Discrete Mathematics

Lent 2009

MA210

Exercises 3

(1) Prove the identity

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

in the following two ways.

(a) Apply the Binomial Theorem to both sides of the identity

$$(1+x)^n \cdot (1+x)^n = (1+x)^{2n},$$

and look at the coefficient of x^n .

- (b) Consider two disjoint sets A and B, each of size n, and count the number of subsets of $A \cup B$ with n elements. (Hint: remember that $\binom{n}{i} = \binom{n}{n-i}$.)
- (2) Downtown Metropolis consists of a rectangular grid of streets. It has k blocks from west to east, and m blocks from north to south. You stand at the southwest (lower left) corner and want to go to your flat, which is at the north-east (top right) corner.

It is clear that if you want to take a shortest path to your flat, then you only walk in eastward or northward directions. Moreover, you can only move a whole number of blocks each time. Show that if you are interested in shortest paths only, you still have $\binom{k+m}{k}$ possibilities to reach your flat.

- (3) In an experiment on the effects of fertiliser on 27 plots of new breed of tomatoes, 8 plots are given nitrogen, phosphorus and potash fertiliser; 12 plots are given at least nitrogen and phosphorus, 12 plots are given at least phosphorus and potash; and 12 plots are given at least nitrogen and potash. Also, 18 plots receive nitrogen; 18 plots receive phosphorus; and 18 plots receive potash. How many plots were left unfertilised?
- (4) Solve the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$
 for $n \ge 2$,
 $a_0 = 1$;
 $a_1 = 3$.

(5) Solve the following recurrence relation:

$$b_n = b_{n-1} + 6b_{n-2}$$
 for $n \ge 2$,
 $b_0 = 1$;
 $b_1 = 1$.

- (6) Let a_n denote the number of *n*-digit sequences in which each digit is 0, 1 or -1, and no two consecutive 1's or two consecutive -1's are allowed.
 - (a) Show that $a_n = 2a_{n-1} + a_{n-2}$ for $n \ge 3$.
 - (b) Determine a_1 and a_2 .
 - (c) Find a closed form expression for a_n .
- (7) On working through a problem, a student is said to be at the *n*-th stage if she or he is *n* steps from the solution. At any stage the student has five choices how to proceed. Two of these choices result in the student going to the (n 1)-th stage, and the remaining three of them are better and they take her or him directly to the (n 2)-th stage.

Let s_n be the number of ways the student can reach the solution if she or he starts from the *n*-th stage.

- (a) If $s_1 = 2$, verify that $s_2 = 7$.
- (b) Give a recurrence relation for s_n .
- (c) Deduce that $s_n = \frac{1}{4}(3^{n+1} + (-1)^n)$.

You must justify the answers to all problems!

These exercises are to be handed in before 4.55pm on February 2, 2009.