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2.2 Inclusion-Exclusion Principle (continued)

We want to prove the Inclusion Exclusion Principle:

Theorem 2.4. Let A1, . . . , An be finite sets. For X ⊂ {1, . . . , n}, define

N(X) =

∣∣∣∣∣⋂
i∈X

Ai

∣∣∣∣∣
and, for i, 1 ≤ i ≤ n, define

αi = ∑
X⊂{1,...,n},|X|=i

N(X).

Then

|A1 ∪ A2 ∪ · · · ∪ An| = α1 − α2 + α3 − α4 + · · ·+ (−1)n−1αn(1)

=
n

∑
i=1

∑
X⊂{1,...,n},|X|=i

(−1)i

∣∣∣∣∣⋂
i∈X

Ai

∣∣∣∣∣ .

One proof is by induction. For n = 2, the statement follows from our earlier observation that
|A ∪ B| = |A|+ |B| − |A ∩ B|.
If A1, A2, . . . , An, An+1 are finite sets, then we use A = A1 ∪ A2 ∪ . . . ∪ An and B = An+1 to
conclude that

|A1 ∪ · · · ∪ An ∪ An+1| = |A ∪ B|
= |A|+ |B| − |A ∩ B|
= |A1 ∪ · · · ∪ An|+ |An+1| − |(A1 ∪ · · · ∪ An) ∩ An+1|.

It is known that

(A1 ∪ · · · ∪ An) ∩ An+1 = (A1 ∩ An+1) ∪ · · · ∪ (An ∩ An+1),

hence

(2) |A1 ∪ · · · ∪ An ∪ An+1| = |A1 ∪ · · · ∪ An|+ |An+1| − |(A1 ∩ An+1)∪ · · · ∪ (An ∩ An+1)|.

At this moment we apply induction assumption to obtain an expression for |A1 ∪ · · · ∪ An|
and, also, we find a similar expression for |(A1 ∩ An+1) ∪ · · · ∪ (An ∩ An+1)|. A short calcu-
lation (left as an exercise) gives (1) the desired formula for n + 1 sets.
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Another proof considers any x ∈ A1 ∪ A2 ∪ · · · ∪ An and finds its contribution to the both
sides of (1). Clearly, x contributes 1 to the left-hand side of (1).

Suppose that x is in exactly k sets, i.e., there is Y ⊂ {1, . . . , n}. |Y| = k, such that x ∈ Ai if
and only if i ∈ Y. Clearly, contribution of x to α1 = |A1|+ · · ·+ |An| is k because x is in k
sets Ai, i ∈ Y.

Now let us look at α2 = ∑
i<j
|Ai ∩ Aj|. Observe that x is in precisely those intersections Ai ∩ Aj

for which i ∈ Y and j ∈ Y. Since |Y| = k, x contributes (k
2) to α2.

A similar reasoning (try it yourself!) shows that x contributes (k
i) to αi. Notice that for i > k

this contribution is 0, which is right because x can be in no intersection of more than k sets.

Hence, x contributes (k
1)− (k

2) + · · ·+ (−1)k−1(k
k) to the right-hand side of (1). Using exercise

2.3, this contribution is 1.

2.3 Multinomial numbers and Multinomial Theorem

Exercise 2.5. How many different arrangements are there of the letters of the word MATH-
EMATICS?

Basic problem: Suppose we have an n-element set X whose elements come in k different
types. We assume there are r1 elements of type 1, r2 elements of type 2,. . . , rk elements of

type k, so
k

∑
i=1

ri = n. How many ways are there to order the elements of X?

The answer is given by multinomial number ( n
r1,r2,...,rk

).

Definition 2.6. The multinomial number ( n
r1,r2,...,rk

) is defined as(
n

r1, r2, . . . , rk

)
=

n!
r1! · r2! · · · · · rk!

.

If all elements are distinct, i.e., k = n and r1 = · · · = rn = 1, we have(
n

r1, r2, . . . , rk

)
=

n!
1! . . . 1!

= n!,

as expected.

When k = 2, we have n = r1 + r2 and(
n

r1, r2

)
=

n!
r1! · r2!

=
n!

r1! · (n− r1)!
=
(

n
r1

)
.

This is not surprising because we just need to choose r1 positions out of n to place the objects
of the first type, the position of the objects of the second type are then uniquely determined.

Notice that(
n

r1, r2, . . . , rk

)
=

n!
r1! · r2! · · · · · rk!

=
(

n
r1

)(
n− r1

r2

)(
n− r1 − r2

r3

)
. . .
(

rk−1 + rk

rk−1

)(
rk

rk

)
.

Theorem 2.7 (Multinomial Theorem). For all (complex) numbers x1, x2,. . . , xk and for all natural
numbers n, we have

(x1 + x2 + · · ·+ xk)n = ∑
r1+r2+···+rk=n
r1,r2,...,rk≥0

(
n

r1, r2, . . . , rk

)
xr1

1 xr2
2 . . . xrk

k .
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3 Introduction to Recurrence Relations

3.1 Recurrence Relations

A sequence is a function f that maps natural numbers (or non-negative integers) to the set of
real numbers. Instead of working with f itself, we set an = f (n) and use the notation (an)n≥1

or (an)n≥0.

In many problems we do not know the function f , but we are able to write an as a function
of preceeding elements in the sequence. Such relations are called recurrence relations. For
example,

an = an−1 + an−2 or bn = b2
n−1 + (n− 3)bn−3

are recurrence relations.

In order to find all values of an (or bn), we need to know some initial values. For instance,
the recurrence relations above will not tell us anything about (an)n≥0 or (bn)n≥1 unless we
know a0 and a1 or b1, b2, and b3.

Definition 3.1. A recurrence relation is a sequence (an)n≥0 together with a relation

an = f (an−1, an−2, . . . , a0)

which holds for a certain function f and for all n ≥ N for some N, and with values for the
initial terms a0, a1, . . . , aN−1.

A solution or a closed form of a recurrence relation is a function F(n), only depending on n,
such that for all n, an = F(n).

Exercise 3.2. Show that the recurrence relation an = 2an−1, n ≥ 1, a0 = 1 has a closed form
an = F(n) = 2n.

3.2 Homogenuous linear recurrsions of order 1 or 2

A recurrence relation

an = αan−1, n ≥ 1,

a0 = β,

is called a homogenuous linear recurrsion of order 1 with constant coefficients.

Theorem 3.3. A homogenuous linear recurrsion of order 1 with constant coefficients an = αan−1,
n ≥ 1, a0 = β, has the solution

an = β · αn.

Exercise 3.4. Find a solution of the recurrence relation an = 5an−1 − 3, n ≥ 1, a0 = 1.

Hint: set an = bn + x and choose a suitable value for x.

A recurrence relation

an = αan−1 + βan−2, n ≥ 2,

a0 = c0,

a1 = c1,

is called a homogenuous linear recurrsion of order 2 with constant coefficients.
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Theorem 3.5. Suppose we have a homogenuous linear recurrsion of order 2 with constant coefficients
an = αan−1 + βan−2, n ≥ 2, a0 = c0 and a1 = c1, where β 6= 0.

Let r1, r2 be the roots of the equation x2 = αx + β.

1. If these roots are distinct (r1 6= r2), then the recurrence relation has the solution

an = k1 · rn
1 + k2 · rn

2 ,

where k1 and k2 are constants depending on the initial conditions:

c0 = a0 = k1 · r0
1 + k2 · r0

2 = k1 + k2,

c1 = a1 = k1 · r1
1 + k2 · r1

2 = k1r1 + k2r2.

2. If these roots are equal (r1 = r2 = r), then the recurrence relation has the solution

an = (k1 + k2 · n)rn,

where k1 and k2 are constants depending on the initial conditions:

c0 = a0 = (k1 + k2 · 0)r0 = k1,

c1 = a1 = (k1 + k2 · 1)r1 = (k1 + k2)r.

Exercise 3.6. Find a solution of the recurrence relation an = an−1 + bn−2, n ≥ 2, a0 = a1 = 1.


