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Solutions to Exercises 6

(1) LetV = {1, 2, . . . , n}. How many different graphs with vertex setV are there?

Solution. Each graphG with vertex setV is uniquely determined by its edge setE. E

must be a subset of
(

V

2

)

, the set of all pairs inV . We have seen already that every set with

m elements has2m different subsets. In our case,m =
∣

∣

(

V

2

)∣

∣ =
(

n

2

)

, hence there are2(n

2
)

different graphs with vertex setV . �

(2) How many non-isomorphicgraphs with four vertices are there? (Hint: the answer is notthe

same as the answer in Question 1 forn = 4.)

Solution. By examining the possibilities, we find 1 graph with 0 edges, 1 graph with 1

edge, 2 non-isomorphic graphs with 2 edges, 3 non-isomorphic graphs with 3 edges, 2 non-

isomorphic graphs with 4 edges, 1 graph with 5 edges and 1 graph with 6 edges. Altogether,

we have 11 non-isomorphic graphs on 4 vertices

(3) Recall that the degree sequence of a graph is the list of alldegrees of its vertices, written

in non-increasing order. Prove that two isomorphic graphs must have the same degree

sequence. Is it true that every two graphs with the same degree sequence are isomorphic?

Justify your answer!

Solution. Let G = (V,E) be a graph isomorphic to a graphH = {V ′, E ′}. We know

thatG andH must have the same numbern of vertices. Suppose thatV = {v1, v2, . . . , vn}

andV ′ = {w1, w2, . . . , wn}. We obtain the degree sequence ofG by ordering the list of

numbersdeg(v1), deg(v2), . . . , deg(vn) and the degree sequence ofH by ordering the list

of numbersdeg(w1), deg(w2), . . . , deg(wn). Thus, we must show that both lists contain the

same numbers (in different orders).

We accomplish this as follows: Letf : V → V ′ be the isomorphism ofG andH, i.e.,

for everyx, y ∈ V , xy ∈ E if and only if f(x)f(y) ∈ E ′.

Now, for everyvi, y ∈ NG(vi) if and only if viy ∈ E, butviy ∈ E if and only if f(vi)f(y) ∈

E ′, andf(vi)f(y) ∈ E ′ if and only if f(y) ∈ NH(f(vi)).

Hence, we showed that for everyi, y ∈ NG(vi) if and only if f(y) ∈ NH(f(vi)). There-

fore, for everyi

degG(vi) = |NG(vi)| = |NH(f(vi))| = degH(f(vi))

and both lists contain the same numbers.

The following two graphs have both degree sequence(2, 2, 2, 2, 2, 2) and they are not

isomorphic because one is connected and the other one is not.
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(4) A graph is 3-regular if all its vertices have degree 3. Howmany non-isomorphic 3-regular

graphs with 6 vertices are there? And how many with 7 vertices?

Solution. We know that the sum of the degrees in a graph must be even (because it equals

to twice the number of its edges). Hence, there is no3-regular graph on7 vertices because

its degree sum would be7 · 3 = 21, which is not even.

Now we deal with3-regular graphs on6 vertices. Letx be any vertex of such3-regular

graph anda, b, c be its three neighbors.

Denote byy andz the remaining two vertices. Notice that bothy andz are not adjacent

to x. (Why?) We distinguish two possibilities.

If y and z are not adjacent, then both of them must havea, b, c as neighbors to have

degree equal to3.
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If y andz are adjacent, then both of them must have two neighbors amonga, b, c to have

degree equal to3. By Pigeonhole principle,y andz must have a common neighbour. By

symmetry, we may assume thatb is their common neighbour. At this point,x andb have

degree3, verticesy, z have degree2 anda andc have degree. Now, between{a, c} and

{y, z} there can be only two edges because eachy andz need only one edge to reach the

degree3. By symmetry again, we may assume thatay andcz are the edges. But then there

must also be an edge betweena andc (so that these two vertices reach degree3).
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It is easy to see that this graph is not isomorphic to the previous one: this graph contains

a cycle with 3 vertices and the previous one was bipartite, thus containing no odd vertices.

�

(5) Determine which pairs of graphs below are isomorphic. Justify your answer!



3

Solution. The first two graphs are isomorphic: we assign labels1, . . . , 8 to the vertices

of both graphs as suggested below and see that both of them have the same vertex set

{16, 17, 18, 25, 27, 28, 35, 36, 38, 45, 46, 47}. Hencef(i) = i is a bijection preserving the

edges and non-edges.
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The first two graph are also bipartite (with partite setsX = {1, 2, 3, 4} andY = {1, 2, 3, 4})

and, hence, they cannot contain and cycle of odd length (we have seen this in lectures). On

the other hand, the third graph contains an odd cycle on5 verticesa, b, c, d, e, thus, this

graph is not isomorphic to the first two. �

(6) Suppose that we have a graph with at least two vertices. Show that it is not possible that all

vertices have different degrees.

Solution. Every vertex of a graph onn vertices has degree between0 andn − 1. If all

degrees were different in some graphG, thenG would have to contain a vertex of degreei

for everyi = 0, 1, . . . , n− 1. However, the vertex of degree0 (let’s call it x) is not adjacent

to any other vertex ofG and the vertex of degreen − 1 is adjacent to every other vertex

of G (x amongst them), which is clearly impossible. Hence, there are onlyn − 1 possible

values for all the degrees: either0, 1, . . . , n− 2 or 1, 2, . . . , n− 1. In either case, we haven

vertices andn − 1 possible values for their degrees. By Pigeonhole principle,two vertices

must have the same degree. �

(7) There are four married couples at a party. Various peopleshake hands, but of course no

one shakes hands with his/her own wife or husband. At the end of the party, the host asks

everybody else how many hands they shook and he receives seven different answers.

How many hands did the wife of the host shake?

Solution. In a group of 8 people, everybody can shake hand with anywherebetween

0 and 7 people. However, since nobody shakes hand with his/her spouse, every person

shook hand with at most 6 other people. If we label the host byh, we can attached labels

0, 1, 2, . . . , 6 to the remaining seven people in such a way that personi shook hands withi

other people. We know this becauseh got a different response from every other person.

Now, person6 couldn’t shake hands with person0 (because0 shook hands with nobody)

so6 shook hands with with remaining six peopleh, 1, 2, 3, 4, and5. So,0 is the only one

not shaking hands with6, hence,0 and6 must be one married couple.



4

Person1 shook hands with6 so he/she can’t shake hands with anybody else. Hence,

5 can shake hands only with the following five people:h, 2, 3, 4, and6. Also, 5 can be

married only to0 or 1, but0 is married to6, thus1 and5 is a couple.

A similar reasoning (try to do it yourself!) yields that2 and4 is a couple, henceh and3

must be a couple and so the wife of the host shook hands with three people.

�

(8) Prove the following statements:

(a) If there is a walk between two verticesx andy in some graphG, then there is also a

path betweenx andy in G.

Solution. We proceed by induction on the length of the walk. (Recall thatthe length

of a walkx = v1, v2, . . . , vk = y from x to y is the number of its edgesk − 1.)

The base case isk = 2, i.e., whenx = v1, v2 = y. This walk does not repeat any

vertices, hence it is also a path.

Assume now that every walk fromx to y of length at mostk − 1 contains a path from

x to y, and letx = v1, v2, . . . , vk, vk+1 = y be a walk of lengthk from x to y.

If no vertex is repeated in this walk, then it must be a path from x to y. So, assume

thatvi = vj for somei < j. But then,x = v1, v2, . . . , vi = vj, vj+1, . . . , vk+1 = y is

a walk fromx to y of length smaller thank (because we removed at least one edge,

namelyvivi+1 from the original walk) and, by the induction assumption, itcontains a

path fromx to y. �

(b) If G has a walk between verticesx andy and a walk between verticesy andz, thenG

also has a walk betweenx andz.

Solution. Let x = v1, v2, . . . , vk = y be a walk fromx to y in a graphG = (V,E) (i.e.,

for all i = 1, . . . , k − 1, vivi+1 ∈ E) and lety = w1, w2, . . . , wℓ = z be a walk fromy

to z, i.e., for alli = 1, . . . , ℓ − 1, wiwi+1 ∈ E. We define a sequncez1, . . . , zk+ℓ−1 by

zi =







vi if 1 ≤ i ≤ k,

wi−k+1 if k + 1 ≤ i ≤ k + ℓ − 1.

Clearly,z1 = v1 = x andzk+ℓ+1 = w(k+ℓ−1)−k+1 = wℓ = z. Furthermore,

zizi+1 =















vivi+1 ∈ E if 1 ≤ i ≤ k − 1,

vkwk+1−k+1 = yw2 = w1w2 ∈ E if i = k becausevk = y = w1,

wi−k+1wi+1−k+1 = wi−k+1wi−k+2 ∈ E if k + 1 ≤ i ≤ k + ℓ − 2.

Hence, we found a walk fromx to z. �

(c) If G has a path between verticesx andy and a path between verticesy andz, thenG

also has a path betweenx andz.

Solution. A path fromx to y is also a walk fromx to y. A path fromy to z is also a

walk fromy to z. Hence, by part (b), there exists a walk fromx to z. Consequently, by

part (a), there exists also a path fromx to z. �


