Discrete Mathematics

Lent 2009

MA210

Exercises 7

- (1) The *complete bipartite graph* $K_{m,n}$ is defined by taking two disjoint sets, V_1 of size m and V_2 of size n, and putting an edge between u and v whenever $u \in V_1$ and $v \in V_2$.
 - (a) How many edges does $K_{m,n}$ have?
 - (b) What is the degree sequence of $K_{m,n}$?
 - (c) Which complete bipartite graphs $K_{m,n}$ are connected?
 - (d) Which complete bipartite graphs $K_{m,n}$ have an Euler tour?
 - (e) Which complete bipartite graphs $K_{m,n}$ have a Hamilton cycle? Justify your answers.
- (2) The cube graph Q_n was defined in lectures: the vertices of Q_n are all sequences of lenght n with entries from {0,1} and two sequences are joined by an edge if they differ in exactly one position.
 - (a) How many edges does Q_n have?
 - (b) What is the degree sequence of Q_n ?
 - (c) Which cube graphs Q_n are connected?
 - (d) Which cube graphs Q_n have an Euler tour?

- (3) Suppose that G is a graph in which every vertex has degree at least k, where $k \ge 1$, and in which every cycle contains at least 4 vertices.
 - (a) Show that G contains a path of length at least 2k 1.
 - (b) For each k ≥ 1, give an example of a graph in which every vertex has degree at least k, every cycle contains at least 4 vertices, but which does not contain a path of length 2k.

- (4) Show that the cube graph Q_n is bipartite.
- (5) We call a graph *tree* if it is connected and contains no cycles. Prove that if G is a connected graph with n vertices and n 1 edges, then G is a tree.
- (6) Recall that the complement of a graph G = (V, E) is the graph G

 with the same vertex V and for every two vertices u, v ∈ V, uv is an edge in G

 if and only if uv is not and edge of G.

Suppose that G is a graph on n vertices such that G is isomorphic to its own complement \overline{G} . Prove that $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$.

(7) A mouse intends to eat a 3 × 3 × 3 cube of cheese. Being tidy-minded, it begins at a corner and eats the whole of a 1 × 1 × 1 cube, before going on to an adjacent one.
Can the mouse end in the centre ?

You must justify the answers to all problems!

These exercises are to be handed in before 13.55pm on March 3, 2009.