Discrete Mathematics MA 210

Lent 2009

Notes for lectures 5 and 6

2.2 Inclusion-Exclusion Principle (continued)

We want to prove the Inclusion Exclusion Principle:

Theorem 2.4. Let A_1, \ldots, A_n be finite sets. For $X \subset \{1, \ldots, n\}$, define

$$N(X) = \left| \bigcap_{i \in X} A_i \right|$$

and, for $i, 1 \leq i \leq n$, define

$$\alpha_i = \sum_{X \subset \{1,\dots,n\}, |X|=i} N(X).$$

Then

(1)
$$|A_1 \cup A_2 \cup \dots \cup A_n| = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 + \dots + (-1)^{n-1} \alpha_n$$
$$= \sum_{i=1}^n \sum_{X \subset \{1,\dots,n\}, |X|=i} (-1)^i \left| \bigcap_{i \in X} A_i \right|.$$

One proof is by induction. For n = 2, the statement follows from our earlier observation that $|A \cup B| = |A| + |B| - |A \cap B|$.

If $A_1, A_2, ..., A_n, A_{n+1}$ are finite sets, then we use $A = A_1 \cup A_2 \cup ... \cup A_n$ and $B = A_{n+1}$ to conclude that

$$\begin{aligned} |A_1 \cup \dots \cup A_n \cup A_{n+1}| &= |A \cup B| \\ &= |A| + |B| - |A \cap B| \\ &= |A_1 \cup \dots \cup A_n| + |A_{n+1}| - |(A_1 \cup \dots \cup A_n) \cap A_{n+1}|. \end{aligned}$$

It is known that

$$(A_1\cup\cdots\cup A_n)\cap A_{n+1}=(A_1\cap A_{n+1})\cup\cdots\cup (A_n\cap A_{n+1}),$$

hence

(2)
$$|A_1 \cup \cdots \cup A_n \cup A_{n+1}| = |A_1 \cup \cdots \cup A_n| + |A_{n+1}| - |(A_1 \cap A_{n+1}) \cup \cdots \cup (A_n \cap A_{n+1})|.$$

At this moment we apply induction assumption to obtain an expression for $|A_1 \cup \cdots \cup A_n|$ and, also, we find a similar expression for $|(A_1 \cap A_{n+1}) \cup \cdots \cup (A_n \cap A_{n+1})|$. A short calculation (left as an exercise) gives (1) the desired formula for n + 1 sets. Another proof considers any $x \in A_1 \cup A_2 \cup \cdots \cup A_n$ and finds its contribution to the both sides of (1). Clearly, *x* contributes 1 to the left-hand side of (1).

Suppose that *x* is in exactly *k* sets, i.e., there is $Y \subset \{1, ..., n\}$. |Y| = k, such that $x \in A_i$ if and only if $i \in Y$. Clearly, contribution of *x* to $\alpha_1 = |A_1| + \cdots + |A_n|$ is *k* because *x* is in *k* sets A_i , $i \in Y$.

Now let us look at $\alpha_2 = \sum_{i < j} |A_i \cap A_j|$. Observe that *x* is in precisely those intersections $A_i \cap A_j$

for which $i \in Y$ and $j \in Y$. Since |Y| = k, *x* contributes $\binom{k}{2}$ to α_2 .

A similar reasoning (try it yourself!) shows that *x* contributes $\binom{k}{i}$ to α_i . Notice that for i > k this contribution is 0, which is right because *x* can be in no intersection of more than *k* sets. Hence, *x* contributes $\binom{k}{1} - \binom{k}{2} + \cdots + (-1)^{k-1}\binom{k}{k}$ to the right-hand side of (1). Using exercise 2.3, this contribution is 1.

2.3 Multinomial numbers and Multinomial Theorem

Exercise 2.5. How many different arrangements are there of the letters of the word MATH-EMATICS?

Basic problem: Suppose we have an *n*-element set *X* whose elements come in *k* different types. We assume there are r_1 elements of type 1, r_2 elements of type 2,..., r_k elements of type *k*, so $\sum_{i=1}^{k} r_i = n$. How many ways are there to order the elements of *X*?

The answer is given by *multinomial number* $\binom{n}{r_1, r_2, \dots, r_k}$.

Definition 2.6. The multinomial number $\binom{n}{r_1, r_2, \dots, r_k}$ is defined as

$$\binom{n}{r_1, r_2, \ldots, r_k} = \frac{n!}{r_1! \cdot r_2! \cdot \cdots \cdot r_k!}$$

If all elements are distinct, i.e., k = n and $r_1 = \cdots = r_n = 1$, we have

$$\binom{n}{r_1, r_2, \ldots, r_k} = \frac{n!}{1! \ldots 1!} = n!,$$

as expected.

When k = 2, we have $n = r_1 + r_2$ and

$$\binom{n}{r_1, r_2} = \frac{n!}{r_1! \cdot r_2!} = \frac{n!}{r_1! \cdot (n - r_1)!} = \binom{n}{r_1}.$$

This is not surprising because we just need to choose r_1 positions out of n to place the objects of the first type, the position of the objects of the second type are then uniquely determined. Notice that

$$\binom{n}{r_1,r_2,\ldots,r_k} = \frac{n!}{r_1!\cdot r_2!\cdots r_k!} = \binom{n}{r_1}\binom{n-r_1}{r_2}\binom{n-r_1-r_2}{r_3}\cdots\binom{r_{k-1}+r_k}{r_{k-1}}\binom{r_k}{r_k}.$$

Theorem 2.7 (Multinomial Theorem). *For all (complex) numbers* $x_1, x_2, ..., x_k$ *and for all natural numbers n, we have*

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{r_1 + r_2 + \dots + r_k = n \\ r_1, r_2, \dots, r_k \ge 0}} \binom{n}{r_1, r_2, \dots, r_k} x_1^{r_1} x_2^{r_2} \dots x_k^{r_k}.$$

3 Introduction to Recurrence Relations

3.1 **Recurrence Relations**

A *sequence* is a function f that maps natural numbers (or non-negative integers) to the set of real numbers. Instead of working with f itself, we set $a_n = f(n)$ and use the notation $(a_n)_{n \ge 1}$ or $(a_n)_{n \ge 0}$.

In many problems we do not know the function f, but we are able to write a_n as a function of preceeding elements in the sequence. Such relations are called *recurrence relations*. For example,

$$a_n = a_{n-1} + a_{n-2}$$
 or $b_n = b_{n-1}^2 + (n-3)b_{n-3}$

are recurrence relations.

In order to find all values of a_n (or b_n), we need to know some initial values. For instance, the recurrence relations above will not tell us anything about $(a_n)_{n\geq 0}$ or $(b_n)_{n\geq 1}$ unless we know a_0 and a_1 or b_1 , b_2 , and b_3 .

Definition 3.1. A recurrence relation is a sequence $(a_n)_{n>0}$ together with a relation

$$a_n = f(a_{n-1}, a_{n-2}, \ldots, a_0)$$

which holds for a certain function f and for all $n \ge N$ for some N, and with values for the initial terms $a_0, a_1, \ldots, a_{N-1}$.

A solution or a closed form of a recurrence relation is a function F(n), only depending on n, such that for all n, $a_n = F(n)$.

Exercise 3.2. Show that the recurrence relation $a_n = 2a_{n-1}$, $n \ge 1$, $a_0 = 1$ has a closed form $a_n = F(n) = 2^n$.

3.2 Homogenuous linear recurrsions of order 1 or 2

A recurrence relation

$$a_n = \alpha a_{n-1}, \quad n \ge 1,$$

 $a_0 = \beta,$

is called a homogenuous linear recurrsion of order 1 with constant coefficients.

Theorem 3.3. A homogenuous linear recursion of order 1 with constant coefficients $a_n = \alpha a_{n-1}$, $n \ge 1$, $a_0 = \beta$, has the solution

$$a_n = \beta \cdot \alpha^n$$
.

Exercise 3.4. Find a solution of the recurrence relation $a_n = 5a_{n-1} - 3$, $n \ge 1$, $a_0 = 1$. Hint: set $a_n = b_n + x$ and choose a suitable value for x.

A recurrence relation

$$a_n = \alpha a_{n-1} + \beta a_{n-2}, \quad n \ge 2,$$

 $a_0 = c_0,$
 $a_1 = c_1,$

is called a homogenuous linear recurrsion of order 2 with constant coefficients.

Theorem 3.5. Suppose we have a homogenuous linear recursion of order 2 with constant coefficients $a_n = \alpha a_{n-1} + \beta a_{n-2}, n \ge 2, a_0 = c_0$ and $a_1 = c_1$, where $\beta \ne 0$. Let r_1, r_2 be the roots of the equation $x^2 = \alpha x + \beta$.

1. If these roots are distinct $(r_1 \neq r_2)$, then the recurrence relation has the solution

$$a_n = k_1 \cdot r_1^n + k_2 \cdot r_2^n,$$

where k_1 and k_2 are constants depending on the initial conditions:

 $c_0 = a_0 = k_1 \cdot r_1^0 + k_2 \cdot r_2^0 = k_1 + k_2,$ $c_1 = a_1 = k_1 \cdot r_1^1 + k_2 \cdot r_2^1 = k_1 r_1 + k_2 r_2.$

2. If these roots are equal $(r_1 = r_2 = r)$, then the recurrence relation has the solution

$$a_n = (k_1 + k_2 \cdot n)r^n,$$

where k_1 and k_2 are constants depending on the initial conditions:

$$c_0 = a_0 = (k_1 + k_2 \cdot 0)r^0 = k_1,$$

 $c_1 = a_1 = (k_1 + k_2 \cdot 1)r^1 = (k_1 + k_2)r.$

Exercise 3.6. Find a solution of the recurrence relation $a_n = a_{n-1} + b_{n-2}$, $n \ge 2$, $a_0 = a_1 = 1$.