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Solutions to Exercises 7

(1) The complete bipartite graph Km,n is defined by taking two disjoint sets, V1 of size m and
V2 of size n, and putting an edge between u and v whenever u ∈ V1 and v ∈ V2.
(a) How many edges does Km,n have?

Solution. Every vertex of V1 is adjacent to every vertex of V2, hence the number of
edges is mn. �

(b) What is the degree sequence of Km,n?
Solution. Every vertex of V1 has degree n because it is adjacent to every vertex of V2.
Similarly, every vertex of V2 has degree m because it is adjacent to every vertex of V2.
So the degree sequence of Km,n consists of m n’s and n m’s listed in non-increasing
order.
If m ≥ n, then the degree sequence is

(m, . . . ,m︸ ︷︷ ︸
n

, n, . . . , n︸ ︷︷ ︸
m

).

If m < n, then the degree sequence is

(n, . . . , n︸ ︷︷ ︸
m

, m, . . . , m︸ ︷︷ ︸
n

).

�

(c) Which complete bipartite graphs Km,n are connected?
Solution. Take any m, n ≥ 1. For any vertex x ∈ V1, y ∈ V2, the pair xy is an edge, so
x, y is a walk from x to y.
For vertices x, y ∈ V1, x 6= y, take any w ∈ V2. The pairs xw, wy are edges, so x, w, y

is a walk from x to y.
For vertices x, y ∈ V2, x 6= y, take any w ∈ V1. The pairs xw, wy are edges, so x, w, y

is a walk from x to y.
Hence, all complete bipartite graphs Km,n are connected. �

(d) Which complete bipartite graphs Km,n have an Euler circuit?
Solution. We know that a graph has an Euler circuit if and only if all its degrees are
even. As noted above, Km,n has vertices of degree m and n, so it has an Euler circuit
if and only if both m and n are even. �

(e) Which complete bipartite graphs Km,n have a Hamilton cycle?
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Solution. Every cycle in a bipartite graph is even and alternates between vertices from
V1 and V2. Since a Hamilton cycle uses all the vertices in V1 and V2, we must have
m = |V1| = |V2| = n.
Suppose that Kn,n has partite sets V1 = {v1, . . . , vn} and V2 = {w1, . . . , wn}. Since
viwj is an edge of Kn,n for every 1 ≤ i, j ≤ n, we see that v1, w1, v2, w2, . . . , vn, wn is
a Hamiltonian cycle (note that wnv1 is an edge). �

(2) The cube graph Qn was defined in lectures: the vertices of Qn are all sequences of length
n with entries from {0, 1} and two sequences are joined by an edge if they differ in exactly
one position.
(a) How many edges does Qn have?

Solution. Fix any vertex v of Qn. All its neighbors differ from v in exactly one position.
There are n positions possible to differ at. Hence, every vertex has degree n. Since,
the number of edges e(Qn) satisfies 2e(Qn) =

∑
v∈V (Qn)

deg(v) = n2n, we must have

e(Qn) = n2n−1. �

(b) What is the degree sequence of Qn?
Solution. Based on part (a), the degree sequence of Qn is n, . . . , n︸ ︷︷ ︸

2n times

.

(c) Which cube graphs Qn are connected?
Solution. Q1 = K2 is certainly connected. Suppose that Qn−1 is connected for some
n > 1, and let’s look at Qn. we split its vertices to two sets: V1 contains all the vertices
of Q1 ending with 0 and V2 contains all the vertices of Q1 ending with 1. Clearly, V1

and V2 are disjoint and every vertex of Qn must be in one of them.
The crucial observation is that the vertices of V1 form the cube Qn−1. Why?
Firstly, every vertex in V1 can be written as v0, where v is a 0 − 1 sequence of length
n − 1. Hence, there is 1-to-1 correspondence between vertices of V1 and the vertices
of Qn−1: for every v0 ∈ V1 we have v ∈ V (Qn−1).
Secondly, a pair of vertices v0, w0 ∈ V1 form an edge if and only if v0 and w0 differ
in exactly one position. But they both have 0 at the end, so v0 and w0 differ in exactly
one position if and only if v and w differ in exactly one position. Hence, v0, w0 ∈ V1

form an edge in Qn if and only if v, w form an edge in Qn−1.
Similarly, the vertices of V2 form the cube Qn−1. In the same way as above, we have
that v1, w1 ∈ V2 form an edge in Qn if and only if v, w form an edge in Qn−1.
So, by induction assumption, we know that there is a walk between any two vertices in
V1 and between any two vertices in V2.
Take a vertex v0 ∈ V1 and w1 ∈ V2. We know there is a walk between v0 and w0

(using only the vertices of V1), which together with edge w0w1 (w0w1 differ in the
last coordinate) form a walk from v0 to w1.
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Hence, we showed that Qn is connected. �

(d) Which cube graphs Qn have an Euler tour?
Solution. Qn has an Euler tour if and only if all its degrees are even. Since Qn is
n-regular, we obtain that Qn has an Euler tour if and only if n is even. �

(e) Which cube graphs Qn have a Hamilton cycle?
Solution. For n = 2, Q2 is the cycle C4, so it is Hamiltonian.
Assume that Qn−1 is Hamiltonian and consider the cube graph Qn. Let V1 and V2 be
as defined in part (c).
The vertices of V1 form the cube graph Qn−1 and so there is a cycle C covering all the
vertices of V1.
Moreover, there is a 1-to-1 correspondence between the vertices of V1 and the vertices
of V2: v0 ∈ V1 if and only if v1 ∈ V2. This mean that we can construct a cycle C ′

covering all the vertices of V2 as follows: if v0 w0 is an edge in C, then we put the
edge v1 w1 to C ′.
Now we link C and C ′ to a Hamiltonian cycle in Qn: take and edge v0 w0 in C and
v1 w1 in C ′ and replace edges v0 w0 and v1 w1 with edges v0 v1 and w0 w1.
So, Qn is Hamiltonian as well. �

(3) Suppose that G is a graph in which every vertex has degree at least k, where k ≥ 1, and in
which every cycle contains at least 4 vertices.
(a) Show that G contains a path of length at least 2k − 1.
(b) For each k ≥ 1, give an example of a graph in which every vertex has degree at least k,

every cycle contains at least 4 vertices, but which does not contain a path of length 2k.
Solution. See Exercises 8.

(4) Show that the cube graph Qn is bipartite.
Solution. Let V1 be the set of those vertices of Qn (i.e., sequences of 0’s and 1’s of length

n) with an even number of 0’s. Similarly, let V1 be the set of those vertices of Qn with an
odd number of 0’s. Clearly, every vertex must have either an odd or an odd number of 0’s
and, hence V1, V2 partition V (Qn) into two disjoint parts.

Is it possible to have an edge xy with x, y ∈ V1? This would mean that x and y differ in
exactly one position. But this would imply that if one of them has an even number of 0’s
then the other one has an odd number of 0’s (one 0 is changed to 1 or one 1 is changed to
0), so these two vertices cannot be both from V1. This is a contradiction. In the same way
one proves that it is not possible to have an edge with both vertices from V2.

(5) We call a graph tree if it is connected and contains no cycles. Prove that if G is a connected
graph with n vertices and n− 1 edges, then G is a tree.

Solution. See Exercises 8.
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(6) Recall that the complement of a graph G = (V, E) is the graph Ḡ with the same vertex V

and for every two vertices u, v ∈ V , uv is an edge in Ḡ if and only if uv is not and edge
of G.

Suppose that G is a graph on n vertices such that G is isomorphic to its own comple-
ment Ḡ. Prove that n ≡ 0( mod 4) or n ≡ 1( mod 4).

Solution. Every pair of vertices in V is an edge in exactly one of the graphs G, Ḡ. Hence
the number of edges e(G) of G and the number of edges e(Ḡ) satisfy:

e(G) + e(Ḡ) =

(
n

2

)
.

Since we assume that G and Ḡ are isomorphic, they must have the same number of edges,i.e.,
e(G) = e(Ḡ). Consequently, we have that

2e(G) = e(G) + e(Ḡ) =

(
n

2

)
=

n(n− 1)

2
.

Thus, n(n−1)
4

= e(G) must be an integer. Exactly one of the numbers n and n − 1 is even,
so either 4 divides n or 4 divides n − 1. In the first case, we have n ≡ 0( mod 4) and, in
the second case, we have n ≡ 1( mod 4). �

(7) A mouse intends to eat a 3× 3× 3 cube of cheese. Being tidy-minded, it begins at a corner
and eats the whole of a 1× 1× 1 cube, before going on to an adjacent one.

Can the mouse end in the center ?
Solution. Imagine each 1 × 1 × 1 cube as a vertex. We construct a graph G by joining

two vertices x, y by an edge if the mouse can move from x to y (i.e., when x and y have a
common side (not corner, not edge!)).

We claim that G is bipartite. Indeed, we define its bipartition X ∪ Y as follows: we put
the 8 corner cubes and centers of each side (6 of them) to X , all the other 1× 1× 1 cubes
to Y (i.e., the center of the 3 × 3 × 3 cube and one central cube from each of 12 edges of
the 3× 3× 3 cube). Is this really a bipartition? In other words, are there no edges in X or
in Y ? Clearly, no two corners cubes have a common side, no two center cubes are adjacent
as well, and a corner and the center of a side are not adjacent either. Similarly, the center of
the 3× 3× 3 cube is not adjacent to any of the central cubes from each of 12 edges of the
3× 3× 3 cube. These central cubes are non-adjacent as well.

So, the plan of our mouse is to ”eat” a path containing all the vertices of G, starting
in X (all corners are there) and ending in Y (the center of the 3 × 3 × 3 cube is there).
Such a path must alternate among vertices in X and Y because G is bipartite. However,
|X| = 14 > 13 = |Y | and we start in X , so this is impossible. �


