Lent 2009

Discrete Mathematics MA 210

Notes for lectures 15 and 16

3.5 Extremal problems

Let *G* be a graph. Define the relation \sim on *V*(*G*) by

 $u \sim v \Leftrightarrow u = v$ or there exists a walk in *G* with *u* and *v* as ends.

It is easy to show that \sim is an equivalence relation. The equivalence classes of this relation are called the *components* of *G*. This means that vertices *u* and *v* belong to the same component if and only if there exists a walk in *G* between *u* and *v*.

Note that graph is connected if and only if the graph has exactly one component.

Theorem 3.9. Suppose that G is a graph in which every vertex has degree at least $k \ge 1$.

- 1. Then G contains a path of length at least k.
- 2. Then G contains a cycle of length at least k + 1.
- 3. If G has no path of length k + 1, then every component of G is a complete graph on k + 1 vertices.

Theorem 3.10 (Dirac's Theorem). Let G be a graph on $n \ge 3$ vertices, and suppose that every vertex $v \in V(G)$ satisfies $d(v) \ge n/2$. Then G contains a Hamilton cycle.

3.6 Some special graphs

The *path* P_n is a graph on *n* vertices with $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $E(P_n) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n\}$.

The cycle C_n is a graph on *n* vertices with $V(C_n) = \{v_1, v_2, ..., v_n\}$ and $E(C_n) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1\}$.

The *complete* graph K_n on n vertices is a graph with n vertices in which every two vertices are adjacent.

For $n \ge 1$, we define the *cube graph* Q_n as follows: $V(Q_n)$ is the set of all 0 - 1 sequences of length n and two sequences are joined by an edge if they differ in exactly one position.

3.7 Bipartite graphs

Definition 3.11. A graph *G* is bipartite if we can write $V(G) = A \cup B$ with $A \cap B = \emptyset$, and all edges of *G* have one end vertex in *A* and the other end in *B*.

Theorem 3.12 (König's Theorem). A graph G is bipartite if and only if G contains no odd cycles.