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Solutions to Exercises 4

(1) Define sequence (bn)n≥1 by bn =
(
n
0

)
+
(
n−1

1

)
+ . . . , where we use

(
n
k

)
= 0 for k > n.

Verify that b1 = 1, b2 = 2, and that, for every n ≥ 3, we have bn = bn−1 + bn−2.

Solution. Using
(
n
k

)
= 0 for k > n, we have

b1 =

(
1

0

)
+

(
0

1

)
+ · · · =

(
1

0

)
= 1

and

b2 =

(
2

0

)
+

(
1

1

)
+

(
0

2

)
+ · · · =

(
2

0

)
+

(
1

1

)
= 1 + 1 = 2.

Every bn has only finitely many non-zero summands and we can write it as

bn =
n∑
k=0

(
n− k
k

)
.

Then,

bn−1 + bn−2 =
n−1∑
k=0

(
n− 1− k

k

)
+

n−2∑
k=0

(
n− 2− k

k

)

=

(
n− 1

0

)
+

n−1∑
k=1

(
n− 1− k

k

)
+

n−2∑
k=0

(
n− 2− k

k

)

= 1 +
n−1∑
k=1

(
n− 1− k

k

)
+

n−1∑
k=1

(
n− 2− (k − 1)

k − 1

)

= 1 +
n−1∑
k=1

((
n− 1− k

k

)
+

(
n− 1− k
k − 1

))
.

We will use the identity
(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
with m = n − k and, also, that(

n−0
0

)
=
(
n
0

)
= 1 and

(
n−n
n

)
=
(

0
n

)
= 0:

bn−1 + bn−2 = 1 +
n−1∑
k=1

((
n− 1− k

k

)
+

(
n− 1− k
k − 1

))
+ 0

=

(
n− 0

0

)
+

n−1∑
k=1

(
n− k
k

)
+

(
n− n
n

)
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=
n∑
k=0

(
n− k
k

)
= bn.

�

(2) Let an denote the number of n-digit sequences in which each digit is either 0 or 1,

and no two consecutive 0’s are allowed.

(a) Show that a1 = 2 and a2 = 3. What would you say a0 is?

Solution. Both 0 and 1 are valid 1-digit sequences, hence a1 = 2. Similarly, 11,

10, 01 are all the valid 2-digit sequences (00 is prohibited), hence a2 = 3. Empty

sequence (the equivalent of ∅ for sets) contains no consecutive 0’s, so a0 = 1. �

(b) Show that for n ≥ 3 we have an = an−1 + an−2.

Solution. Consider any valid n-digit sequence x1x2 . . . xn.

• If x1 = 1, then x2x3 . . . xn is a valid n− 1-digit sequence, and we have an−1 of

these.

• If x1 = 0, then x2 must be 1 to avoid consecutive zeros. All the remaining

n− 2 digits do not contain consecutive zeros, so they form a valid (n− 2)-digit

sequence, and we have an−2 of them.

Thus, the total number an of valid n-digit sequences satisfies an = an−1 + an−2

for n ≥ 2. �

(c) Give a closed form expression for an.

Solution. Let f(x) =
∞∑
n=0

anx
n be the generating function of (an)n≥1. We shall

use that an = an−1 + an−2 for n ≥ 2. Indeed, we have

f(x) =
∞∑
n=0

anx
n = a0 + a1x+

∞∑
n=2

anx
n

= a0 + a1x+
∞∑
n=2

(an−1 + an−2)x
n

= a0 + a1x+ x

∞∑
n=2

an−1x
n−1 + x2

∞∑
n=2

an−2x
n−2

= a0 + a1x+ x
∞∑
n=1

anx
n + x2

∞∑
n=0

anx
n

= a0 + a1x+ x(f(x)− a0) + x2f(x)

= 1 + 2x− x+ (x+ x2)f(x).



3

Hence,

f(x) =
1 + x

1− x− x2
.

Equation 1− x− x2 has two solutions α = (−1 +
√

5)/2 and β = (−1−
√

5)/2.

We rewrite f(x) as

f(x) =
−1− x

(α− x)(β − x)
=

A

α− x
+

B

β − x
=
Aβ +Bα− (A+B)x

(α− x)(β − x)
.

Consequently, we have A+B = 1 and Aβ+Bα = −1. These two equations have

solution

A =
−β
α− β

=
−β√

5
and B =

α

α− β
=

α√
5
,

therefore,

f(x) =
A

α− x
+

B

β − x
=
A

α
· 1

1− x
α

+
B

β
· 1

1− x
β

=
A

α

∞∑
n=0

(x
α

)n
+
B

β

∞∑
n=0

(
x

β

)n
=

∞∑
n=0

(
A

αn+1
+

B

βn+1

)
xn.

From this we deduce that

an =
A

αn+1
+

B

βn+1
.

Since αβ = −1, this can be rewritten as

an = (−1)n+1(Bαn+1 + Aβn+1) =
(−1)n+1

√
5

(αn+2 − βn+2).

(3) Let fn denote the n-th Fibonacci number, i.e., f0 = f1 = 1 and fn = fn−1 + fn−2 for

n ≥ 2. Prove that for every n ≥ 2 we have f 2
n − fn−1 · fn+1 = (−1)n.

Solution. We proceed by induction on n. For n = 2, we look at f 2
2 − f1f3. Using

the recurrence fn = fn−1 + fn−2, we have f2 = f1 + f0 = 2 and f3 = f2 + f1 = 3. So,

f 2
2 − f1f3 = 22 − 1 · 3 = 1 = (−1)2.

Suppose that f 2
n − fn−1 · fn+1 = (−1)n. Then

f 2
n+1 − f(n+1)−1 · f(n+1)+1 = f 2

n+1 − fn · (fn+1 + fn) using f(n+1)+1 = fn+1 + fn

= fn+1(fn+1 − fn)− f 2
n
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= fn+1fn−1 − f 2
n using fn+1 = fn + fn−1

= −(−1)n using induction assumption

= (−1)n+1.

Thus our assertion holds by induction. �

(4) Use generating functions to solve the following recurrence relation:

an = 5an−1 − 6an−2 for n ≥ 2,

a0 = 0;

a1 = 3.

Solution. Using Theorem 3.5 (see the notes for Lectures 5 and 6), we need to solve

x2 = 5x− 6, or (x− 2)(x− 3) = 0.

Then, the general solution is given by

an = A · 2n +B · 3n.

Using the initial conditions a0 = 0 and a1 = 3, we obtain

0 = A · 20 +B · 30 = A+B and 3 = A · 21 +B · 31 = 2A+ 3B.

Thus, A = −3 and B = 3. Consequently,

an = 3(3n − 2n).

�

(5) Suppose that f(x) generates the sequence a0, a1, a2, . . . . Give the expressions, in

terms of f , for the generating functions of the following sequences:

(a) 0, a0, 0, a1, 0, a2, 0, . . . ;

Solution. For f(x) =
∞∑
n=0

anx
n, we have f(x2) =

∞∑
n=0

anx
2n and xf(x2) =

∞∑
n=0

anx
2n+1 = 0 + a0x + 0x2 + a1x

3 + 0x4 + a2x
5 + 0x6 + . . . . Hence, xf(x2)

is the generating function of 0, a0, 0, a1, 0, a2, 0, . . . . �
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(b) 1, a0, a1, a2, . . . ;

Solution. For f(x) =
∞∑
n=0

anx
n, we have 1+xf(x) = 1+

∞∑
n=0

an(x)n+1 =
∞∑
n=0

(−1)nanx
n =

1 + a0x + a1x
2 + a2x

3 + a3x
4 + a4x

5 + . . . . Hence, 1 + xf(x) is the generating

function of 1, a0, a1, a2, a3, a4, . . . . �

(c) a0,−a1, a2,−a3, a4, . . . .

Solution. For f(x) =
∞∑
n=0

anx
n, we have f(−x) =

∞∑
n=0

an(−x)n =
∞∑
n=0

(−1)nanx
n =

a0 − a1x+ a2x
2 − a3x

3 + a4x
4 − . . . . Hence, f(−x) is the generating function of

a0,−a1, a2,−a3, a4, . . . . �

(6) (a) Show that the generating function of the sequence an = n, n ≥ 0, is f(x) = x
(1−x)2 .

Solution. We know that (1−x)−1 = 1
1−x =

∞∑
n=0

xn. By differentiating both sides,

we obtain that

−1
(1−x)2 (−1) =

∞∑
n=1

nxn−1

and, therefore,

f(x) = x
(1−x)2 = x

∞∑
n=1

nxn−1 =
∞∑
n=1

nxn =
∞∑
n=0

nxn.

�

(b) Find generating functions for the sequences bn = n2, n ≥ 0, and cn = n3, n ≥ 0.

Solution. Let f(x) is the generating function of a sequence (an)n≥1, i.e., f(x) =
∞∑
n=0

anx
n. Then f ′(x) =

∞∑
n=1

nanx
n−1. So,

g(x) = xf ′(x) = x
∞∑
n=1

nanx
n−1 =

∞∑
n=0

nanx
n

is the generating function of the sequence (nan)n≥1.

For an = n, n ≥ 1, we proved in part (a) that its generating function is f(x) =

x
(1−x)2 . We also notice that bn = n2 = nan for every n ≥ 1. Therefore, by our

earlier observation, g(x) = xf ′(x) = x( x
(1−x)2 )′ = x(1+x)

(1−x)3 is the generating function

of (bn)n≥1.

For the last part, we have that cn = n3 = nbn for every n ≥ 1. Therefore, by

our earlier observation, h(x) = xg′(x) = x(x(1+x)
(1−x)3 )′ = x(x2+4x+1)

(1−x)4 is the generating

function of (cn)n≥1. �
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(7) Find the sequences generated by the following functions:

(a) f(x) = x3

1+x
;

Solution. We use that 1
1−y =

∞∑
n=0

yn with y = −x, hence 1
1+x

= 1
1−(−x) =

∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn. Consequently,

f(x) = x3

1+x
= x3

∞∑
n=0

(−1)nxn =
∞∑
n=0

(−1)nxn+3 =
∞∑
n=3

(−1)n−3xn.

Thus, f(x) is the generating function of 0, 0, 0, 1,−1, 1,−1, . . . . �

(b) g(x) = x
1−7x+12x2 ;

Solution. We write

g(x) =
x

(1− 3x)(1− 4x)
=

A

1− 3x
+

B

1− 4x
=

(A+B) + (−4A− 3B)x

(1− 3x)(1− 4x)
.

Hence, A+B = 0 and −4A−3B = 1, from which we obtain A = −1 and B = 1.

Using 1
1−y =

∞∑
n=0

yn with y = 3x and y = 4x, we have

g(x) =
1

1− 4x
− 1

1− 3x
=
∞∑
n=0

(4x)n −
∞∑
n=0

(3x)n =
∞∑
n=0

(4n − 3n)xn.

Hence, g(x) is the generating function of (4n − 3n)n≥0. �

(c) h(x) = x7

2−x7 ;

Solution. We see that

h(x) =
x7

2− x7
= −1 +

2

2− x7
= −1 +

1

1− x7

2

= −1 +
∞∑
n=0

(
x7

2

)n
= −1 +

∞∑
n=0

2−nx7n.

From this we deduce that h(x) generates (xn)n≥1, where

xn =

2−n/7 if n ≥ 1 and 7 divides n,

0 otherwise.

�

(d) k(x) = e2x.

Solution. We know that ey =
∑∞

n=0
1
n!
yn. By taking y = 2x, we have k(x) =

e2x =
∑∞

n=0
1
n!

(2x)n =
∑∞

n=0
2n

n!
xn, so k(x) is the generating function of (2n

n!
)n≥1.

�


