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MA210

Solutions to Exercises 8

(1) Suppose that G is a graph in which every vertex has degree at least k, where k ≥ 1, and in

which every cycle contains at least 4 vertices.

(a) Show that G contains a path of length at least 2k − 1.

Solution. Take the longest path v1, v2, . . . , v` in G. By maximality, all k neighbours of

v` must be on this path, i.e., in the set {v1, v2, . . . , v`−1}. But it is not possible that two

consecutive vertices vi, vi+1 are both neighbours of v2k, for otherwise, we would have

a cycle on three vertices vi, vi+1, v`. Hence, the set {v1, v2, . . . , v`−1}must also contain

at least k− 1 non-neighbours of v`. Consequently, `− 1 ≥ k + (k− 1), or, ` ≥ 2k and

the path has at least 2k − 1 edges, that is, it has length 2k − 1. �

(b) For each k ≥ 1, give an example of a graph in which every vertex has degree at least k,

every cycle contains at least 4 vertices, but which does not contain a path of length 2k.

Solution. The complete bipartite graph Kk,k contains no odd cycles (hence no cycle on

3 vertices), every vertex has degree k, and any path in it can have at most 2k vertices

because there are no more vertices in Kk,k. �

(2) How many non-isomorphic trees with five vertices are there? Let V = {1, 2, 3, 4, 5}. How

many different trees with vertex set V are there?

Solution. Removing a leaf from a tree yields a tree. There are only two trees on 4 vertices

- a path P4 and a star K1,3. By adding one vertex and examining the possibilities for adding

a leaf to these two trees, we obtain the following three non-isomorphic trees on 5 vertices:
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So, in how many ways we can assign labels from {1, 2, 3, 4, 5} to the trees above so that

each time we get a different edge set?

For the first first tree, which a path P5, each such an assignment is simply an ordering

of {1, 2, 3, 4, 5} to the line. There are 5! = 120 orderings, but some of them represent the

same graph. Which one are these? If we take any ordering, say 1, 2, 3, 4, 5, and ‘flip it’ (to

5, 4, 3, 2, 1), then these two sequences represent the same path (in this particuar example,

its edges are 12, 23, 34, 45). Hence, there are 5!/2 = 60 trees on V of this type.

For the second tree, any assignment of labels is uniquely determined by the labels on

vertices of degree 3, 2 and on the leaf attached to a vertex of degree 2. We have 5 possible

labels for the vertex of degree 3. After choosing this label, we have 4 labels for the vertex

of degree 2, and, after that selection is made, we have 3 choices for the leaf attached to the

vertex of degree 2. By the Multiplication Rule, there are 5 · 4 · 3 = 60 trees on V of this

type.

Finally, for the star K1,4, any assignment of labels is uniquely determined by the labels

on the vertex of degree 3. We have 5 options for this, so there are 5 trees of this type on V .

Altogether, there are 60 + 60 + 5 = 125 different trees on V . �

(3) Prove that if G is a connected graph with n vertices and n− 1 edges, then G is a tree.

Solution. We proceed by induction on n. For n = 1, the only graph with 1 vertex and

0 edges is K1, which is a tree.

Suppose that every connected graph with n− 1 vertices and n− 2 edges is a tree. Let G

be a connected graph with n vertices and n− 1 edges. First we claim that G has a vertex v

of degree 1. Indeed, we see that

2(n− 1) = 2e(G) =
∑

v∈V (G)

deg(v).

If every vertex had degree at least 2, then the right-hand side of the above equation would

be at least 2n and that is not possible. Since G is connected, every vertex has degree at least

1 and, therefore, there must be a vertex v of degree 1. Let u be the only neighbor of v in G.

We claim that G − v (the graph obtained from G by removing v and the edge vu) is

connected. Indeed, let x and y be two vertices in G − v. Since G is connected, there is a

path from x to y in G. Can this path contain v? If it did, then v would not be the endpoint
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of this path (x and y are the endpoints) and so the degree of v would have to be at least 2.

However, v has degree 1 so we would get a contradiction. So, a path connecting x and y in

G does not contain v, therefore, it is also a path in G− v. Hence, any two vertices in G− v

are connected by some path in G− v, i.e., G− v is connected.

Now, G−v has n−1 vertices, n−2 edges, and it is connected. By induction assumption,

it must be a tree. Hence, G − v does not contain a cycle. By adding v and vu back, we

cannot create a cycle. (Such a cycle would have to contain v, forcing it to have degree at

least 2. However, v has degree 1.) Also, G is connected by assumption, so G must be a

tree. �

(4) Let G be a graph. Prove that G is a tree if and only if for every pair of vertices u and v,

there is a unique path between u and v.

Solution. We have two implications to prove.

⇐ Let G be a graph in which for every pair of vertices u and v, there is a unique path

between u and v.

In order to show that G is a tree, we must verify that G is connected and G has no cycle.

G must be connected because we are given that for every pair of vertices u and v, there

is a path between u and v.

Suppose now that there is a cycle in G with vertices v1, v2, . . . , vk and edges v1v2,

v2v3, . . . , vk−1vk, vkv1. Then there are two paths between v1 and vk, namely, v1, vk and

v1, v2, . . . , vk. This is a contradiction with our assumption that between every two vertices

there is a unique path connecting them. Hence, G contains no cycles.

⇒ Suppose that G is a tree, that is, G is connected and acyclic. Since G is connected,

there is a path between every two vertices of G. We mus prove that such a path is unique.

Suppose there are two vertices, u and v, for which there are two different paths from u

to v. Let the vertices of the first path be u = x1, x2, . . . , xk−1, xk = v and let the vertices

of the second path be u = y1, y2, . . . , y`−1, y` = v.

We also assume that u and v are chosen in such a way that k + ` (the sum of lengths of

these two paths) is as small as possible among all the pairs of vertices which have at least

two paths in between them.
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If xi 6= yj for all 1 < i < k and 1 < j < `, then the two paths together form a cycle in G

and that is not possible because G is a tree.

Otherwise, we must have xi = yj = w for some 1 < i < k and 1 < j < `. What now?

(a) If u = x1, x2, . . . , xi−1, xi = w and u = y1, y2, . . . , yj−1, yj = w are two different

paths between u and w, then the sum of lengths of these paths i + j is smaller than

k + `. Thus, we have a contradiction with our initial choice of u and v.

(b) In the same way we obtain a contradiction if w = xi, xi+1, . . . , xk−1, xk = v and

w = yj , yj+1, . . . , y`−1, y` = v are two different paths between w and v.

(c) However, if neither of the above occurs, then both paths u = x1, x2, . . . , xk−1, xk =

v and u = y1, y2, . . . , y`−1, y` = v are the same! This is a contradiction with our

assumption that there are at least two different paths between u and v.

�

(5) Suppose that G is a forest with n vertices and c components. Prove that G has n− c edges.

Solution. Let G1, . . . , Gc be all the components of G. Each component is then connected

and with no cycle, i.e., every Gi is a tree. If we denote by ni the number of vertices in

component Gi, then we have e(Gi) = ni − 1 and n = n1 + n2 + · · ·+ nc.

As we have no edges between two components, we also have e(G) = e(G1) + e(G2) +

· · ·+ e(Gc), and therefore

e(G) = e(G1) + e(G2) + · · ·+ e(Gc) = (n1 − 1) + (n2 − 1) + · · ·+ (nc − 1) = n− c.

�

(6) Prove by induction that every tree is a bipartite graph. (Do not use the theorem about the

characterization of bipartite graphs from lectures. This problem is easy to prove directly.)

Solution. We will use the property that every tree T contains a vertex v of degree 1, and

that T − v is also a tree. (Why is this true?)

Now we proceed by induction on the number n of vertices of a tree T . For n = 1, 2,

the only trees are K1 and K2 and both are bipartite. Suppose that any tree on less than n

vertices is bipartite and let T be a tree on n vertices.
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Let v be a vertex of degree 1 in T and let u be its only neighbor. We know that T − v is

a tree with n − 1 vertices, so, by induction assumption, T − v has bipartition X, Y . (This

means that every edge in T − v has one endpoint in X and the other one in Y .)

Now, if u ∈ X , then X, Y ∪{v} is a bipartition of T . However, if u ∈ Y , then Y, X∪{v}

is a bipartition of T . �

(7) (a) How many spanning trees does the graph Pn have?

Solution. Pn is a tree itself; removing any of its edges disconnects it (resulting graph

has n − 2 edges, so it cannot be a tree). Hence, there is only one spanning tree of Pn.

�

(b) How many spanning trees does the graph Cn have?

Solution. Since every tree on n vertices has exactly n − 1 edges, we must remove

exactly one edge from Cn. For this we have n possibilities, and each time we get a

different tree. Hence, Cn has n different spanning trees. �

(c) How many spanning trees does the graph K4 have?

Solution. There are two trees on 4 vertices: path P4 and star K1,3 (i.e., one vertex

adjacent to 3 other vertices).

There are 4! ways to order the vertices of K4 and each such ordering forms the path P4.

However, orderings a, b, c, d and d, c, b, a form the same path (with edges ab, bc, cd),

hence K4 has 4!/2 = 12 different spanning paths P4.

Any star K1,3 in K4 is uniquely determined by the center of this star (the vertex that is

adjacent to the other 3 vertices). In K4, we have 4 choices for this center, so K4 has

four different spanning stars K1,3.

Altogether, K4 has 12 + 4 = 16 different spanning trees. �

(8) Let the graph Kn have vertices {1, 2, . . . , n} and suppose that for each u, v ∈ {1, 2, . . . , n},

the edge uv has weight cuv = u + v. Determine the minimum cost spanning tree of this

graph. What is the total cost for this minimum cost spanning tree?

Solution. We prove that for every n, Kruskal’s algorithm will choose edges 12, 13, . . . , 1n.

Hence, the total cost of this mimimum cost spanning tree is

3 + 4 + · · ·+ n + (n + 1) = 1
2
(n + 1)(n + 2)− 3.
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We order the edges as follows:

12,

13,

14, 23,

15, 24,

16, 25, 34,

...

1i, all the remaining edges of weight i + 1,

...

1n, all the remaining edges of weight at least n.

We claim that from each row above, Kruskal’ Algorithm will chose only the first edge (the

only one that contains vertex 1).

This is certainly true for the first 2 rows. So, let suppose that Kruskal’s Algorithm se-

lected the edges 12, 13, . . . , 1(i − 1), rejected all the others, and it is going to consider the

row:

1i, all the remaining edges of weight i + 1

Since the edge 1i together with 12, 13, . . . , 1(i − 1) form a star K1,i−1, which is a tree,

Kruskal’s Algorithm will accept it.

The remaining edges with weight i+1 are jk, where 2 ≤ j ≤ i−1 and k = i+1−j < i.

Since 1j and 1k were already picked by Kruskal’s Algorithm, adding jk would create a

cycle: 1j, 1k, jk. Hence, Kruskal’s Algorithm will reject it.

By induction, Kruskal’s algorithm will choose edges 12, 13, . . . , 1n. After edge 1n the

algorithm stops because we have a spanning tree. �


