Discrete Mathematics

Lent 2009

MA210

Solutions to Exercises 4

(1) Define sequence $(b_n)_{n\geq 1}$ by $b_n = \binom{n}{0} + \binom{n-1}{1} + \dots$, where we use $\binom{n}{k} = 0$ for k > n. Verify that $b_1 = 1$, $b_2 = 2$, and that, for every $n \geq 3$, we have $b_n = b_{n-1} + b_{n-2}$. Solution. Using $\binom{n}{k} = 0$ for k > n, we have

$$b_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \dots = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$$

and

$$b_2 = \begin{pmatrix} 2\\ 0 \end{pmatrix} + \begin{pmatrix} 1\\ 1 \end{pmatrix} + \begin{pmatrix} 0\\ 2 \end{pmatrix} + \dots = \begin{pmatrix} 2\\ 0 \end{pmatrix} + \begin{pmatrix} 1\\ 1 \end{pmatrix} = 1 + 1 = 2.$$

Every b_n has only finitely many non-zero summands and we can write it as

$$b_n = \sum_{k=0}^n \binom{n-k}{k}.$$

Then,

$$b_{n-1} + b_{n-2} = \sum_{k=0}^{n-1} \binom{n-1-k}{k} + \sum_{k=0}^{n-2} \binom{n-2-k}{k}$$
$$= \binom{n-1}{0} + \sum_{k=1}^{n-1} \binom{n-1-k}{k} + \sum_{k=0}^{n-2} \binom{n-2-k}{k}$$
$$= 1 + \sum_{k=1}^{n-1} \binom{n-1-k}{k} + \sum_{k=1}^{n-1} \binom{n-2-(k-1)}{k-1}$$
$$= 1 + \sum_{k=1}^{n-1} \left(\binom{n-1-k}{k} + \binom{n-1-k}{k-1} \right).$$

We will use the identity $\binom{m}{k} = \binom{m-1}{k} + \binom{m-1}{k-1}$ with m = n - k and, also, that $\binom{n-0}{0} = \binom{n}{0} = 1$ and $\binom{n-n}{n} = \binom{0}{n} = 0$:

$$b_{n-1} + b_{n-2} = 1 + \sum_{k=1}^{n-1} \left(\binom{n-1-k}{k} + \binom{n-1-k}{k-1} \right) + 0$$
$$= \binom{n-0}{0} + \sum_{k=1}^{n-1} \binom{n-k}{k} + \binom{n-n}{n}$$

$$= \sum_{k=0}^{n} \binom{n-k}{k} = b_n.$$

(2) Let a_n denote the number of *n*-digit sequences in which each digit is either 0 or 1, and no two consecutive 0's are allowed.

- (a) Show that a₁ = 2 and a₂ = 3. What would you say a₀ is?
 Solution. Both 0 and 1 are valid 1-digit sequences, hence a₁ = 2. Similarly, 11, 10, 01 are all the valid 2-digit sequences (00 is prohibited), hence a₂ = 3. Empty sequence (the equivalent of Ø for sets) contains no consecutive 0's, so a₀ = 1. □
- (b) Show that for $n \ge 3$ we have $a_n = a_{n-1} + a_{n-2}$.

Solution. Consider any valid *n*-digit sequence $x_1x_2...x_n$.

- If $x_1 = 1$, then $x_2 x_3 \dots x_n$ is a valid n 1-digit sequence, and we have a_{n-1} of these.
- If $x_1 = 0$, then x_2 must be 1 to avoid consecutive zeros. All the remaining n-2 digits do not contain consecutive zeros, so they form a valid (n-2)-digit sequence, and we have a_{n-2} of them.

Thus, the total number a_n of valid *n*-digit sequences satisfies $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.

(c) Give a closed form expression for a_n .

Solution. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function of $(a_n)_{n\geq 1}$. We shall use that $a_n = a_{n-1} + a_{n-2}$ for $n \geq 2$. Indeed, we have

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n$$

$$= a_0 + a_1 x + \sum_{n=2}^{\infty} (a_{n-1} + a_{n-2}) x^n$$

$$= a_0 + a_1 x + x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + x^2 \sum_{n=2}^{\infty} a_{n-2} x^{n-2}$$

$$= a_0 + a_1 x + x \sum_{n=1}^{\infty} a_n x^n + x^2 \sum_{n=0}^{\infty} a_n x^n$$

$$= a_0 + a_1 x + x (f(x) - a_0) + x^2 f(x)$$

$$= 1 + 2x - x + (x + x^2) f(x).$$

Hence,

$$f(x) = \frac{1+x}{1-x-x^2}$$

Equation $1 - x - x^2$ has two solutions $\alpha = (-1 + \sqrt{5})/2$ and $\beta = (-1 - \sqrt{5})/2$. We rewrite f(x) as

$$f(x) = \frac{-1-x}{(\alpha-x)(\beta-x)} = \frac{A}{\alpha-x} + \frac{B}{\beta-x} = \frac{A\beta + B\alpha - (A+B)x}{(\alpha-x)(\beta-x)}$$

Consequently, we have A + B = 1 and $A\beta + B\alpha = -1$. These two equations have solution

$$A = \frac{-\beta}{\alpha - \beta} = \frac{-\beta}{\sqrt{5}}$$
 and $B = \frac{\alpha}{\alpha - \beta} = \frac{\alpha}{\sqrt{5}}$,

therefore,

$$f(x) = \frac{A}{\alpha - x} + \frac{B}{\beta - x} = \frac{A}{\alpha} \cdot \frac{1}{1 - \frac{x}{\alpha}} + \frac{B}{\beta} \cdot \frac{1}{1 - \frac{x}{\beta}}$$
$$= \frac{A}{\alpha} \sum_{n=0}^{\infty} \left(\frac{x}{\alpha}\right)^n + \frac{B}{\beta} \sum_{n=0}^{\infty} \left(\frac{x}{\beta}\right)^n$$
$$= \sum_{n=0}^{\infty} \left(\frac{A}{\alpha^{n+1}} + \frac{B}{\beta^{n+1}}\right) x^n.$$

From this we deduce that

$$a_n = \frac{A}{\alpha^{n+1}} + \frac{B}{\beta^{n+1}}.$$

Since $\alpha\beta = -1$, this can be rewritten as

$$a_n = (-1)^{n+1} (B\alpha^{n+1} + A\beta^{n+1}) = \frac{(-1)^{n+1}}{\sqrt{5}} (\alpha^{n+2} - \beta^{n+2}).$$

(3) Let f_n denote the *n*-th Fibonacci number, i.e., $f_0 = f_1 = 1$ and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. Prove that for every $n \ge 2$ we have $f_n^2 - f_{n-1} \cdot f_{n+1} = (-1)^n$.

Solution. We proceed by induction on n. For n = 2, we look at $f_2^2 - f_1 f_3$. Using the recurrence $f_n = f_{n-1} + f_{n-2}$, we have $f_2 = f_1 + f_0 = 2$ and $f_3 = f_2 + f_1 = 3$. So,

$$f_2^2 - f_1 f_3 = 2^2 - 1 \cdot 3 = 1 = (-1)^2.$$

Suppose that $f_n^2 - f_{n-1} \cdot f_{n+1} = (-1)^n$. Then

$$f_{n+1}^2 - f_{(n+1)-1} \cdot f_{(n+1)+1} = f_{n+1}^2 - f_n \cdot (f_{n+1} + f_n) \text{ using } f_{(n+1)+1} = f_{n+1} + f_n$$
$$= f_{n+1}(f_{n+1} - f_n) - f_n^2$$

$$= f_{n+1}f_{n-1} - f_n^2 \text{ using } f_{n+1} = f_n + f_{n-1}$$
$$= -(-1)^n \text{ using induction assumption}$$
$$= (-1)^{n+1}.$$

Thus our assertion holds by induction.

(4) Use generating functions to solve the following recurrence relation:

$$a_n = 5a_{n-1} - 6a_{n-2}$$
 for $n \ge 2$,
 $a_0 = 0;$
 $a_1 = 3.$

Solution. Using Theorem 3.5 (see the notes for Lectures 5 and 6), we need to solve

$$x^{2} = 5x - 6$$
, or $(x - 2)(x - 3) = 0$.

Then, the general solution is given by

$$a_n = A \cdot 2^n + B \cdot 3^n.$$

Using the initial conditions $a_0 = 0$ and $a_1 = 3$, we obtain

$$0 = A \cdot 2^{0} + B \cdot 3^{0} = A + B$$
 and $3 = A \cdot 2^{1} + B \cdot 3^{1} = 2A + 3B$.

Thus, A = -3 and B = 3. Consequently,

$$a_n = 3(3^n - 2^n).$$

- (5) Suppose that f(x) generates the sequence a_0, a_1, a_2, \ldots Give the expressions, in terms of f, for the generating functions of the following sequences:
 - (a) $0, a_0, 0, a_1, 0, a_2, 0, \ldots$; **Solution.** For $f(x) = \sum_{n=0}^{\infty} a_n x^n$, we have $f(x^2) = \sum_{n=0}^{\infty} a_n x^{2n}$ and $x f(x^2) = \sum_{n=0}^{\infty} a_n x^{2n+1} = 0 + a_0 x + 0 x^2 + a_1 x^3 + 0 x^4 + a_2 x^5 + 0 x^6 + \ldots$ Hence, $x f(x^2)$ is the generating function of $0, a_0, 0, a_1, 0, a_2, 0, \ldots$

(b) $1, a_0, a_1, a_2, \ldots;$

Solution. For $f(x) = \sum_{n=0}^{\infty} a_n x^n$, we have $1 + x f(x) = 1 + \sum_{n=0}^{\infty} a_n (x)^{n+1} = \sum_{n=0}^{\infty} (-1)^n a_n x^n = 1 + a_0 x + a_1 x^2 + a_2 x^3 + a_3 x^4 + a_4 x^5 + \dots$ Hence, 1 + x f(x) is the generating function of $1, a_0, a_1, a_2, a_3, a_4, \dots$

(c) $a_0, -a_1, a_2, -a_3, a_4, \dots$ Solution. For $f(x) = \sum_{n=0}^{\infty} a_n x^n$, we have $f(-x) = \sum_{n=0}^{\infty} a_n (-x)^n = \sum_{n=0}^{\infty} (-1)^n a_n x^n = a_0 - a_1 x + a_2 x^2 - a_3 x^3 + a_4 x^4 - \dots$ Hence, f(-x) is the generating function of $a_0, -a_1, a_2, -a_3, a_4, \dots$

(6) (a) Show that the generating function of the sequence $a_n = n, n \ge 0$, is $f(x) = \frac{x}{(1-x)^2}$. **Solution.** We know that $(1-x)^{-1} = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. By differentiating both sides, we obtain that

$$\frac{-1}{(1-x)^2}(-1) = \sum_{n=1}^{\infty} nx^{n-1}$$

and, therefore,

$$f(x) = \frac{x}{(1-x)^2} = x \sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} nx^n.$$

(b) Find generating functions for the sequences $b_n = n^2$, $n \ge 0$, and $c_n = n^3$, $n \ge 0$. **Solution.** Let f(x) is the generating function of a sequence $(a_n)_{n\ge 1}$, i.e., $f(x) = \sum_{n=0}^{\infty} a_n x^n$. Then $f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$. So, $g(x) = xf'(x) = x \sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=0}^{\infty} na_n x^n$

is the generating function of the sequence $(na_n)_{n\geq 1}$.

For $a_n = n, n \ge 1$, we proved in part (a) that its generating function is $f(x) = \frac{x}{(1-x)^2}$. We also notice that $b_n = n^2 = na_n$ for every $n \ge 1$. Therefore, by our earlier observation, $g(x) = xf'(x) = x(\frac{x}{(1-x)^2})' = \frac{x(1+x)}{(1-x)^3}$ is the generating function of $(b_n)_{n\ge 1}$.

For the last part, we have that $c_n = n^3 = nb_n$ for every $n \ge 1$. Therefore, by our earlier observation, $h(x) = xg'(x) = x(\frac{x(1+x)}{(1-x)^3})' = \frac{x(x^2+4x+1)}{(1-x)^4}$ is the generating function of $(c_n)_{n\ge 1}$. (7) Find the sequences generated by the following functions:

(a)
$$f(x) = \frac{x^3}{1+x}$$
;
Solution. We use that $\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n$ with $y = -x$, hence $\frac{1}{1+x} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n$. Consequently,
 $f(x) = \frac{x^3}{1+x} = x^3 \sum_{n=0}^{\infty} (-1)^n x^n = \sum_{n=0}^{\infty} (-1)^n x^{n+3} = \sum_{n=3}^{\infty} (-1)^{n-3} x^n$.
Thus, $f(x)$ is the generating function of $0, 0, 0, 1, -1, 1, -1, \dots$

(b) $g(x) = \frac{x}{1-7x+12x^2};$

Solution. We write

$$g(x) = \frac{x}{(1-3x)(1-4x)} = \frac{A}{1-3x} + \frac{B}{1-4x} = \frac{(A+B) + (-4A-3B)x}{(1-3x)(1-4x)}.$$

Hence, $A+B = 0$ and $-4A-3B = 1$, from which we obtain $A = -1$ and $B = 1$.
Using $\frac{1}{1-y} = \sum_{n=0}^{\infty} y^n$ with $y = 3x$ and $y = 4x$, we have
 $g(x) = \frac{1}{1-4x} - \frac{1}{1-3x} = \sum_{n=0}^{\infty} (4x)^n - \sum_{n=0}^{\infty} (3x)^n = \sum_{n=0}^{\infty} (4^n - 3^n)x^n.$
Hence, $g(x)$ is the generating function of $(4^n - 3^n)_{n>0}$.

Hence, g(x) is the generating function of $(4^n - 3^n)_{n \ge 0}$.

(c) $h(x) = \frac{x^7}{2-x^7};$

Solution. We see that

$$h(x) = \frac{x^7}{2 - x^7} = -1 + \frac{2}{2 - x^7} = -1 + \frac{1}{1 - \frac{x^7}{2}} = -1 + \sum_{n=0}^{\infty} \left(\frac{x^7}{2}\right)^n = -1 + \sum_{n=0}^{\infty} 2^{-n} x^{7n}.$$

From this we deduce that h(x) generates $(x_n)_{n\geq 1}$, where

$$x_n = \begin{cases} 2^{-n/7} & \text{if } n \ge 1 \text{ and } 7 \text{ divides } n \\ 0 & \text{otherwise.} \end{cases}$$

(d) $k(x) = e^{2x}$.

Solution. We know that $e^y = \sum_{n=0}^{\infty} \frac{1}{n!} y^n$. By taking y = 2x, we have k(x) = $e^{2x} = \sum_{n=0}^{\infty} \frac{1}{n!} (2x)^n = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$, so k(x) is the generating function of $(\frac{2^n}{n!})_{n \ge 1}$.