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Solutions to Exercises 6

(1) LetV ={1,2,...,n}. How many different graphs with vertex Sétare there?
Solution. Each graphG with vertex setl” is uniquely determined by its edge d6t F
must be a subset c(fz/ ) the set of all pairs iV. We have seen already that every set with
m elements hag8™ different subsets. In our case, = |(‘2/)\ = (g) hence there arg(®)
different graphs with vertex séf. O

(2) How many non-isomorphigraphs with four vertices are there? (Hint: the answer ighret
same as the answer in Question 1/o£ 4.)

Solution. By examining the possibilities, we find 1 graph with O edgesrdph with 1
edge, 2 non-isomorphic graphs with 2 edges, 3 non-isomographs with 3 edges, 2 non-
isomorphic graphs with 4 edges, 1 graph with 5 edges and hgvibp 6 edges. Altogether,
we have 11 non-isomorphic graphs on 4 vertices

(3) Recall that the degree sequence of a graph is the list diegllees of its vertices, written
in non-increasing order. Prove that two isomorphic graphstnmave the same degree
sequence. Is it true that every two graphs with the same desgrguence are isomorphic?
Justify your answer!

Solution.Let G = (V, E) be a graph isomorphic to a gragh = {V’, E'}. We know
thatGG and H must have the same numbeof vertices. Suppose thét = {v, v, ..., v,}
andV’ = {wy,ws,...,w,}. We obtain the degree sequencebby ordering the list of
numbersdeg(v; ), deg(vs), . . ., deg(v,) and the degree sequenceffby ordering the list
of numbersleg(w; ), deg(ws), . . ., deg(w,,). Thus, we must show that both lists contain the
same numbers (in different orders).

We accomplish this as follows: Lgt: V' — V' be the isomorphism aff andH, i.e.,

foreveryz,y € V,zy € Eifand only if f(z)f(y) € E'.

Now, for everyv;, y € Ng(v;) ifand only ifv;y € E, butv;y € Eifand only if f(v;) f(y) €
E',andf(v;)f(y) € E'ifand only if f(y) € Nu(f(v:)).

Hence, we showed that for everyy € Nq(v;) if and only if f(y) € Ng(f(v;)). There-
fore, for everyi

degg(vi) = [Ng(vi)| = |[Nu(f(vi))| = degy (f(vi))

and both lists contain the same numbers.
The following two graphs have both degree sequeiice, 2,2,2,2) and they are not
isomorphic because one is connected and the other one is not.



(4) A graph is 3-regular if all its vertices have degree 3. Hoany non-isomorphic 3-regular

graphs with 6 vertices are there? And how many with 7 verfices

Solution. We know that the sum of the degrees in a graph must be everudeeitaquals
to twice the number of its edges). Hence, there is4megular graph o vertices because
its degree sum would bé- 3 = 21, which is not even.

Now we deal with3-regular graphs of vertices. Letr be any vertex of sucB-regular
graph and, b, ¢ be its three neighbors.

Denote byy andz the remaining two vertices. Notice that batlandz are not adjacent
to z. (Why?) We distinguish two possibilities.

If ¥ and z are not adjacent, then both of them must have ¢ as neighbors to have
degree equal t8.

a .y a Y
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If y andz are adjacent, then both of them must have two neighbors amadng to have
degree equal t8. By Pigeonhole principley and z must have a common neighbour. By
symmetry, we may assume thais their common neighbour. At this point,andb have
degree3, verticesy, = have degre@ anda andc have degree. Now, betwedn, c} and
{y, z} there can be only two edges because epahdz need only one edge to reach the

degree3. By symmetry again, we may assume thatandcz are the edges. But then there
must also be an edge betweeandc (so that these two vertices reach degike

a Y a Y a Y
z C z C z
It is easy to see that this graph is not isomorphic to the ptesbne: this graph contains

a cycle with 3 vertices and the previous one was bipartites tontaining no odd vertices.
0

o\

(5) Determine which pairs of graphs below are isomorphistiiuyour answer!



3

Solution. The first two graphs are isomorphic: we assign laliels. , 8 to the vertices
of both graphs as suggested below and see that both of theethawsame vertex set
{16,17,18,25,27,28, 35, 36, 38,45,46,47}. Hencef(i) = ¢ is a bijection preserving the
edges and non-edges.

7 1 5 b C
6 4 2 6 ’ !
3 5 3 . '
. , 4 8

The first two graph are also bipartite (with partite s&ts- {1,2, 3,4} andY = {1,2,3,4})
and, hence, they cannot contain and cycle of odd length (we $&en this in lectures). On
the other hand, the third graph contains an odd cyclé warticesa, b, ¢, d, e, thus, this
graph is not isomorphic to the first two. Il

(6) Suppose that we have a graph with at least two verticeswy 8t it is not possible that all
vertices have different degrees.

Solution. Every vertex of a graph on vertices has degree betwegandn — 1. If all
degrees were different in some gra@hthenG would have to contain a vertex of degree
foreveryi = 0,1,...,n— 1. However, the vertex of degréglet’s call it z) is not adjacent
to any other vertex ofs and the vertex of degree — 1 is adjacent to every other vertex
of G (x amongst them), which is clearly impossible. Hence, thegeoatyn — 1 possible

values for all the degrees: eitherl,...,n—2o0r1,2,...,n— 1. In either case, we have
vertices andh — 1 possible values for their degrees. By Pigeonhole princtple,vertices
must have the same degree. O

(7) There are four married couples at a party. Various pesipike hands, but of course no
one shakes hands with his/her own wife or husband. At the etitegarty, the host asks
everybody else how many hands they shook and he receives diffezent answers.

How many hands did the wife of the host shake?

Solution. In a group of 8 people, everybody can shake hand with anywbetween
0 and 7 people. However, since nobody shakes hand with hisfizaise, every person
shook hand with at most 6 other people. If we label the host,bye can attached labels
0,1,2,...,6 to the remaining seven people in such a way that perstiwok hands with
other people. We know this becausgot a different response from every other person.

Now, persorbt couldn’t shake hands with persor{becaus® shook hands with nobody)
so06 shook hands with with remaining six peoglel, 2, 3, 4, and5. So,0 is the only one
not shaking hands with, hence) and6 must be one married couple.



Personl shook hands witlt so he/she can’t shake hands with anybody else. Hence,
5 can shake hands only with the following five peoplge:2, 3, 4, and6. Also, 5 can be
married only ta) or 1, but0 is married to6, thus1 and5 is a couple.
A similar reasoning (try to do it yourself!) yields thatand4 is a couple, henck and3
must be a couple and so the wife of the host shook hands witle feople.
O

(8) Prove the following statements:

(@) If there is a walk between two verticesandy in some grapl, then there is also a
path between andy in G.
Solution. We proceed by induction on the length of the walk. (Recall thatlength
ofawalkz = vy, vs,...,v, =y from x to y is the number of its edgds— 1.)
The base case is = 2, i.e., whenz = v;,v, = y. This walk does not repeat any
vertices, hence it is also a path.
Assume now that every walk fromto y of length at most — 1 contains a path from

xtoy, and letx = vy, vq, ..., v, vy = y be awalk of lengthk from x to y.
If no vertex is repeated in this walk, then it must be a patimfroto y. So, assume
thatv; = v; for somei < j. Butthen,z = vy,vs,...,0; = V;,Vj41,..., V41 = Y IS

a walk fromz to y of length smaller thak: (because we removed at least one edge,
namelyv;v; 1, from the original walk) and, by the induction assumptiorgahtains a
path fromz to y. O

(b) If G has a walk between verticesandy and a walk between verticgsandz, thenG
also has a walk betweenandz.
Solution.Letz = vy, vy, ..., v, = y be awalk frome toy ina graphG = (V, E) (i.e.,
foralli=1,... k—1,vv,1 € F)andlety = wy, ws, ..., w, = z be a walk fromy
toz, e, foralli=1,...,¢—1,ww;, € E. We define a sequncs, ..., zx. s 1 by

Z; =

Clearly,z; = vy = v andz, 41 = Wigr—1)-r41 = we = 2. Furthermore,

UiviJrleE |f1§2§k—1,
ZiZix1 = § UpWga1-_kt1 = YWy = wwy € E if : = k becausey, =y = w,
Wi— k1 Wit 1—k+1 = Wi— k1 Wi—k42 € E fk+1<i<k+/0-2.

Hence, we found a walk from to z. O
(c) If G has a path between verticesandy and a path between verticgsandz, thenG

also has a path betweerand-.

Solution. A path fromz to y is also a walk fromz to . A path fromy to z is also a

walk fromy to z. Hence, by part (b), there exists a walk franto z. Consequently, by

part (a), there exists also a path frano z. O



