
LTCC Course on Graph Theory 2013/14

Solutions to Exercises for Notes 1

1 (a) We are asked to consider the case that |L(vi)| = 2 for each vertex vi. We want to see

if there exists an assignment ϕ(vi) for all vertices vi so that ϕ(vi) ∈ L(vi), and for all

edges vivi+1 we have ϕ(vi) 6= ϕ(vi+1).

First suppose that all lists are identical: L(vi) = {a, b} for all i. If we choose colour a

for v1, then we are forced to colour v2 with b, v3 with a, etc. If k is even, then we will

colour vk with b, and hence this way we have obtained a proper colouring. But if k

is odd, then we will colour vk with a and obtain a conflict since v1 is also coloured a.

Exactly the same will happen if we start colouring v1 with b. So we conclude that in this

case we can find a proper assignment ϕ if and only if k is even.

So now assume that not all lists are identical. Then there must be two adjacent vertices

vi, vi+1 so that L(vi) 6= L(vi+1). Without loss of generality we can assume L(v1) 6= L(vk).

In particular, there must be a colour a ∈ L(v1) so that a /∈ L(vk). Now colour v1 with a

and start colouring v2, v3, . . . , vk in that order. Every time we need to colour a vertex vi,

there is at most one colour forbidden ( the one given to vi−1 ). But since each vertex has

a list with two colours, there is always at least one colour from its list allowed. Once

we have coloured everything, then by construction for every edge of the type vivi+1 we

have ϕ(vi) 6= ϕ(vi+1). But we also have ϕ(vk) 6= ϕ(v1), since we coloured v1 with a

colour that wasn’t in L(vk). So we found a proper assignment, no matter the parity of k.

(b) It is easy to see that none of χ(C2k), ch(C2k), . . . is equal to 1. Hence they all must be

at least 2. In (a) we’ve shown that, for an even cycle, we have ch(C2k) ≤ 2. We can

conclude that ch(C2k) = 2.

Determining χ(C2k) is equivalent to list colouring in which all lists are the same. From

the arguments in (a) we obtain χ(C2k) ≤ 2, hence χ(C2k) = 2.

Exactly the same arguments can be used to show the values of the edge chromatic num-

ber and the edge list chromatic number.

(c) From (a) we see that χ(C2k−1), ch(C2k−1) are at least 3. On the other hand, consider the

case that the vertices of C2k−1 are given lists L(v) with at least three colours. It’s easy to

see that we can find sublists L′(v) ⊆ L(v) so that all L′(v) have two colours and are not

all the same. But then we can find colours from the lists L′(v) to give a proper colouring

of the vertices. This shows that with three ( or more ) colours, a colouring is always

possible, proving χ(C2k−1), ch(C2k−1) ≤ 3. It follows that χ(C2k−1) = ch(C2k−1) = 3.

Exactly the same arguments work for edge ( list ) colouring.
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2 This is actually not such a trivial question as it seems. First notice that χ′(K1) = 0. So

from now on assume n ≥ 2. Every vertex in Kn is incident with n − 1 edges. This gives

∆(Kn) = n− 1, and so by Vizing’s Theorem for simple graphs, χ′(Kn) = n− 1 or χ′(Kn) = n.

Moreover, if we could colour the edges with n − 1 colours, then every vertex is incident with

one edge of every colour. So if we look at the edges that all have the same particular colour

( say colour 1 ), then each vertex is incident with exactly one of those edges, and hence the

number of vertices would be exactly twice the number of those edges. So n must be even in

that case. In particular this means that we can’t have χ′(Kn) = n − 1 if n ≥ 3 is odd. And

hence we must have χ′(Kn) = n if n ≥ 3 is odd.

At this point we know that χ′(Kn) ∈ {n − 1, n} if n is even. We will show that in fact for n

even, χ′(Kn) = n − 1. Hence we need to find a colouring of the edges of Kn with n − 1

colours for n even.

If n = 2, this is trivial. So we assume that n ≥ 4 is even, and write n = 2 k + 2 for some

k ≥ 1. Choose one special vertex v∗ and number the other vertices from −k to k. Hence

the vertices of G are : v∗, v−k, v−k+1, . . . , v−1, v0, v1, . . . , vk. Give colour 1 to each of the edges

v∗v0, v−1v1, v−2v2, . . . , v−kvk. For colour 2 we take the edges of colour 1, but add one to each

of the indices of the vi ( v∗ doesn’t change ), where we take k + 1 = −k. So the edge v∗v0

becomes the edge v∗v1, edge v−1v1 becomes v0v2, edge v−2v2 becomes v−1v3, etc. So the

edges coloured 2 are v∗v1, v0v2, v−1v3, . . . , v−k+2vk, v−k+1v−k. You should check for yourself

that these edges are disjoint from those coloured 1. Now for colour 3 we add one to each of

the indices of the edges with colour 2 ( always replacing k + 1 by −k ), and continue to do

this for all colours up to 2 k + 1. A little bit of checking should show that this is indeed an

edge colouring with 2 k + 1 = n − 1 colours. ( For this checking, it may be useful to draw a

picture of the graph in which the vertices v−k, . . . , v−1v0, v1, . . . , vk are placed around a circle,

and the vertex v∗ in the centre of that circle. )

This shows χ′(K1) = 0, χ′(Kn) = n − 1 if n is even, and χ′(Kn) = n if n ≥ 3 is odd.

3 If G is not connected, then it’s obvious that we can add an edge between two different com-

ponents so that the resulting graph is still planar and simple.

So assume G is connected, and let v1, . . . , vk, k ≥ 4, be the sequence of vertices encountered

when walking along the boundary of a face f of size more than three. We can add the edge

v1v3 in that face, so that the resulting graph is still planar. But we can’t be sure that the

resulting graph is still simple. That fails if there already was an edge v1v3 in G. But then

that edge must go outside the face f . And hence the edge v2v4 can’t be present in G ( since

v1, v2, v3, v4 is a path along a face and both edges v1v3 and v2v4 must be on the same side of

the path ). So if v1v3 is already an edge in G, then we can always add the edge v2v4 so that G

is still planar and simple.
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4 Let G be a graph with maximum degree ∆(G). We will prove that χ′(G) ≤ 3
2 ∆(G) by

induction on the number of edges of G. The result it trivially true if G has no edges.

So suppose G has at least one edge, and let µ(G) be the maximum edge multiplicity of G.

Then by Vizing’s result we know χ′(G) ≤ ∆(G) + µ(G). So if µ(G) ≤ 1
2 ∆(G), then we are

done immediately.

So suppose µ(G) >
1
2 ∆(G). So there is a collection e1, . . . , eµ(G) of µ(G) edges, all with the

same pair of end-vertices u, v. Remove the edge eµ(G) from G, and call the resulting graph G′.

Then ∆(G′) ≤ ∆(G), and by induction we can edge colour G′ with 3
2 ∆(G′) ≤ 3

2 ∆(G) colours.

We can transfer this colouring to a colouring of the edges of G with at most 3
2 ∆(G) colours,

except that the edge eµ(G) is still uncoloured.

So let’s check how many colours are forbidden for eµ(G). This is certainly at most the number

of edges that are incident with one or both of u, v. One set of such edges consists of the

µ(G)− 1 edges parallel to eµ(G). A second set of edges consists of the edges incident with u

but not v. Since u has degree at most ∆(G), and there are µ(G) edges in G from u to v, there

are at most ∆(G) − µ(G) edges from u to some vertex other than v. Similarly, there are at

most ∆(G) − µ(G) edges incident with v and not u. So the total number of edges that are

adjacent to eµ(G) is at most µ(G)− 1 + 2 (∆(G)− µ(G)) = 2 ∆(G)− µ(G)− 1 <
3
2 ∆(G)− 1

( since µ(G) > 1
2 ∆(G) ). So we can always find a colour from the 3

2 ∆(G) available colours to

use for eµ(G), and that way colour all edges of G with 3
2 ∆(G) colours.

5 For k ≥ 3, let
−→
Ck be the directed cycle on vertices V = {v1, . . . , vk} ( so the arcs are −−→v1v2,

−−→v2v3, . . . ,−−−→vk−1vk and −−→vkv1 ). Again, we use the convention that vk+1 = v1. For a kernel, we

need an independent set K ⊆ V so that for every vertex vi ∈ V \ K there is an arc from vi

to a vertex in K. But that means for each vi ∈ V \ K we must have vi+1 ∈ K. In particular,

for each two consecutive vertices vi, vi+1, at least one must be in K. On the other hand, there

cannot be two consecutive vertices in K, since K is independent.

So we conclude that a kernel K of
−→
Ck contains exactly one vertex from each pair vi, vi+1, for

i = 1, . . . , k. But if k is odd, then we can’t make such a choice. And hence the set of directed

cycles
−→
Ck, k ≥ 3 odd, is an infinite family of directed graphs without a kernel.

6 (a) Let v be a vertex of degree ∆(G). Say the edges incident with v are e1, . . . , e∆(G). Then all

the elements v, e1, . . . , e∆(G) need a different colour in a total colouring. Hence we have

χ′′(G) ≥ ∆(G) + 1.

It’s immediate (using Property 2 and Vizing’s Theorem), that χ′′(G) ≤ ∆(G)+deg(G)+

2. We shall show something stronger, namely that χ′′(G) ≤ max{∆(G)+deg(G), 2 deg(G)+

1}. We do this by induction on the number of vertices. If G has just one vertex, then

χ′′(G) = 1 and ∆(G) = deg(G) = 0, so the bound is true in that case.

So consider the case that G has at least two vertices. Let v be a vertex in G with degree at

most deg(G). Remove v from G and call the resulting graph G′. Then we have ∆(G′) ≤

∆(G) and deg(G′) ≤ deg(G), and by induction we can find a total colouring of G′ using

at most max{∆(G′) + deg(G′), 2 deg(G′) + 1} ≤ max{∆(G) + deg(G), 2 deg(G) + 1}
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colours. And this gives a proper total colouring of G, except that we still need to find

colours for v and for the edges incident with v.

Having coloured all vertices and edges from G′ with at most max{∆(G) + deg(G),

2 deg(G) + 1} colours, we now colour one by one the edges incident with v and then fi-

nally the vertex v. When colouring an edge e = uv incident with v, we have to take into

account the colours of : the vertex u ( that is one colour ), the other edges incident with u

( there are at most ∆(G)− 1 other edges ), and the other edges incident with v ( there are

at most deg(G)− 1 such edges ). So there are at most 1 + (∆(G)− 1) + (deg(G)− 1) =

∆(G) + deg(G)− 1 forbidden colours for e. And since we have more colours available,

there is at least one free colour for e.

Now finally colour the vertex v. Forbidden colours for v are the colours of its neighbours

and the colours of the edges incident with v. Both sets have size at most deg(G), so there

are at most 2 deg(G) forbidden colours for G. But since we have more colours available,

there is at least one free colour for v.

And then we have found a total colouring of G using at most max{∆(G) + deg(G),

2 deg(G) + 1} colours.

(b) Let Cn be a cycle, n ≥ 3, and assume the vertices are v1, v2, . . . , vn and the edges are

e1 = v1v2, 2 = v2v3, . . . , en−1 = vn−1vn and en = vnv1. In what follows, we will always

use the convention that vn+1 = v1.

By part (a), we already know that χ′′(Cn) ≥ 3. If we want to total colour Cn with three

colours ( say with 1, 2, 3 ), then we can assume we start with colouring v1 with 1, e2

with 2, and v2 with 3. Then we must choose 1 for e3, 2 for v3, etc. In other words, the

sequence v1, e2, v2, e3, v3, . . ., gets coloured 1, 2, 3, 1, 2, 3, . . . . Continuing this way, we

can only make it into a total colouring with three colours for the whole cycle if the final

edge en gets colour 3. But this only happens if n ≡ 0 (mod 3).

So if n 6≡ 0 (mod 3), then we need at least four colours. If n ≡ 0 (mod 2), then the

sequence of colours 1, 2, 3, 4, 1, 2, 3, 4, . . . for v1, e2, v2, e3, v3, . . . gives a proper total

colouring. I’ll leave it to you to find a colour scheme with four colours for the remaining

cases.

All in all it follows that χ′′(Cn) = 3 if n ≡ 0 (mod 3), and χ′′(Cn) = 4 if n 6≡ 0 (mod 3).

Again by part (a) we have that χ′′(Kn) ≥ n.

First consider the case that n is odd, so n + 1 is even. In Question 2 we gave a colouring

of the edges of Kn+1 with n colours which involves a special vertex v∗. If we consider

that edge colouring of Kn+1 and remove the vertex v∗, then we get an edge colouring

of Kn with n colours and for every colour i, there is exactly one vertex that is not incident

with any edge of colour i. So for a total colouring we can colour that vertex with i. The

result will be a total colouring of Kn with n colours for n odd.

Finally, the even case. It’s in fact not possible to have a proper total colouring of Kn

with n colours only. That is trivial for K2 and not so hard to check for K4. But for larger n

it’s quite tedious, so lets forget about that. If n is even, then n+ 1 is odd. From the above

we know that we can find a total colouring of Kn+1 with n + 1 colours. Removing one
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vertex gives a total colouring of Kn with n + 1 colours.

All in all it follows that χ′′(Kn) = n if n is odd, and χ′′(Kn) = n + 1 if n is even.

(c) Let G be a graph with maximum degree ∆(G). And suppose we are given the ∆(G) + 3

colours C = {1, . . . , ∆(G) + 3}. Let ϕ be a colouring of the vertices of G with colours

from C. ( That is easy since we can always colour vertices with at most ∆(G) + 1

colours. ) For every e = uv in G, set L(e) = C \ {ϕ(u), ϕ(v)}. Then we can give e

any colour from L(e) and don’t cause a conflict with the colours of u and v. So we only

have to worry about conflicts with other edges.

But each edge e has a list L(e) of ∆(G) + 1 colours. We also know that χ(G) ≤ ∆(G) + 1

( Vizing’s Theorem 13 in the notes ). So if the List Colouring Conjecture 14 is true, then

we can find a proper colouring of the edges of G using colours from each edge’s list.

The combination of that edge colouring and the vertex colouring ϕ is a proper total

colouring of G.


