here denotes the euclidean distance between x; and x;. We
shall show that G cannot contain a K,. .

First, note that any four points in the plane must determine an angle of at
least 90°. For the convex hull of the points is either (a) a line, (b) a triangle,
or (c) a quadrilateral (see figure 7.5). Clearly, in each case there is an angle
xiX;x. of at least 90°. 4

Now look at the three points x;, x;, xx which determine this angle. Not all
the distances d(x;, x;), d(x;, x«) and d(x;, x,) can be greater than 1/v2 and
less than or equal to 1. For, if d(x;,x;)>1/v2 and d(x;, x,)>1/v/2, then
d(x;, xx)>1. Since the set {x1, X3, ..., X.} is assumed to have diameter 1, it
follows that, of any four points in G, at least one pair cannot be joined by an
~edge, and hence that G cannot contain a K,. By Turan’s theorem (7.9)

e(G)=e(Ts.)=[n?/3]

One can construct a set {xi, Xz, . .. , X.} of diameter 1 in which exactly

Xy

(a) ~(b) (c)

Figure 7.5
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+  Figure 7.6

[n?/3] pairs of points are at distance greater than 1/v2 as follows. Choose r
such that 0<r<(1-— l/\/2)/4, and draw three circles of radius r whose
centres are at a distance of 1—2r from one another (figure 7.6). Place
X1, . . ., X[n3] in ONeE circle, X(w3+1, . . ., X203 in another, and X{an3p+1, . .., Xa in
the third, in such a way that d(x,, x,) = 1. This set clearly has diameter 1.
Also, d(xi, x;)>1/v2 if and only if x; and x; are in different circles, and so
there are exactly [n?/3] pairs (x;, x;) for which d(x;, x;)>1/v/2 o

Exercises
7.5.1* Let {xi, X2, ..., X.} be a set of diameter 1 in the plane.

(a) Show that the maximum possible number of pairs of points at
distance 1 is n. '

(b) Construct a set {x1, x2,...,x.} of diameter 1 in the plane in
which exactly n pairs of points are at distance 1. (E. Pannwitz)

7.5.2 A flat circular city of radius six miles is patrolled by eighteen police
cars, which communicate with one another by radio. If the range of a
radio is nine miles, show that, at any time, there are always at least
two cars each of which can communicate with at least five other cars.
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8 Vertex Colourings

8.1 CHROMATIC NUMBER

In chapter 6 we studied edge colourings of graphs. We now turn our
attention to the analogous concept of vertex colouring.

A k-vertex colouring of G is an assignment of k colours, 1,2,...,k, to

the vertices of G; the colouring is proper if no two distinct adjacent vertices
have the same colour. Thus a proper k-vertex colouring of a loopless graph
G is a partition (Vy, Va, ..., V) of V into k (possibly empty) independent
sets. G is k-vertex-colourable if G has a proper k-vertex colouring. It will
be convenient to refer to a ‘proper vertex colouring’ as, simply, a colouring
and to a ‘proper k-vertex colouring’ as a k-colouring; we shall similarly
abbreviate ‘k-vertex-colourable’ to k-colourable. Clearly, a graph is k-
colourable if and only if its underlying simple graph is k-colourable.
Therefore, in discussing colourings, we shall restrict ourselves to simple
~graphs; a simple graph is 1-colourable if and only if it is empty, and
2-colourable if and only if it is bipartite. The chromatic number, x(G), of G
is the minimum k for which G is k-colourable; if x(G)=k, G is said to be
k-chromatic. A 3-chromatic graph is shown in figure 8.1. It has the indicated
‘3-colouring, and is not 2-colourable since it is not bipartite.

It is helpful, when dealing with colourings, to study the properties of a
special class of graphs called critical graphs. We say that a graph G is critical
if x(H)<x(G) for every proper subgraph H of G. Such graphs were first
investigated by Dirac (1952). A k-critical graph is one that is k-chromatic
and critical; every k-chromatic graph has a k-critical subgraph. A 4-critical
graph, due to Grétzsch (1958), is shown in figure 8.2. |

An easy consequence of the definition is that every critical graph is
connected. The following theorems establish some of the basic properties of
critical graphs.

Theorem 8.1 If G is k-critical, then § =k —1.

Proof By contradiction. If possible, let G be a k-critical graph with
8 <k -1, and let v be a vertex of degree 8 in G. Since G is k-critical, G — v
is (k —1)-colourable. Let (V,, V,,..., Vi._;)-be a (k — 1)-colouring of G —v.
By definition, v is adjacent in G to 8§ <k —1 vertices, and therefore v must
be nonad;acent in G to every vertex of some V;. But then (V,, V,,..., V;U
{v},..., Vic))isa (k 1)-colouring of G, a contradiction. Thus § =k — 10
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Figure 8.1. A 3-chromatic gfaph

Corollary 8.1.1 Every k-chromatic graph has at least k vertices of degree
at least k —1.

Proof Let G be a k-chromatic graph, and let H be a k -critical subgraph
of G. By theorem 8.1, each vertex of H has degree at least k—1 in H, and
hence also in G. The corollary now follows since H, being k-chromatic,
clearly has at least k vertices U |

Corollary 8.1.2 - For any graph G,
x=A+1

Proof This is an immediate consequence of corollary 8.1.1 [

Figure 8.2. The Grotzsch graph—a 4-critical graph
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Let S be a vertex cut of a connected graph G, and let the components of
G — S have vertex sets V,, V,, ..., V.. Then the subgraphs Gi= G[V US]
are called the S-components of G (see figure 8.3). We say that colourings of
Gi, Ga, ..., G, agree on S if, for every v eSS, vertex v is assigned the same
colour in each of the colourings.

Theorem 8.2 In a critical graph, no vertex cut is a clique.

Proof By contradiction. Let G be a k-critical graph, and suppose that G
has a vertex cut S that is a clique. Denote the S-components of G b
G, G, ..., G.. Since G is k-critical, each Gi; is (k — 1)-colourable. Furth: .
more, because S is a clique, the vertices in S must receive distinct colours in
any (k —1)-colouring of G;. It follows that there are (k —1)-colourings of
Gi, Gz, ..., G, which agree on S. But these colourings together yield a
(k —1)-colouring of G, a contradiction U .

Corollary 8.2 Every critical graph is a block.

Proof If v is a cut vertex, then {v} is a vertex cut which is also, trivially, a
clique. It follows from theorem 8.2 that no critical graph has a cut vertex;
equivalently, every critical graph is a block 0

Another consequence of theorem 8.2 is that if a k-critical graph G has a
2-vertex cut {u, v}, then u and v cannot be adjacent. We shall say that a
{u, v}-component G; of G is of type 1 if every (k — 1)-colouring of G; assigns
the same colour to u and v, and of type 2 if every (k —1)-colouring of G;
assigns different colours to u and v (see figure 8.4). |

Theorem 8.3 (Dirac, 1953) Let G be a k-critical graph with a 2-vertex cut
{u, v}. Then :

(i) G=G1UG:, where Gi is a {u, v}-component of type i (i=1,2), and

. UWJ
v A v v
(b) |

(a)

Figure 8.3. (a) G; (b) the {u, v}-components of G
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u y u

Type 1 Type 2

Figure 8.4

(i) both G,+uv and G, - uv are k-critical (where G- - uv denotes the graph
obtained from G, by identifying u and v).,

Proof (i) Since G is critical, each {u, v}-component of G is (k —1)-
colourable. Now there cannot exist (k —1)-colourings of these {u, v}-
components all of which agree on {u, v}, since such colourings would
together yield a (k —1)-colouring of G. Therefore there are two {u, v}-
components G, and G such that no (k - 1)-colouring of G, agrees with any
(k — 1)-colouring of G.. Clearly one, say G,, must be of type 1 and the
other, G, of type 2. Since G and G are of different types, the subgraph
G,UG:; of G is not (k —1)-colourable. Therefore, because G is critical, we
must have G = G1U Ga. '

(ii) Set H,= G,+ uv. Since G, is of type 1, Hi is k -chromatic. We shall
prove that H, is critical by showing that, for every edge e of Hi, Hi—e is
(k — 1)-colourable. This is clearly so if e = uv, since then Hi—e=Gi. Let e
be some other edge of H,. In any (k —1)-colouring of G —e, the vertices u
and v must receive different colours, since G is a subgraph of G —e. The
restriction of such a colouring to the vertices of G is a (k —1)-colouring of
H,—e. Thus G,+ uv is k-critical. An analogous argument shows that G, uv
is k-critical [ -

Corollary 8.3 Let G be a k-critical graph with a 2-vertex cut {u, v}. Then

d(u)+d(w)=3k-5 (8.1)

Proof Let G: be the {u, v}-component of type 1 and G: the {u, v}-
component of type 2. Set-Hi=G:i+uv and H:= G, uv. By theorems 8.3
and 8.1

dy,(u) + du, (V) =2k -2
and
de(W)Z k-1

where w is the new vertex obtained by identifying u and v.
It follows that

'dGn(u) + dGl(v) = 2k —4
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and

do,(u)+dg,(v)=k-1

These two inequalities yield (8.1) 0

Exercises

8.1.1
8.1.2

8.1.3

8.1.4

8.1.5

8.1.6*

8.1.7

8.1.8

8.1.9

8.1.10

8.1.11

8.1.12
8.1.13

Show that if G is simple, then y =v?/(v?—2¢).

Show that if any two odd cycles of G have a vertex in common,
then x <5.

Show that if G has degree sequence (d,, ds, . .., d,) with d,=d,=
...=d,, then x =max min {d,+1, i}.

(D. J. A. Welsh and M. B. Powell)
Using exercise 8.1.3, show that

(a) x={Qe)};
(b) x(G)+x(G)=v+1. (E. A. Nordhaus and J. W. Gaddum)
Show that x(G)=1+max 8(H), where the maximum is taken over
all induced subgraphs H of G. (G. Szekeres and H. S. Wilf)
If a k-chromatic graph G has a colouring in which each colour is
assigned to at least two vertices, show that G has a k-colouring of
this type. : (T. Gallai)
Show that the only 1-critical graph is K;, the only 2-critical graph is
K3, and the only 3-critical graphs are the odd k-cycles with k = 3.
A graph G is uniquely k-colourable if any two k-colourings of G
induce the same partition of V. Show that no vertex cut of a
k-critical graph induces a uniquely (k — 1)-colourable subgraph.
(a) Show that if u and v are two vertices of a critical graph G, then
N(u)Z N(v).
(b) Deduce that no k-critical graph has exactly k +1 vertices.
Show that

(a) x(GivG2)=x(G))+x(G2); ,
(b) Giv G, is critical if and only if both G, and G, are critical.

Let G, and G; be two k-critical graphs with exactly one vertex v in

common, and let vv, and vv, be edges of G, and G,. Show that the

graph (G, —vv,) U (G, —vv,)+v,0; is k-critical. (G. Hajés)

For n =4 and all n=6, construct a 4-critical graph on n vertices.

(a)* Let (X, Y) be a partition of V such that G[X] and GlY] are

both n-colourable. Show that, if the edge cut [X, Y] has at
most n—1 edges, then G is also n-colourable.

(P. C. Kainen)

(b) Deduce that every k-critical graph is (k — 1)-edge-connected.

' (G. A. Dirac)
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8.2 BROOKS’ THEOREM

The upper bound on chromatic number given in corollary 8.1.2 is sometimes
very much greater than the actual value. For example, bipartite graphs are
2-chromatic, but can have arbitrarily large maximum degree. In this sense
corollary 8.1.2 is a considerably weaker result than Vizing’s theorem (6.2).
There is another sense in which Vizing’s result is stronger. Many graphs G
satisfy x' =A+1 (see exercises 6.2.2 and 6.2.3). However, as is shown in the
following theorem due to Brooks (1941), there are only two types of graph
G for which x =A+1. The proof of Brooks’ theorem given here is by
Lovasz (1973).

Theorem 8.4 If G is a connected simple graph and is neither an odd cycle
nor a complete graph, then x =A.

Proof Let G be a k-chromatic graph which satisfies the hypothesis of the
theorem. Without loss of generality, we may assume that G is k-critical. By
corollary 8.2, G is a block. Also, since 1-critical and 2-critical graphs are
complete and 3-critical graphs are odd cycles (exercise 8.1.7), we have k = 4.

If G has a 2-vertex cut {u, v}, corollary 8.3 gives

2A=d(u)+d(w)=3k-5=2k—-1

This implies that x = k <4, since 2A is even.

Assume, then, that G is 3-connected. Since G is not complete, there are
three vertices u, v and w in G such that uv, vwe E and uwé E (exercise
1.6.14). Set u=v, and w =, and let v3, s, ..., 0, =V be any ordering of
the vertices of G —{u, w} such that each v; is adjacent to some v; with j>i.
(This can be achieved by arranging the vertices of G —{u, w} in nonincreas-
ing order of their distance from v.) We can now describe a A-colouring of
G: assign colour 1 to v;=u and v:=w; then successively colour
s, U4 - . . , Uy, €ach with the first available colour in the list 1,2,...,A. By
the construction of the sequence v, vz, . . ., V., €ach vertex v, 1=isv-1,is
adjacent to some vertex v; with j>1i, and therefore to at most A—1 vertices
v; with j<i. It follows that, when its turn comes to be coloured, v; is
adjacent to at most A—1 colours, and thus that one of the colours
1, 2, . .., A will be available. Finally, since v, is adjacent to two vertices of
colour 1 (namely v, and v.), it is adjacent to at most A -2 other colours and
can be assigned one of the colours 2,3,...,4 a

Exercises

82.1 Show that Brooks’ theorem is equivalent to the following statement:
if G is k-critical (k =4) and not complete, then 2e=v(k—1)+1.
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8.2.2 Use Brooks’ theorem to show that if G is loopless with A=3, then
x'=4. . '

8.3 HAJOS' CONJECTURE

A subdivision of a graph G is a graph that can be obtained from G by a
sequence of edge subdivisions. A subdivision of K, is shown in figure 8.5.
Although no necessary and sufficient condition for a graph to be k-
chromatic is known when k=3, a plausible necessary condition has been
proposed by Hajos (1961): if G is k-chromatic, then G contains a subdivi-
sion of K.. This is known as Hajds’ conjecture. It should be noted that the
condition is not sufficient; for example, a 4-cycle is a subdivision of K3, but
is not 3-chromatic.

For k =1 and k =2, the validity of Hajos’ conjecture is obvious. It is also
easily verified for k = 3, because a 3-chromatic graph necessarily contains an
odd cycle, and every odd cycle is a subdivision of K;. Dirac (1952) settled
the case k =4. |

Theorem 8.5 1If G is 4-chromatic, then G contains a subdivision of K.

Proof Let G be a 4-chromatic graph. Note that if some subgraph of G
contains a subdivision of K, then so, too, does G. Without loss of general-
ity, therefore, we may assume that G is critical, and hence that G is a block
with 8=3. If v=4, then G is K, and the theorem holds trivially. We
proceed by induction on v. Assume the theorem true for all 4-chromatic
graphs with fewer than n vertices, and let v(G)=n>4.

Suppose, first, that G has a 2-vertex cut {u, v}. By theorem 8.3, G has two
{u, v}-components G, and G., where G, + uv is 4-critical. Since »(G,+uv)<
v(G), we can apply the induction hypothesis and deduce that G,+ uv

Figure 8.5. A subdivision of K,
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contains a subdivision of K. It follows that, if P is a (u, v)-path in G-, then
G1 U P contains a subdivision of K4. Hence so, too, does G, since GiUP = G.

Now suppose that G is 3-connected. Since 8 =3, G has a cycle C of
length at least four. Let u and v be nonconsecutive vertices on C. Since
G —{u, v} is connected, there is a path P in G —{u, v} connecting the two
components of C —{u, v}; we may assume that the origin x and the terminus
y are the only vertices of P on C. Similarly, there is a path Q in G —{x, y}
(see figure 8.6).

If P and Q have no vertex in common, then CUPUQ is a subdivision of
K. (figure 8.6a). Otherwise, let w be the first vertex of P on Q, and let P’
denote the (x, w)-section of P. Then CUP'UQ is a subdivision of K, (figure
8.6b). Hence, in both cases, G contains a subdivision of K, 0

Hajos’ conjecture has not yet been settled in general, and its resolution is
known to be a very difficult problem. There is a related conjecture due to
Hadwiger (1943): if G is k-chromatic, then G is ‘contractible’ to a graph
which contains K.. Wagner (1964) has shown that the case k=5 of
Hadwiger’s conjecture is equivalent to the famous four-colour conjecture, to
be discussed in chapter 9.

Exercises

8.3.1* Show that if G is simple and has at most one vertex of degree less
than three, then G contains a subdivision of K.
8.3.2 (a)* Show that if G is simple with v=4 and e=2v—2, then G
contains a subdivision of K,.
(b) For v=4, find a simple graph G with & =2v—3 that contains
no subdivision of K.

Figure 8.6
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8.4 CHROMATIC POLYNOMIALS

In the study of colourings, some insight can be gained by considering not
only the existence of colourings but the number of such colourings; this
approach was developed by Birkhoff (1912) as a possible means of attacking
the four-colour conjecture.

We shall denote the number of distinct k-colourings of G by m(G); thus
m(G)>0 if and only if G is k-colourable. Two colourings are to be
regarded as distinct if some vertex is assigned different colours in the two
colourings; in other words, if (V,, V,..., V) and (V}, V3. .. , Vi) are two
colourings, then (Vy, V,, ..., V,)=(Vi, V4, ..., V]) if and only if V= V]
for 1 =i=k. For example, a triangle has the six distinct 3-colourings shown
in figure 8.7. Note that even though there is exactly one vertex of each
colour in each colouring, we still regard these six colourings as distinct.

If G is empty, then each vertex can be independently assigned any one of
the k available colours. Therefore m.(G)=k". On the other hand, if G is
complete, then there are k choices of colour for the first vertex, k—1
choices for the second, k —2 for the third, and so on. Thus, in this case,
m(G)=k(k—1)...(k—v+1). In general, there is a simple recursion for-
mula for m(G). It bears a close resemblance to the recursion formula for
7(G) (the number of spanning trees of G), given in theorem 2.8.

INININ NN N

Figure 8.7

Theorem 8.6 If G is simple, then'm(G) =m(G —e)—m(G - e) for any edge
e of G. '

Proof Let u and v be the ends of e. To each k-colouring of G —e that
assigns the same colour to u and v, there corresponds a k-colouring of G - e
in which the vertex of G-e formed by identifying u and v is assigned the
common colour of u and v. This correspondence is clearly a bijection (see
figure 8.8). Therefore m(G -e) is precisely the number of ‘k-colourings of
G —e in which u and v are assigned the same colour. '

Also, since each k-colouring of G —e that assigns different colours to u
and v is a k-colouring of G, and conversely, m(G) is the number of
k-colourings of G—e in which u and v are assigned different colours. It
follows that 7.(G —e) = m(G)+ m(G-e) O
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Figure 8.8

Corollary 8.6 For any graph G, m(G) is a polynomial in k of degree v,
with integer coefficients, leading term k* and constant term zero. Further-
more, the coefficients of m.(G) alternate in sign.

Proof By induction on &. We may assume, without loss of generality,
that G is simple. If € =0 then, as has already been noted, m(G) = k", which
trivially satisfies the conditions of the corollary. Suppose, now, that the
corollary holds for all graphs with fewer than m edges, and let G be a graph
with m edges, where m =1. Let e be any edge of G. Then both G —e and
G-e have m—1 edges, and it follows from the induction hypothesis that
there are non-negative integers ai, dz, . . ., &v-1 and by, b,, . .., b,—2 such that

v—1
m(G—e)=), (-1)""aik'+k”
i=1 i
and
v—2
m(G-e)=Y (1) bk + kT
. il

By theorem 8.6
m(G) = m(G —e)—m(G - €)

v—2

= Z (—l)v_i(ai+bi)ki—(a‘,_l+ 1)k""1+ k*

i=1

Thus G, too, satisfies the conditions of the corollary. The result follows by
the principle of induction O

By virtue of corollary 8.6, we can now refer to the function m(G) as the
chromatic polynomial of G. Theorem 8.6 provides a means of calculating the
chromatic polynomial of a graph recursively. It can be used in either of two
ways: '

(i) by repeatedly applying the recursion m(G) = m(G —e)—m(G -e), and
thereby expressing m(G) as a linear combination of chromatic polyno-
mials of empty graphs, or B . -

(i) by repeatedly applying the recursion m(G —e) = m(G)+ m(G - e), and




(i)
1rk(G) =

(i)
‘rrk(G) =

N - (KA AN-0)

2 + = k(k=1)(k=2)(k-3) +2k(k=1)(k=2) + k(k=1) = k(k=1)(k?~ 3k +3)

Figure 8.9. Recursive calculation of m.(G)
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thereby expressing m(G) as a linear combination of chromatic polyno-
mials of complete graphs.

Method (i) is more suited to graphs with few edges, whereas (ii) can be
applied more efficiently to graphs with many edges. These two methods are
illustrated in figure 8.9 (where the chromatic polynomial of a graph is
represented symbolically by the graph itself).

The calculation of chromatic polynomials can sometimes be facilitated by
the use of a number of formulae relating the chromatic polynomial of G to
the chromatic polynomials of various subgraphs of G (see exercises 8.4.5a,
8.4.6 and 8.4.7). However, no good algorithm is known for finding the
chromatic polynomial of a graph. (Such an algorithm would clearly provide
an efficient way to determine the chromatic number.)

Although many properties of chromatic polynomials are known, no one
has yet discovered which polynomials are chromatic. It has been conjectured
by Read (1968) that the sequence of coefficients of any chromatic polyno-
mial must first rise in absolute value and then fall—in other words, that no
coefficient may be flanked by two coefficients having greater absolute value.
However, even if true, this condition, together with the conditions of
corollary 8.6, would not be enough. The polynomial k*—3k>+3k? for
example, satisfies all these conditions, but still is not the chromatic polyno-
mial of any graph (exercise 8.4.2b).

‘Chromatic polynomials have been used with some success in the study of
planar graphs, where their roots exhibit an unexpected regularity (see Tutte,
1970). Further results on chromatic polynomials can be found in the lucid
survey article by Read (1968).

Exerczses
8.4.1 Calculate the chromatic polynomials of the following two graphs

8.4.2 (a) Show, by means of theorem 8.6, that if G is simple, then the
coefficient of k*™' in m(G) is —e.
(b) Deduce that no graph has chromatic polynomial k“—-3k’+3k2
843 (a) Show that if G is a tree, then m(G)=k(k—1)""".
(b) Deduce that if G is connected, then m(G)=k(k— 1)” !
show that equality holds only when G is a tree.
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8.4.4 Show that if G is a cycle of length n, then m(G)=
(k=1D"+(=D"(k—1).

8.4.5 (a) Show that "n'k(GVKl): kﬂ'k—x(G). )
(b) Using (a) and exercise 8.4.4, show that if G is a wheel with n

spokes, then m(G)=k(k —2)"+(—1)"k(k —2).

8.4.6 Show that if G,, G, ..., G, are the components of G, then m.(G)=
m(G1)m(Gs) . .. m(G.).

8.4.7 Show that if GNH is complete, then m(GUH)m(GNH)=
m(G)m(H).

8.4.8* Show that no real root of m.(G) is greater than v. (L. Lovész)

8.5 GIRTH AND CHROMATIC NUMBER

In any colouring of a graph, the vertices in a clique must all be assigned
different colours. Thus a graph with a large clique necessarily has a high
chromatic number. What is perhaps surprising is that there exist triangle-
free graphs with arbitrarily high chromatic number. A recursive construction
for such graphs was first described by Blanches Descartes (1954). (Her
method, in fact, yields graphs that possess no cycles of length less than six.)
We describe here an ‘easier construction due to Mycielski (1955).

Theorem 8.7 For any positive integer k, there exists a k-chromatic graph
containing no triangle.

Proof For k=1 and k =2, the graphs K, and K. have the required
property. We proceed by induction on k. Suppose that we have already
constructed a triangle-free graph Gy with chromatic number k =2. Let the
vertices of G, be vy, va, . .., v.. Form a new graph Gi.: from G as follows:
add n + 1 new vertices u;, Uy, ..., U, v, and then, for 1 =i <n, join u; to the
neighbours of v; and to v. For example, if G, is K, then G; is the 5-cycle and
G. the Grotzsch graph (see figure 8.10). :

The graph G, clearly has no triangles. For, since {ul, Uz, ..., Un} IS aN
independent set in Gi.1, no triangles can contain more than one w;; and if
uv;uli; were a triangle in Gy, then vivjuct; would be a triangle in Gy,
contrary to assumption.
~ We now show that G,., is (k+1)- chromatlc Note first, that Gy is
certainly (k + 1)-colourable, since any k-colouring of G can be extended to
a (k +1)-colouring of Gy.: by colouring u; the same as v;, 1 =i =n, and then
assigning a new colour to v. Therefore it remains to show that Gi.; is not
k-colourable. If possible, consider a k-colouring of Gy+; in which, without
loss of generality, v is assigned colour k. Clearly, no u; can also have colour
k. Now recolour each vertex v; of colour k with the colour assigned to ;.
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Vi

Figure 8.10. Mycielski’s construction

This results in a (k — 1)-colouring of the k-chromatic graph G,. Therefore
G+ is indeed (k +1)-chromatic. The theorem follows from the principle of
induction 0 | | |

By starting with the 2-chromatic graph K,, the above construction yields,
for all k =2, a triangle-free k-chromatic graph on 3.2>—1 vertices.

We have already noted that there are graphs with girth six and arbitrary
chromatic number. Using the probabilistic method, Erdés (1961) has, in
fact, shown that, given any two integers k =2 and =2, there is a graph
with girth k and chromatic number l. Unfortunately, this application of the
probabilistic method is not quite as straightforward as the one given in
section 7.2, and we therefore choose to omit it. A constructive proof of
Erdos’ result has been given by Lovasz (1968). |

Exercises

8.5.1 Let G, G, ... be the graphs obtained from G,=K,, using
‘Mycielski’s construction. Show that each G is k-critical.




Vertex Colourings | 131
8.5.2 (a)* Let G be a k-chromatic graph of girth at least six (k =2). Form
a new graph H as follows: Take (';V) disjoint copies of G and a

set S of kv new vertices, and set up a one-one correspondence
between the copies of G and the v-element subsets of S. For
each copy of G, join its vertices to the members of the corre-
sponding v-element subset of S by a matching. Show that H has
chromatic number at least k + 1 and girth at least six.

(b) Deduce that, for any k =2, there exists a k-chromatic graph of
girth six. (B. Descartes)

APPLICATIONS

8.6 A STORAGE PROBLEM

A company manufactures n chemicals C,, Cs, . .., C,. Certain pairs of these
chemicals are incompatible and would cause explosions if brought into
contact with each other. As a precautionary measure the company wishes to
partition its warehouse into compartments, and store incompatible chemicals
in different compartments. What is the least number of compartments into
which the warehouse should be partitioned?

We obtain a graph G on the vertex set {v,, vs,..., v} by joining two
vertices v; and v; if and only if the chemicals C; and C;j are incompatible. It is
easy to see that the least number of compartments into which the warehouse
should be partitioned is equal to the chromatic number of G.

The solution of many problems of practical interest (of which the storage
problem is one instance) involves finding the chromatic number of a graph.
Unfortunately, no good algorithm is known for determining the chromatic
number. Here we describe a systematic procedure which is basically
‘enumerative’ in nature. It is not very efficient for large graphs.

Since the chromatic number of a graph is the least number of independent
sets into which its vertex set can be partitioned, we begin by describing a
method for listing all the independent sets in a graph. Because every
independent set is a subset of a maximal independent set, it suffices to
determine all the maximal independent sets. In fact, our procedure first
determines complements of maximal independent sets, that is, minimal
coverings.

- Observe that a subset K of V is a minimal covering of G if and only if, for
each vertex v, either v belongs to K or all the neighbours of v belong to K
(but not both). This provides us with a procedure for finding minimal
coverings:

FOR EACH VERTEX v, CHOOSE EITHER 0, OR ALL THE NEIGHBOURS OF v

(8.2)
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To implement this procedure effectively, we make use of an algebraic
device. First, we denote the instruction ‘choose vertex v’ simply by the
symbol v. Then, given two instructions X and Y, the instructions ‘cither X
or Y’ and ‘both X and Y’ are denoted by X+ Y (the logical sum) and XY
(the logical product), respectively. For example, the instruction ‘choose
either u and v or v and w’ is written uv + vw. Formally, the logical sum and
logical product behave like U and N for sets, and the algebraic laws that
hold with respect to U and N also hold with respect to these two operations

(see exercise 8.6.1). By using these laws, we can often simplify logical
expressions; thus

(uv + vw)(u + vx) = uvu + uvvx + vwu + VWLX
= uv + uvx + vwu + owx

= uv + vwx

Consider, now, the graph G of figure 8.11. Our prescription (8.2) for
finding the minimal coverings in G is

(a+bd)(b+ aceg)(c+ bdef)(d'+ aceg)(e + bedf)(f +~ceg)(g +bdf) (8.3)
It can be checked (exercise 8.6.2) that, on simplification, (8.3) reduces to
aceg + bcdeg + bdef + bedf

In other words, ‘choose a, c, e and g or b, ¢, d, e and g or b, d, e and f or b,
¢, d and f°. Thus {q, c, ¢, g}, {b,c, d, e, g}, {b, d, e, f} and {b, c, d, f} are the
minimal coverings of G. On complementation, we obtain the list of all
maximal independent sets of G: {b, d, f}, {a, f}, {a, ¢, g} and {a, ¢, g}.

f

Figure 8.11
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Now let us return to the problem of determining the chromatic number of
a graph. A k-colouring (V,, V,, ..., V) of G is said to be canonical if V, is
a maximal independent set of G, V, is a maximal independent set of G — V,
Vs is a maximal independent set of G —(V,U V,), and so on. It is easy to see
(exercise 8.6.3) that if G is k-colourable, then there exists a canonical
k-colouring of G. By repeatedly using the above method for finding maxi-
mal independent sets, one can determine all the canonical colourings of G.
The least number of colours used in such a colouring is then the chromatic
number of G. For the graph G of figure 8.11, x = 3; a corresponding canonical
colouring is ({b, d, f}, {a, e, g}, {c}).

Christofides (1971) gives some improvements on this procedure.

Exercises

8.6.1 Verify the associative, commutative, distributive and absorption laws
for the logical sum and logical product.

8.6.2 Reduce (8.3) to aceg +bcdeg + bdef + bcdyf.

8.6.3 Show that if G is k-vertex-colourable, then G has a canonical
k-vertex colouring.
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