London Taught Course Centre

2012 examination

Graph Theory

Instructions to candidates

This part of the exam has one question, consisting of several parts. You are expected to **answer all parts**.

Justify all your answers.

- **1** For integers k, n with $k \ge 2$ and $n \ge 2k$, define the graph C_n^k as follows. Start with the cycle C_n with vertex set $\{v_1, \ldots, v_n\}$ and edge set $\{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$. Now add edges between any pair of vertices at distance k in C_n . In other words, add the edges $v_1v_{k+1}, v_2v_{k+2}, \ldots, v_{n-k}v_n, v_{n-k+1}v_1, v_{n-k+2}v_2, \ldots, v_nv_k$.
 - (a) Determine all $n \ge 2 k \ge 4$ for which C_n^k is planar.

For $n \ge 2k + 1$ we have that every vertex in C_n^k has degree exactly four. This means that the chromatic number and the choice number are at most five.

- (b) Show that there is only a finite number of graphs C^k_n with n ≥ 2k + 1 ≥ 5 so that χ(C^k_n) = 5.
 Show that for an infinite number of graphs C^k_n with n ≥ 2k+1 ≥ 5 we have χ(C^k_n) = 4.
 (c) Give at least one graph C^k_n for which ch(C^k_n) ≠ χ(C^k_n).
- **2** For a graph G = (V, E), a pair A, B of disjoint subsets of V is called an ε -regular pair if, for every pair $A' \subseteq A$, $B' \subseteq B$, with $|A'| \ge \varepsilon |A|$, $|B'| \ge \varepsilon |B|$, we have

$$\left|\frac{e(A,B)}{|A||B|} - \frac{e(A',B')}{|A'||B'|}\right| < \varepsilon.$$

Let A, B be an ε -regular pair in a graph G = (V, E), for some $\varepsilon < 1/2$.

- (a) Let $C \subset A$ and $D \subset B$ be sets such that $|C| \ge \frac{1}{2}|A|$ and $|D| \ge \frac{1}{2}|B|$. Use the definition of ε -regularity to prove that the pair C, D is (2ε) -regular in G.
- (b) Let Ḡ be the complement of the graph G, that is, the graph with the same vertex set V whose edges are the pairs of vertices uv such that uv ∉ E. Prove that A, B is an ε-regular pair in Ḡ.
- (c) Suppose that the density d(A, B) := e(A, B)/|A||B| of the pair A, B satisfies d(A, B) ≥ 1/2. Let A' be the set of all vertices in A with less than (1/2 ε) |B| neighbours in B. Prove that |A'| < ε |A|.
 (*Hint: assume that* |A'| ≥ ε |A|, set B' = B, and estimate d(A', B') from below and
- from above.) (d) Suppose that $\varepsilon < 1/10$, $|A|, |B| \ge 100$, $d(A, B) \ge 1/2$, all vertices in A have at least $(1/2 - \varepsilon) |B|$ neighbours in B, and all vertices in B have at least $(1/2 - \varepsilon) |A|$ neighbours

in A. Let $a \in A$ and $b \in B$.

Prove there is a path with 3 edges starting in a and ending in b.

(*Hint*: show that the pair $N(b) \setminus \{a\}, N(a) \setminus \{b\}$ has density at least $1/2 - \varepsilon$ and deduce that there must be and edge $xy \neq ab$ such that $x \in N(a)$ and $y \in N(b)$.)

Prove there is a path with 5 edges starting in a and ending in b.