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1 (a) We first do the case k = 2. For n = 2 ` even, we can draw C2
2 ` in the plane as follows :

first draw the cycle v1v2 . . . vnv1. Then draw the additional edges that go between

odd-indexed vertices v1v3, v3v5, . . . , v2 `−1v1 inside the cycle and the ‘even’ additional

edges outside the cycle.

For n odd, the graph C2
n is not planar. The easy way to show this is by using arguments

similar to the previous paragraph. First draw the cycle in a plane. Suppose the

edge v1v3 is drawn on the inside of the cycle. Then the edge v2v4 must be drawn on

the outside of the cycle. And then the edge v3v5 must be on the inside again. Etc.,

until we reach a problem with the last edge. If v1v3 is on the outside, we reach a similar

contradiction.

For k ≥ 3, the graph Ck
n is never planar. To see that, again we draw the cycle first.

Then for the edges v1vk+1 and v2vk+2 we have : one must be on the inside and one

must be on the outside of the cycle. But then there is no way to add the edge v3vk+3

without crossing some other edge.

We obtain that Ck
n is planar if, and only if, n is even and k = 2.

(b) The graphs Ck
n with n ≥ 2 k + 1 ≥ 5 have maximum degree ∆ = 4 and are connected.

From Brooks’ Theorem we know that the only connected graphs G that have χ(G) =

∆ + 1 are complete graphs and odd cycles. Obviously, Ck
n is not a cycle; and the only

choice for n, k that makes Ck
n a complete graph is n = 5, k = 2. So we have χ(C2

5) = 5;

while in all other cases χ(Ck
n) ≤ 4.

Now take n = 6 ` + 1 for some ` ≥ 1 and k = 2. We will show that χ(C2
6 `+1) = 4.

Note that those graphs are not bipartite ( since 6 `+ 1 is odd ), hence have chromatic

number at least three. Suppose we try to colour C2
6 `+1 using three colours only, and

consider the colouring on the cycle v1v2 . . . v6 `+1v1. Since 6 ` + 1 is not a multiple of

three, we can’t colour the cycle in a regular pattern 1,2,3,1,2,3,. . . . In particular, at

some point on the cycle we see the colour pattern c1, c2, c1 on three consecutive vertices

on the cycle. But that means the additional edges between vertices at distance two on

the cycle introduces an edge between the two vertices with colour c1. So the colouring

is no longer proper.

So in order to colour C2
6 `+1 we need at least four colours. Together with the conclusion

in the first paragraph of this part, we get χ(C2
6 `+1) = 4 for all ` ≥ 1.

(c) A little bit of playing with small values of n and k should lead to the observation

that C3
6 is isomorphic to the complete bipartite graph K3,3. And K3,3 is the standard

example of a graph for which the choice number is not equal to the chromatic number.



2 (a) Let C ⊂ A and D ⊂ B be sets such that |C| ≥ 1
2
|A| and |D| ≥ 1

2
|B|. Take C ′ ⊂ C

and D′ ⊂ D such that |C ′| ≥ (2ε) |C| and |D′| ≥ (2ε) |D|. We see that |C ′| ≥
(2ε) |A|/2 = ε |A| and |D′| ≥ (2ε) |B|/2 = ε |B|. From ε-regularity, we obtain that

|d(A,B)− d(C ′, D′)| < ε.

Furthermore, |C| ≥ 1
2
|A| > ε |A| and |D| ≥ 1

2
|B| > ε|B|, hence |d(A,B)− d(C,D)| <

ε. By the triangle inequality,

|d(C,D)− d(C ′, D′)| ≤ |d(A,B)− d(C ′, D′)|+ |d(A,B)− d(C,D)| < 2 ε.

(b) Notice that eḠ(A,B) = |A| |B| − eG(A,B), hence dḠ(A,B) = 1− dG(A,B). So,

|dḠ(A,B)−dḠ(A′, B′)| = |1−dG(A,B)− (1−dG(A′, B′))| = |dG(A,B)−dG(A′, B′)|.

From this, it follows that A,B is ε-regular in G if, and only if, A,B is ε-regular in Ḡ.

(c) We follow the hint. Let A′ be the set of all vertices in A with less than (1/2 − ε) |B|
neighbours in B. Then, e(A′, B) < |A′| (1/2− ε) |B| and d(A′, B) < 1/2− ε.
On the other hand, if |A′| ≥ ε |A|, then d(A′, B) > d(A,B) − ε ≥ 1/2 − ε. This is a

contradiction.

(d) Since ε < 1/10 and |A|, |B| ≥ 100, we have that |N(a) \ {b}| ≥ (1/2 − ε) |B| − 1 ≥
ε |B| and |N(b) \ {a}| ≥ (1/2 − ε)|A| − 1 ≥ ε |A|. So, by ε-regularity, the pair

N(b) \ {a}, N(a) \ {b} has density at least d(A,B)− ε ≥ 1/2− ε > 0. Hence, there is

an edge xy with x ∈ N(a) \ {b} and y ∈ N(b) \ {a}.
Thus, we have the path a, x, y, b.

In a similar way, we have that |N(x) \ {a, y}| ≥ (1/2− ε) |A| − 2 ≥ ε |A| and |N(y) \
{b, x}| ≥ (1/2−ε) |B|−2 ≥ ε |B|. So, by ε-regularity, the pairN(x)\{a, y}, N(y)\{b, x}
has density at least d(A,B) − ε ≥ 1/2 − ε > 0. Hence, there is an edge wz with

w ∈ N(y) \ {b, x} and z ∈ N(x) \ {a, y}.
Thus, we have the path a, x, z, w, y, b.


