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Instructions to candidates

This part of the exam has one question, consisting of several parts. You are expected

to answer all parts.

Justify all your answers.



1 For integers k, n with k ≥ 2 and n ≥ 2 k, define the graph Ck

n
as follows. Start with the

cycle Cn with vertex set {v1, . . . , vn} and edge set {v1v2, v2v3, . . . , vn−1vn, vnv1}. Now add

edges between any pair of vertices at distance k in Cn. In other words, add the edges

v1vk+1, v2vk+2, . . . , vn−kvn, vn−k+1v1, vn−k+2v2, . . . , vnvk.

(a) Determine all n ≥ 2 k ≥ 4 for which Ck

n
is planar.

For n ≥ 2 k + 1 we have that every vertex in Ck

n
has degree exactly four. This means that

the chromatic number and the choice number are at most five.

(b) Show that there is only a finite number of graphs Ck

n
with n ≥ 2 k + 1 ≥ 5 so that

χ(Ck

n
) = 5.

Show that for an infinite number of graphs Ck

n
with n ≥ 2 k+1 ≥ 5 we have χ(Ck

n
) = 4.

(c) Give at least one graph Ck

n
for which ch(Ck

n
) 6= χ(Ck

n
).

2 For a graph G = (V,E), a pair A,B of disjoint subsets of V is called an ε-regular pair if,

for every pair A′ ⊆ A, B′ ⊆ B, with |A′| ≥ ε |A|, |B′| ≥ ε |B|, we have
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Let A,B be an ε-regular pair in a graph G = (V,E), for some ε < 1/2.

(a) Let C ⊂ A and D ⊂ B be sets such that |C| ≥ 1

2
|A| and |D| ≥ 1

2
|B|.

Use the definition of ε-regularity to prove that the pair C,D is (2ε)-regular in G.

(b) Let Ḡ be the complement of the graph G, that is, the graph with the same vertex

set V whose edges are the pairs of vertices uv such that uv 6∈ E.

Prove that A,B is an ε-regular pair in Ḡ.

(c) Suppose that the density d(A,B) :=
e(A,B)

|A| |B|
of the pair A,B satisfies d(A,B) ≥ 1/2.

Let A′ be the set of all vertices in A with less than (1/2− ε) |B| neighbours in B.

Prove that |A′| < ε |A|.

(Hint : assume that |A′| ≥ ε |A|, set B′ = B, and estimate d(A′, B′) from below and

from above. )

(d) Suppose that ε < 1/10, |A|, |B| ≥ 100, d(A,B) ≥ 1/2, all vertices in A have at least

(1/2−ε) |B| neighbours in B, and all vertices in B have at least (1/2−ε)|A| neighbours

in A. Let a ∈ A and b ∈ B.

Prove there is a path with 3 edges starting in a and ending in b.

(Hint : show that the pair N(b)\{a}, N(a)\{b} has density at least 1/2−ε and deduce

that there must be and edge xy 6= ab such that x ∈ N(a) and y ∈ N(b). )

Prove there is a path with 5 edges starting in a and ending in b.


