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Notes 2

Graphs on Surfaces, Graph Minors

Chapter 4 of Diestel is good for planar graphs, and Section 1.7 covers the notions of minor

and topological minor. Section V.3 of Bollobás covers graphs on surfaces, and colourings

thereof.

The definitive textbook for graphs on surfaces is: “Graphs on Surfaces”, by Bojan Mohar and

Carsten Thomassen, Johns Hopkins University Press, 2001.

http://www.fmf.uni-lj.si/~mohar/Book.html

Most of what we will be discussing in the lectures and notes regarding graph minors can

also be found in Chapter 12 of Diestel.

We continue to assume that our graphs are finite and simple ( no loops or multiple edges ).

Much of the material could be adapted for non-simple graphs, but many things will go

horribly wrong if we allow our graphs to be infinite.

It is also convenient to assume throughout that a graph has at least one vertex. ( To para-

phrase Frank Harary : “A graph without vertices is a pointless concept.” )

2.1 Surfaces and Embeddings

A (closed) surface is a compact connected 2-manifold (i.e., every point has a neighbourhood

homeomorphic to the open disc in R
2). These can be classified as orientable and non-orientable.

Moreover, each orientable surface is homeomorphic to one of the surfaces Sk, k ≥ 0, where

Sk is a “sphere with k handles”. The sphere itself is S0; the torus is S1.

The surface Sk, for k ≥ 1, can be constructed as follows. Take a convex region in the plane

whose boundary is a 4k-gon. Label the boundary segments consecutively as

−→a1 ,
−→
b1 ,←−a1 ,

←−
b1 ,−→a2 ,

−→
b2 ,←−a2 ,

←−
b2 , . . . ,−→ak ,

−→
bk ,←−ak ,

←−
bk .

Now identify the pairs of segments labelled−→ai and←−ai , for each i, preserving the orientations

given by the arrows, and do likewise for the
−→
bi and

←−
bi . It’s easy to see that this process

identifies all the corners of the 4k-gon into one point. ( See Exercises. )

The genus of Sk is k, and its Euler characteristic χ is 2− 2k.

There is a similar construction giving all the non-orientable surfaces: Nk is formed from a

2k-gon labelled as
−→a1 ,−→a1 ,−→a2 ,−→a2 , . . . ,−→ak ,−→ak .

The non-orientable surface Nk (k ≥ 1) has genus k and Euler characteristic 2− k. The first

two non-orientable surfaces in the list are the projective plane N1 and the Klein bottle N2.

Authors : Graham Brightwell & Jan van den Heuvel c© London School of Economics, 2011-3
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More details can be found in Bollobás, for instance.

An embedding of a graph G = (V, E) in a surface S is a function taking each vertex x of G

to a point ϕ(x) of S, and each edge xy of G to a Jordan curve in S, with endpoints ϕ(x) and

ϕ(y), in such a way that the only intersections between the points and curves in the surface

are those corresponding to incidences between edges and vertices of G. This all means what

you think it ought to mean: this is exactly how we think of graphs being drawn on a surface.

A graph can be embedded on the sphere S0 if and only if it can be embedded on the plane,

in which case it is called a planar graph.

We’ll skip the work required to develop enough machinery to prove anything rigorously.

( E.g., the “Jordan curve theorem” says that a closed Jordan curve in the plane has an inside

and an outside, and it’s not easy to prove. ) The result we need is that, if we remove the

image of G from the surface S, we are left with a number of connected components called

the faces of the embedding. The embedding is a 2-cell embedding if each face is homeomorphic

to the open unit disc.

In the case of the sphere S0, the only way an embedding of a connected graph can fail to be a

2-cell embedding is if the graph has no vertices. For surfaces with more interesting topology,

this is a non-trivial condition.

Two central questions of the subject are: (i) given a surface S, which graphs can be embedded

on S? (ii) given a graph embedded on S, what can we say about its chromatic number?

Of course, question (ii) includes the question of the chromatic number of planar graphs,

covered in the previous lecture, as a special case. Here, we’ll concentrate on (i).

2.2 The Euler-Poincaré Formula

The Euler-Poincaré formula states that, if we have a 2-cell embedding of a graph on a surface

S, then

v− e + f = χ,

where v is the number of vertices, e is the number of edges, f is the number of faces, and χ

is the Euler characteristic of S.

We’ll just prove this in the case where S is the plane, whose Euler characteristic is 2.

Theorem 1 [Euler’s Formula]

Let G be a connected graph with at least one vertex, embedded in the plane. Then v − e + f = 2,

where v = |V(G)|, e = |E(G)|, and f is the number of faces of the embedding.

Proof. We work by induction on the number f of faces. When f = 1, the graph has no cycles,

so is a tree, and v = e + 1, which is consistent with the formula.

For f ≥ 2, we suppose the result is true for embeddings with at most f − 1 faces, and take

an embedding of a graph with f faces. Choose an edge separating two different faces, and

delete it. The graph remains connected: the number of faces has decreased by one, as has the

number of edges, while the number of vertices is unchanged. By the induction hypothesis,

Euler’s formula holds for the new embedding. Thus it holds for our embedding. Thus, by

induction, the formula is valid for all embeddings.
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Euler’s formula is often quoted as referring to the number of vertices, edges and faces of a

convex polyhedron in 3-space. The formula for polyehdra follows from the theorem for graphs,

as a convex polyhedron can be “drawn in the plane” so that the notions of vertex, edge and

face are preserved.

Euler’s formula is often used in conjunction with a “double-counting” of the edges in an

embedding. For i ≥ 3, let fi denote the number of faces of the embedding with i “sides”.

Here we count sides in the natural way: for instance an embedding of an n-vertex tree yields

one face with 2n− 2 sides.

We note that ∑i i fi counts the total number of sides of all the faces, and that each edge is

counted exactly twice by this sum, so

2e = ∑
i

i fi.

In particular we see that 2e ≥ 3 f , and using Euler’s formula now gives that e ≤ 3v − 6.

Notice that this bound makes no mention of the embedding, so it gives a necessary condition

for a graph to be planar. ( Indeed, the same argument gives an upper bound on the number

of edges of a graph that can be embedded on any given surface. )

This means that the average degree of any planar graph is strictly less than 6, so that any

planar graph contains a vertex of degree at most 5. Hence ch(G) ≤ 5 for any planar graph,

which implies that χ(G) ≤ 6 – we saw last week that this can be improved!

Today, we head in a different direction. From the above inequality, we see that a planar

graph on 5 vertices has at most 9 edges, so the complete graph K5 is not planar. Also the

complete bipartite graph K3,3 is not planar. To see this, notice that, in any embedding of a

bipartite graph in a surface, all faces have an even number of sides, so in particular at least 4.

Thus we have 2e = ∑i i fi ≥ 4 f , and so e ≤ 2v− 4.

2.3 Subgraphs and minors

Now we know that K5 and K3,3 are not planar, we can deduce that any graphs “containing”

them are not planar. For sure, this is true if our notion of containment is containment as a

subgraph, but in fact we can make stronger statements by introducing more general notions

of containment.

• Let G be a graph. We define the following operations :

* Removing a vertex means removing that vertex from the vertex set of G and also removing

all edges that vertices is incident with from the edge set.

* Removing an edge means removing that edge from the edge set of G.

* Suppressing a vertex of degree two means removing that vertex and adding an edge between

its two neighbours, provided that edge is not already present ( if the edge is already there,

we don’t add a new one ).
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* Contracting an edge : If e = xy is an edge of G, then contracting e means removing x and y,

adding a new vertex z which is adjacent to all vertices that were adjacent to x or y, after

which multiple edges are removed.
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• Let H and G be two graphs.

* H is an induced subgraph of G, or G has H as an induced subgraph, notation H ≤I G, if H can

be obtained from G by a sequence of vertex removals.

* H is a subgraph of G, or G has H as a subgraph, notation H ≤S G, if H can be obtained

from G by a sequence of vertex and edge removals.

* H is a topological minor of G ( sometimes also called a topological subgraph or a subdivision ),

or G has H as a topological minor, notation H ≤T G, if H can be obtained from G by a

sequence of vertex removals, edge removals, and suppression of vertices of degree two.

* H is a minor of G, or G has H as a minor, notation H ≤M G, if H can be obtained from G by

a sequence of vertex removals, edge removals, and edge contractions.

Note that in the definitions above we allow the sequences to have length zero, so every graph

is a subgraph, etc., of itself.

• There is a clear hierarchy of the order relations above :

H ≤I G =⇒ H ≤S G =⇒ H ≤T G =⇒ H ≤M G.

• The following useful result, whose proof is an exercise, gives an alternative characterisation

of the minor relation.

Theorem 2

The following two statements are equivalent for all graph H, G :

(a) H is a minor of G.

(b) For each u ∈ V(H), there exists a subset Vu ⊆ V(G) of vertices from G so that

– the sets {Vu | u ∈ V(H) } are disjoint,

– each set Vu, u ∈ V(H), induces a connected subgraph of G, and

– for all u, v ∈ V(H) with uv ∈ E(H), there are vertices x ∈ Vu and y ∈ Vv with xy ∈ E(G).

2.4 Minors and Embeddings

Suppose that G is a planar graph, and that H is obtained from G by any of the operations

of: vertex removal, edge removal, suppression of a vertex of degree 2, and edge contraction.

We claim that H is also planar.

The first two of these are obvious. For suppression of vertices of degree 2, we obtain an

embedding of H by replacing the two Jordan curves representing the edges removed from G

by a single Jordan curve representing the new edge of H. The same also holds if we replace

“planar” by “embeddable on the surface S”, for any S.
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For edge contraction, given an embedding of G, and an edge e = xy of G to be contracted,

we derive an embedding of H by placing the new vertex z anywhere on the arc representing

xy, and extending all the arcs incident with x or y inside thin tubes to reach z, following the

path of the arc formerly representing xy.

We then have the following consequence.

Theorem 3

If G can be embedded on a surface S, and G contains H as a minor, then H can be embedded on S.

We say that the family of graphs that can be embedded on a surface S is minor-closed: if G is

in the family, and H is a minor of G, then H is in the family.

So certainly if G can be embedded on a surface, and G contains H in any of the other senses

discussed above, then H can be embedded on the surface.

Returning to the planar case, we now have the following results.

Theorem 4

(a) If G is planar, then G contains neither K5 nor K3,3 as a minor,

(b) If G is planar, then G contains neither K5 nor K3,3 as a topological minor.

2.5 Kuratowski’s Theorem

Kuratowski’s Theorem says that the converses of both (a) and (b) in the previous theorem

are true.

Theorem 5 [Kuratowski’s Theorem]

The following are equivalent.

(a) G is planar;

(b) G contains neither K5 nor K3,3 as a minor,

(c) G contains neither K5 nor K3,3 as a topological minor.

We’ve seen that (a) implies (b), and (b) implies (c) (since if G contains one of the graphs as a

topological minor, it contains that graph as a minor).

This section contains only a proof that (c) implies (b): if G contains one of K5 or K3,3 as a

minor, then G contains one of K5 or K3,3 as a topoogical minor.

The main part of the proof is that (b)/(c) implies (a). There is a relatively painless proof,

due to Carsten Thomassen, in Diestel. Lemma 4.4.3 covers the case where G is 3-connected,

which is the main part of the proof.

Proof that (c) =⇒ (b). We use the characterisation of the graph minor relation given as Theo-

rem 2.

Suppose first that G contains K3,3 as a minor, and take a collection of six sets Vh ⊆ V(G) as

in Theorem 2. For each set Vh, we identify three edges to Vh from the sets Vj, where j is in

the opposite class of K3,3 from h. These “land” at three, not necessarily distinct, vertices of

Vh: call these x, y, z. It isn’t hard to see that there is some vertex wh in Vh (possibly equal to

one or more of x, y, z) which has disjoint paths to x, y, z (possibly trivial) in G[Vh]. The six

vertices wh, together with the various edges and paths, form a copy of a graph inside G that

contains K3,3 as a topological minor.



LTCC Course on Graph Theory Notes 2 — Page 6

However – and hopefully this gives some insight into how and why the notions of minor

and topological minor are different – if G contains K5 as a minor then it need not contain K5

as a topological minor. Indeed, G can have a K5 minor even if it has maximum degree 3, but

a graph with a K5 topological minor must have five vertices of degree 4.

So one needs to prove that, if G contains K5 as a minor, then it contains either K5 or K3,3 as

a topological minor. Suppose then that there are five disjoint connected sets Va, Vb, Vc, Vd, Ve

in G, with edges between each pair. The plan is to set off trying to find K5 as a topological

minor. So, for each Vi, we find the four “landing points” xij of edges from the other Vj. Either

there is a vertex wi in Vi with four disjoint paths to the xij, or there are two vertices f and

g in Vi, connected by a path, with two of the xij sending paths to f and the other two to g,

all five paths being internally disjoint. If this latter case occurs with any of the Vi, then we

change plans: in this case, we divide Vi into two connected parts, one containing f and two

of the xij, and the other containing g and the other two xij – the six vertex sets now witness

that K3,3 is also a minor, and therefore a topological minor, of G.

2.6 Orderings and closedness of properties

We will now leave the topic of graphs on surfaces, and examine the notions of graph con-

tainment for their own sake. To begin with, we observe that our relations of containment are

all transitive (if G contains H and H contains J, then G contains J), and so give “orderings”

on the set of all graphs: let us be more precise.

If 4 is a relation on a set X, then (X,4) is called a quasi-ordering or pre-order if the relation is

reflexive ( x 4 x for all x ∈ X ) and transitive ( (x 4 y ∧ y 4 z)⇒ (x 4 z) for all x, y, z ∈ X ).

We say that a quasi-ordering (X,4) is without infinite descent if there is no infinite strictly

decreasing sequence x1 ≻ x2 ≻ x3 ≻ · · · ( where x ≻ y means y 4 x and x 6= y ).

It is easy to see that the orderings defined in the previous section on the class G of all ( simple,

finite ) graphs correspond to quasi-orderings without infinite descent.

A subset A ⊆ X of a quasi-ordering (X,4) is an antichain if every two elements from A are

incomparable ( i.e., if a, b ∈ A with a 6= b, then a 64 b and b 64 a ).

• Proposition 6

If (X,4) is a quasi-ordering without infinite descent, then for every subset Y ⊆ X there is an

antichain M ⊆ Y such that for all y ∈ Y there is an m ∈ M with m 4 y. Such a set is called a set of

minimal elements of Y.

Note that the set of minimal elements need not be unique. If Y = {a, b} with a 6= b, but both

a 4 b and b 4 a, then both {a} and {b} are sets of minimal elements of Y. If we know the

ordering (X,4) is a poset ( i.e., it is also anti-symmetric : (x 4 y ∧ y 4 x) ⇒ (x = y) for all

x, y ∈ X ), then the set of minimal elements is always unique.

• Let P be a property defined on the elements of X. We say that P is closed under 4 or 4-closed

if for every two elements x, y ∈ X we have that if x has property P and y 4 x, then y also

has property P.

As an example, suppose property P is defined for G ∈ G as “G is bipartite”. This property

is closed under both the subgraph and the induced subgraph ordering, but not under the
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topological minor or the minor ordering. (See Exercises.)

• Let (X,4) be a quasi-ordering and suppose P is a 4-closed property defined on the elements

of X. Then we can talk about the set P of all elements in X that satisfy property P. And of

course we also have the complement P = X \ P of all elements in X that do not satisfy

property P. Let M be a set of minimal elements of P

Since P is assumed to be 4-closed, we know that if x ∈ P and x 4 y, then y ∈ P . This leads

to the following crucial observation :

x has property P ⇐⇒ there is no m ∈ M with m 4 x.

In other words : a property that is 4-closed is completely determined once we know a set of

minimal elements of the set of elements that don’t have the property. Such a minimal set is

called a minimal forbidden set of the property.

• The observations above may provide a good description of certain properties and may pro-

vide efficient algorithms to test if a given element satisfies the property. This possible use-

fulness depends on the answers to questions like : Can we find a minimal forbidden set ? Is

this set finite ? Is there a good algorithm to test if x 4 y or not ? Etc.

• You may wonder why we look at a set of minimal elements of the set P of elements in X that

do not satisfy property P. Wouldn’t it be more natural to look at the set of maximal elements

of P ? Yes, it would be more natural. But for the orderings we are considering such a set of

maximal elements usually doesn’t exist. The orderings give natural minimal elements, since

from every finite graph, we can only have a finite number of descending steps before we

have to stop ( we’ve reached a graph with one vertex, say ). But in general we won’t have

maximal elements ( except for very special properties ).

• Here is an example illustrating the concepts above.

For a graph G = (V, E), recall that the line graph L(G) = (VL, EL) is the graph that has the

edges of G as vertices : VL = E; and two edges are adjacent in the line graph if they have a

common end-vertex in G. A graph H is a line graph if H ∼= L(G) for some graph G.

It’s easy to see that if H is a line graph, then every induced subgraph of H is also a line graph.

Hence the property of “being a line graph”, defined on the set G of graphs, is closed under

the induced subgraph ordering ≤I . For this property, we actually do know the unique set of

minimal forbidden elements.
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Theorem 7 ( Beineke, 1968 )

A graph H is a line graph if and only if it does not contain one of the nine graphs below as an induced

subgraph.

2.7 Well-quasi-ordering

• A quasi-ordering (X,4) is a well-quasi-ordering if for every infinite sequence x1, x2, . . . of

elements from X, there are two indices i < j so that xi 4 xj.

Property 8

The following two properties are equivalent for a quasi-ordering (X,4) :

• (X,4) is a well-quasi-ordering;

• (X,4) is a quasi-ordering without infinite descent and without infinite antichains.

We’ll prove this in a later lecture.

Requiring a quasi-ordering to be well-quasi-ordered is a very strong requirement. For in-

stance, for the graph orderings defined in the first section, neither (G,≤I), nor (G,≤S), nor

(G,≤T), are well-quasi-orderings. For the induced subgraph ordering and the subgraph or-

dering, the sequence of cycles C3, C4, C5, . . . forms an infinite sequence that fails the condition

in the definition. In one of the exercises you will be asked to find counterexamples yourself

for the topological minor ordering.

Although the whole class of graphs is not well-quasi-ordered under the topological minor

ordering, some important subclasses are.

Theorem 9 ( Kruskal, 1960 )

The class of all trees, with topological minor as the ordering, is well-quasi-ordered.

• We are now able to give the main result regarding well-quasi-orderings.

Property 10

Let (X,4) be a well-quasi-ordering and P a 4-closed property on X. Then the minimal forbidden set

of P is finite.
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The importance of this property is that once we know that (X,4) is a well-quasi-ordering,

then every property that is 4-closed has a finite minimal forbidden set. So if we also have

an efficient way to test if two elements from X are related or not, then this way we would

have efficient algorithms for every property that is 4-closed.

2.8 Minors of graphs

• Theorem 11 ( Robertson & Seymour, 1986–2004 )

The class of finite graphs is well-quasi-ordered under the minor ordering.

More explicitly : for every infinite sequence G1, G2, . . . of graphs, there are indices i < j so that Gi is

a minor of Gj.

• Following the discussion from the previous section, Robertson & Seymour’s Theorem has

the following consequence.

Corollary 12

Let P be a minor closed property of graphs. Then there exists a finite collection of graphs H1, . . . , Hk

so that for all graphs G we have

G has property P ⇐⇒ G has none of H1, . . . , Hk as a minor.

• Since being embeddable on a given surface is minor closed, we get the following generalisa-

tion of Kuratowski’s Theorem for planar graphs.

Corollary 13

For every surface S there exists a finite set of graphs H1, . . . , Hk, so that a graph G is embeddable on S

if and only if G has none of H1, . . . , Hk as a minor.

For the sphere, we have seen that the forbidden minors are K5 and K3,3. But even for the

torus, the list of forbidden minors is not known completely.

Exercises

1 How does Euler’s formula for graphs embedded in the plane need to be modified to handle

graphs with c components, where c is not necessarily equal to 1?

2 Consider the oriented surface Sk, k ≥ 1. Draw a graph in Sk by putting a vertex at each corner

of the boundary 4k-gon, and an edge along each segment of the boundary, identifying any

of these edges and vertices as necessary. Count the number of vertices, edges, and faces in

this embedding, and verify the Euler-Poincaré-formula in this case.

3 Describe the graphs not containing K3 as a minor. Describe the graphs not containing the

4-cycle C4 as a minor.
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4 Let P be the Petersen graph. ( If you don’t know what this is, find out! )

Show that P is non-planar:

(a) using Euler’s formula;

(b) by showing that P contains K3,3 as a topological minor;

(c) by showing that P contains K5 as a minor.

What is the minimum size of a set F of edges of P whose deletion leaves a planar graph?

5 Show that the property of being bipartite is not closed for the topological minor ordering on

graphs. ( Very easy )

6 Prove that the property of having no connected component with more edges than vertices is

minor-closed. Find as many minimal forbidden minors as you can for this property.

7 Prove Theorem 2.

8 Prove that the set of finite simple graphs G with the topological minor ordering ≤T is not

a well-quasi-ordering. In other words, give an infinite sequence of graphs G1, G2, . . ., for

which there are no two indices i, j with i < j and Gi ≤T Gj.

( This is probably a hard question. Feel free to do an Internet search, but you must show that

the sequence you give has the desired property. )

9 The first statement you are asked to prove in this question is an essential, but baby, step in

the proof of Robertson & Seymour’s Minor Theorem.

For a natural number n the n × n grid is the graph that has as vertices all pairs (i, j) with

1 ≤ i, j ≤ n. And two pairs (i, j) and (i′, j′) are adjacent if i = i′ and |j− j′| = 1, or if j = j′

and |i− i′| = 1.

This is a sketch of the 4× 4 grid :

t t t t

t t t t

t t t t

t t t t

(a) Prove that every planar graph G is a minor of an n× n grid, for n large enough.

( Hint : use Theorem 2. )

(b) Show that there exist planar graphs G that are not the topological minor of an n× n grid,

no matter how large n is.


