Discrete Mathematics

MA210

Solutions to Exercises 5

- (1) Let a_n be the number of *n*-letter words formed from the 26 letters of the alphabet, in which the five vowels A, E, I, O, U together occur an even number of times. (By a word we mean simply any string of letters.) For example, when n = 8, such a word is APQIITOW since four (an even number) of the positions contain vowels.
 - (a) Show that $a_1 = 21$ and that, for $n \ge 2$, we have

$$a_n = 16a_{n-1} + 5 \cdot 26^{n-1}.$$

What would you say that a_0 is?

Solution. Any single letter except a vowel is a valid word because it contains 0 vowels. Hence, $a_1 = 26 - 5 = 21$. An empty word (a word containing no letters) also contains 0 vowels, hence $a_0 = 1$.

Let $w_1 w_2 \dots w_n$ be a valid word, that is, with an even number of vowels.

If w_n is not a vowel (21 options for this), then $w_1w_2 \dots w_{n-1}$ must contain the same even number of vowels as the original word, in other words, $w_1w_2 \dots w_{n-1}$ is a valid word of length n - 1 (there are a_{n-1} valid words of length n - 1). Hence, we have $21a_{n-1}$ valid words of length n ending with a consonant.

If w_n is a vowel (5 options for this), then $w_1w_2 \dots w_{n-1}$ must contain an odd number of vowels (one less than the original word $w_1w_2 \dots w_n$). How many such words are there? There are 26^{n-1} words of length n-1 made of 26 letters with repetition allowed. a_{n-1} of them contain an even number of vowels. Hence, $26^{n-1} - a_{n-1}$ words $w_1w_2 \dots w_{n-1}$ contain an odd number of vowels.. Hence, we have $5(26^{n-1} - a_{n-1})$ valid words of length n ending with a vowel. Hence,

$$a_n = 21a_{n-1} + 5(26^{n-1} - a_{n-1}) = 16a_{n-1} + 5 \cdot 26^{n-1}.$$

(b) Find the generating function for the sequence a_0, a_1, \ldots

Solution. We have
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, therefore,

$$f(x) = a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n = a_0 + a_1 x + \sum_{n=2}^{\infty} (16a_{n-1} + 5 \cdot 26^{n-1}) x^n = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_1 x + 16x \sum_{n=2}^{\infty} a_{n-1} x^{n-1} + 5x \sum_{n=2}^{\infty} 26^{n-1} x^{n-1} = a_0 + a_$$

$$1 + 21x + 16x \sum_{n=1}^{\infty} a_n x^n + 5x \sum_{n=1}^{\infty} 26^n x^n =$$

$$1 + 21x + 16x(f(x) - 1) + 5x(-1 + \sum_{n=0}^{\infty} (26x)^n) = 1 + 16xf(x) + \frac{5x}{1 - 26x}$$

Hence,

$$(1 - 16x)f(x) = 1 + \frac{5x}{1 - 26x},$$

that is,

$$f(x) = \frac{1 - 21x}{(1 - 16x)(1 - 26x)}.$$

(c) Use this generating function to find a closed form expression for a_n . Solution. We write f(x) as

$$f(x) = \frac{1-21x}{(1-16x)(1-26x)} = \frac{\frac{1}{2}}{1-16x} + \frac{\frac{1}{2}}{1-26x}$$
$$= \frac{1}{2}\sum_{n=0}^{\infty} (16x)^n + \frac{1}{2}\sum_{n=0}^{\infty} (26x)^n = \sum_{n=0}^{\infty} \frac{1}{2}(16^n + 26^n)x^n.$$

So,

$$a_n = \frac{1}{2}(16^n + 26^n).$$

(2) Let f(x) be the generating function for the sequence a_0, a_1, \ldots . Find the sequence whose generating function is (1 - x)f(x).

Solution. We have
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, therefore, $(1-x)f(x) = f(x) - xf(x) = \sum_{n=0}^{\infty} a_n x^n - x \sum_{n=0}^{\infty} a_n x^n = a_0 + \sum_{n=1}^{\infty} a_n x^n - \sum_{n=0}^{\infty} a_n x^{n+1} = a_0 + \sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} a_{n-1} x^n = a_0 + \sum_{n=1}^{\infty} (a_n - a_{n-1})x^n$. Hence, $(1-x)f(x)$ generates the sequence $(b_n)_{n\geq 0}$, where
 $b_n = \begin{cases} a_n & \text{for } n = 0, \\ a_n - a_{n-1} & \text{for } n > 0. \end{cases}$

(3) (a) Suppose we role a normal dice. Let d_n be the number of possible ways to role a dice so that the outcome is n. Explain why the generating function of the sequence d_0, d_1, \ldots is

$$f(x) = x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6}.$$

3

Solution. There is one way to get 1, 2, 3, 4, 5, or 6 and no way to get 0 or any number larger than 6. Hence,

$$d_n = \begin{cases} 1 & \text{for } 1 \le n \le 6, \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, $f(x) = \sum_{n=0}^{\infty} d_n x^n = s + x^2 + x^3 + x^4 + x^5 + x^6.$

(b) Suppose that we role 4 dices. Let a_n be the number of throws such that the sum of outcomes is equal to n. Explain why the generating function of the sequence a_0, a_1, \ldots is

$$g(x) = (x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6})^{4}.$$

Solution.

(c) Now let b_n be the number of throws with any number of dices such that the sum of outcomes is equal to n. Explain why the generating function of the sequence b_0, b_1, \ldots is

$$h(x) = \sum_{n=0}^{\infty} (x + x^2 + x^3 + x^4 + x^5 + x^6)^n.$$

Also prove that

$$h(x) = (1 - x - x^{2} - x^{3} - x^{4} - x^{5} - x^{6})^{-1}.$$

Solution.

(4) The British coin system has 1p, 2p, 5p, 10p, 20p, 50p, $\pounds 1 = 100p$, and $\pounds 2 = 200p$ coins. Let a_n count the number of different ways that you can pay a sum of n pennies. Show that the generating function of a_0, a_1, \ldots is

$$h(x) = \frac{1}{1 - x - x^2 - x^5 - x^{10} - x^{20} - x^{50} - x^{100} - x^{200}}$$

Solution. Just follow the previous problem. Start with finding the generating function of $(d_n)_{n\geq 0}$, where d_n is the number of ways to pay a sum of n pennies with one coin.

(5) The language of Verwegistan has words consisting of the letters A,E,O,U,B,P, and X. Words are formed according to the following rules: the vowels (A,E,I,O,U) always appear in pairs of the form AA,EE,OO, or UU, and they appear in a word before all non-vowels (if any). For instance, AAEEPXP and AAAA are words, but UUUB, AAXBAAX, and AEXX are not.

Let a_n denote the number of words of length n.

(a) Show that $a_0 = 1, a_1 = 3$, and

$$a_n = 4a_{n-2} + 3^n$$
, for $n \ge 2$.

Solution. The empty word satisfies the rules above, so $a_0 = 1$. The only valid one-letter words are consonants, i.e., B,P, and X, hence, $a_1 = 3$.

Take any *n*-letter word. If it starts wit a consonant (3 choices), then all the remaining letters must be also consonants because the vowels (A,E,I,O,U) always appear in a word before all non-vowels. Hence, we have 3^n such words.

If it starts wit a vowel (5 choices), then the second letter must be the same vowel (vowels come in pairs) and the remaining n-2 letters form a valid word again (we have a_{n-2} of them). Hence, we have $5a_{n-2}$ such *n*-letter words. So,

$$a_n = 4a_{n-2} + 3^n$$
, for $n \ge 2$.

(b) Let f(x) be the generating function of the sequence a_0, a_1, \ldots Show that

$$f(x) = \frac{1}{(1 - 3x)(1 - 4x^2)}$$

Solution. We have $f(x) = \sum_{n=0}^{\infty} a_n x^n$, therefore,

$$f(x) = a_0 + a_1 x + \sum_{n=2}^{\infty} a_n x^n = 1 + 3x + \sum_{n=2}^{\infty} (4a_{n-2} + 3^n) x^n =$$

$$1 + 3x + 4x^2 \sum_{n=2}^{\infty} a_{n-2} x^{n-2} + \sum_{n=2}^{\infty} 3^n x^n =$$

$$4x^2 \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} (3x)^n = 4x^2 f(x) + \frac{1}{1 - 3x}.$$

Hence,

$$(1 - 4x^2)f(x) = \frac{1}{1 - 3x}$$

that is,

$$f(x) = \frac{1}{(1 - 4x^2)(1 - 3x)} = \frac{1}{(1 - 2x)(1 + 2x)(1 - 3x)}$$

(c) Use this generating function to find a general expression for a_n . Solution. Since

$$f(x) = \frac{1}{(1-2x)(1+2x)(1-3x)} = \frac{\frac{1}{5}}{1+2x} - \frac{1}{1-2x} + \frac{\frac{9}{5}}{1-3x},$$
we have

we have

$$f(x) = \frac{1}{5} \sum_{n=0}^{\infty} (-2x)^n - \sum_{n=0}^{\infty} (2x)^n + \frac{9}{5} \sum_{n=0}^{\infty} (3x)^n = \sum_{n=0}^{\infty} \left(\frac{1}{5} (-2)^n - 2^n + \frac{9}{5} 3^n\right) x^n.$$

So,
$$a_n = \frac{1}{5} (-2)^n - 2^n + \frac{9}{5} 3^n.$$

- (6) Let d_n denote the number of selections of n letters from $\{a, b, c\}$, with repetitions allowed, in which the letter a is selected an even number of times. (Note that these selections are unordered.)
 - (a) Show that the total number of unordered selections of n letters from $\{a, b, c\}$ with repetitions allowed is $\binom{n+2}{2}$.

Solution. We know that the number of unordered selections of n objects from rpossible is is $\binom{n+r-1}{r-1}$. In this case, we have r = 3.

(b) Use the result in (a) to prove that for $n \ge 2$,

$$d_n = \binom{n+2}{2} - d_{n-1} = \frac{1}{2}(n+2)(n+1) - d_{n-1}.$$

Solution. By (a), there are $\binom{n+2}{2}$ possible unordered selections of *n* letters.

How many of them have an odd number of a's? If we remove one a from such a selection, we obtain an unordered selection of n-1 letters with an even number of a's. Each time we get a different selection (Why?). But we know that the number of unordered selection of n-1 letters with an even number of a's is d_{n-1} .

Consequently,
$$d_n = \binom{n+2}{2} - d_{n-1}$$
.

(c) Show that the sequence
$$d_0, d_1, \ldots$$
 has the generating function

$$f(x) = \frac{1}{(1-x^2)(1-x)^2} = \frac{1}{(1+x)(1-x)^3}.$$

Solution. First of all, we see that $d_0 = 1$ and $d_1 = 2$. (Why?) We also recall that for every positive integer r, we have

$$(1-x)^{-r} = \sum_{n=0}^{\infty} \binom{n+r-1}{n} x^n = \sum_{n=0}^{\infty} \binom{n+r-1}{r-1} x^n.$$

Let $f(x) = \sum_{n=0}^{\infty} d_n x^n$ be the generating function of $(d_n)_{n \ge 0}$. Then,

$$\begin{aligned} f(x) &= d_0 + d_1 x + \sum_{n=2}^{\infty} d_n x^n = d_0 + d_1 x + \sum_{n=2}^{\infty} \left(\binom{n+2}{2} - d_{n-1} \right) x^n \\ &= 1 + 2x + \sum_{n=2}^{\infty} \binom{n+2}{2} x^n - x \sum_{n=2}^{\infty} d_{n-1} x^{n-1} \\ &= 1 + 2x + \sum_{n=0}^{\infty} \binom{n+2}{2} x^n - \binom{2}{2} - \binom{1+2}{2} x - x \left(\sum_{n=0}^{\infty} d_n x^n - d_0 \right) \\ &= -x + (1-x)^{-3} - x (f(x) - 1) = x f(x) + \frac{1}{(1-x)^3}. \end{aligned}$$

Hence,

$$(1-x)f(x) = \frac{1}{(1-x)^3},$$
$$f(x) = \frac{1}{(1-x)^3(1+x)}.$$

that is,

$$f(x) = \begin{cases} \frac{1}{4}(n+2)^2 & \text{if } n \text{ is even,} \\ \frac{1}{4}(n+1)(n+3) & \text{if } n \text{ is odd.} \end{cases}$$

Solution. We use partial fractions and rewrite (work out the details!) f(x) as

$$f(x) = \frac{1}{(1-x)^3(1+x)} = \frac{\frac{1}{8}}{1+x} + \frac{\frac{1}{8}}{1-x} + \frac{\frac{1}{4}}{(1-x)^2} + \frac{\frac{1}{2}}{(1-x)^3}.$$

Using

$$(1-x)^{-r} = \sum_{n=0}^{\infty} \binom{n+r-1}{n} x^n = \sum_{n=0}^{\infty} \binom{n+r-1}{r-1} x^n,$$

we have

$$f(x) = \frac{1}{8} \sum_{n=0}^{\infty} (-x)^n + \frac{1}{8} \sum_{n=0}^{\infty} x^n + \frac{1}{4} \sum_{n=0}^{\infty} \binom{n+2-1}{2-1} x^n + \frac{1}{2} \sum_{n=0}^{\infty} \binom{n+3-1}{3-1} x^n,$$

or,
$$f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{8} (-1)^n + \frac{1}{8} + \frac{1}{4} \binom{n+1}{1} + \frac{1}{2} \binom{n+2}{2} \right) x^n.$$

Thus,

$$\begin{aligned} d_n &= \frac{1}{8} (-1)^n + \frac{1}{8} + \frac{1}{4} \binom{n+1}{1} + \frac{1}{2} \binom{n+2}{2} \\ &= \frac{(-1)^n + 1}{8} + \frac{n+1}{4} + \frac{(n+2)(n+1)}{4} = \frac{(-1)^n + 1}{8} + \frac{(n+3)(n+1)}{4}. \\ &\text{For n even,} \\ d_n &= \frac{(-1)^n + 1}{8} + \frac{(n+3)(n+1)}{4} = \frac{2}{8} + \frac{n^2 + 4n + 3}{4} = \frac{1 + n^2 + 4n + 3}{4} = \frac{(n+2)^2}{4}. \\ &\text{For n odd,} \\ &= \frac{(-1)^n + 1}{8} + \frac{(n+3)(n+1)}{4} = \frac{0}{8} + \frac{(n+3)(n+1)}{4} = \frac{(n+3)(n+1)}{4}. \end{aligned}$$

6