Discrete Mathematics

Lent 2009

MA210

Exercises 4

- (1) Define sequence $(b_n)_{n\geq 1}$ by $b_n = \binom{n}{0} + \binom{n-1}{1} + \dots$, where we use $\binom{n}{k} = 0$ for k > n. Verify that $b_1 = 1$, $b_2 = 2$, and that, for every $n \geq 3$, we have $b_n = b_{n-1} + b_{n-2}$.
- (2) Let a_n denote the number of *n*-digit sequences in which each digit is either 0 or 1, and no two consecutive 0's are allowed.
 - (a) Show that $a_1 = 2$ and $a_2 = 3$. What would you say a_0 is?
 - (b) Show that for $n \ge 3$ we have $a_n = a_{n-1} + a_{n-2}$.
 - (c) Give a closed form expression for a_n .
- (3) Let f_n denote the *n*-th Fibonacci number, i.e., $f_0 = f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. Prove that for every $n \ge 2$ we have $f_n^2 f_{n-1} \cdot f_{n+1} = (-1)^n$.
- (4) Use generating functions to solve the following recurrence relation:

$$a_n = 5a_{n-1} - 6a_{n-2}$$
 for $n \ge 2$,
 $a_0 = 0$;
 $a_1 = 3$.

- (5) Suppose that f(x) generates the sequence a_0, a_1, a_2, \ldots Give the expressions, in terms of f, for the generating functions of the following sequences:
 - (a) $0, a_0, 0, a_1, 0, a_2, 0, \ldots$;
 - (b) $1, a_0, a_1, a_2, \ldots;$
 - (c) $a_0, -a_1, a_2, -a_3, a_4, \ldots$
- (6) (a) Show that the generating function of the sequence $a_n = n, n \ge 0$, is $f(x) = \frac{x}{(1-x)^2}$.

(b) Find generating functions for the sequences b_n = n², n ≥ 0, and c_n = n³, n ≥ 0.
 Hint: differentiation.

(7) Find the sequences generated by the following functions:

(a)
$$f(x) = \frac{x^3}{1+x};$$

(b) $g(x) = \frac{x}{1-7x+12x^2};$
(c) $h(x) = \frac{x^7}{2-x^7};$
(d) $k(x) = e^{2x}.$

You must justify the answers to all problems!

These exercises are to be handed in before 4.55pm on February 9, 2009.