
Discrete Mathematics Lent 2009
MA 210

Notes for lectures 17 and 18

3.10 Chromatic number of graphs

Definition 3.16. A k-colouring of a graph G = (V, E) is a labelling f : V → {1, 2, . . . , k}.
The labels are colours; the vertices of one colour form a colour class.

A k-colouring is proper if adjacent vertices have different labels. A graph is k-colourable if
it has a proper k-colouring.

The chromatic number χ(G) is the least k such that G is k-colourable.

A graph G is k-chromatic if χ(G) = k.

Each colour class is an independent set (i.e., it contains no edge). Hence, a graph is 2-colourable
if and only if it is bipartite.

Definition 3.17. The independence number of a graph G, written α(G), is the maximumm
size of an independent set in G. The clique number of a graph G, written ω(G), is the
maximumm size of a pairwise adjacent vertices (clique) in G.

Lemma 3.18. For every n-vertex graph G, χ(G) ≥ ω(G) and χ(G) ≥ n
α(G) .

There exist graphs with χ(G) > ω(G) or with χ(G) > n
α(G) .

The greedy algorithmm for colouring an n-vertex graph G proceeds as follows:

1. Choose some ordering x1, x2, . . . , xn of the vertices of G.

2. Colour x1 with colour 1.

3. Colour remaining vertices in n− 1 steps: at the step j, where j = 2, 3, . . . , n, list the
colours of all the neighbours of xj in the set {x1, x2, . . . , xj−1}. Give xj the smallest
colour not used on this list.

The actual number of colours used by the greedy algorithmm depends on the graph G and
on the ordering of the vertices.

By analysing the greedy algorithm, we obtain the following result:

Theorem 3.19. For every graph G, we have χ(G) ≤ ∆(G) + 1, where ∆(G) = max
v∈V(G)

deg(v) is

the maximum degree of G.

Authors : Jozef Skokan c© London School of Economics, 2009

MA 210 — Discrete Mathematics Notes for lectures 17 — Page 2

4 Coding Theory

Coding theory is not the area of mathematics dealing with the theory of secret codes for MI5
etc. That are is called cryptography

Coding theory deals with the mathematical theory behind the designs of codes for storing
and transmitting information in such a way that there is a built-in capacity to recognize and
perhaps even correct errors.

4.1 Introduction and Notation

Instead of usual 26 letters of the alphabet, we shall work with two symbols only: “0” and
“1”. These are, not by accident, also the symbols with which computers work and in which
most digital communication is performed.

We almost always assume that our code consists of a number of sequences of length n, for
some natural number n. The set of all possible 0, 1-sequences of length n will be denoted by
{0, 1}n. Each symbol in such a sequence is called a bit. An element of {0, 1}n (a 0, 1-sequence
of length n) is called a word.

Definition 4.1. A binary code C (of length n) is a subset of {0, 1}n. An element of C is called a
codeword.

For example, when n = 3, we have

{0, 1}3 = {000, 001, 010, 100, 011, 101, 110, 111}

and a particular code might be C = {000, 011, 101, 110}. So, 011 is a codeword in C, whereas
111 is not.

The code C can send only four messages. So, why should we use this code instead of a
shorter code {00, 10, 01, 11} that can also send four messages?

One reason is as follows: We want to send one of four different messages and we encode
them by 00, 01, 10, 11. Suppose that we send 01. If something goes wrong during the trans-
mission, say the first bit gets changed from 0 to 1, then the receiver will receive 11. But
since this is one of the codewords, the receiver will think that we have sent 11 and will act
accordingly, with all the consequences.

Assume now that instead of 01 we send a codeword 011 from C. And again, suppose that
the first bit gets changed from 0 to 1. So, the receiver will receive 111. But this is not a
codeword! So, the receiver will know something is wrong, and most likely will ask to repeat
the message.

You should check for yourself that C = {000, 011, 101, 110} has a property that whenever
one bit of any codeword is changed, the result is not a codeword from C. In other words, as
long as not more than one error occurs, the receiver will be able to realize that an error has
occurred. We say that C is an one-error-detecting code.

4.2 Distance in codes

Definition 4.2. Let x̄, ȳ be any two words in {0, 1}n. Then the Hamming distance dH(x̄, ȳ)
of x̄ and ȳ is defined as the number of bits in which x̄ and ȳ are different. Hence, for x̄ =

MA 210 — Discrete Mathematics Notes for lectures 17 — Page 3

x1x2 . . . xn, ȳ = y1y2 . . . yn,

dH(x̄, ȳ) = |{i : xi 6= yi, i = 1, 2, . . . , n}|.

The weight w(x̄) of a word x̄ is the number of 1’s in the word. Another way to define the
weight is by w(x̄) = dH(x̄, 0̄), where 0̄ indicates the word 00 . . . 0.

Theorem 4.3. The Hamming distance has the following properties. For all x̄, ȳ, z̄ ∈ {0, 1}n,

1. dH(x̄, ȳ) = 0 if and only if x̄ = ȳ;

2. dH(x̄, ȳ) = dH(ȳ, x̄);

3. dH(x̄, z̄) + dH(z̄, ȳ) ≥ dH(x̄, ȳ).

Definition 4.4. Let C ⊆ {0, 1}n be a code of length n. Then the minimum distance of C is

δ(C) = min{dH(x̄, ȳ) : x̄, ȳ ∈ C, x̄ 6= ȳ}.

4.3 Error-detecting and error-correction

Let C be a code of length n. Suppose that a codeword x̄ ∈ C is transmitted, but some of
its bits get changed during the transmission. Hence, a word ȳ of length n is received, with
ȳ 6= x̄. Then the receiver will only recognize that an error occurred if ȳ 6∈ C.

A code C which has a property that we can always recognize if up to d errors have occurred
is called a d-error-detecting code.

Theorem 4.5. A code C is d-error-detecting if and only if δ(C) ≥ d + 1.

If we can only conclude that a received message contains errors, then we are still empty-
handed and the best thing we can do is to ask for the message to be resent. This is rather
inefficient, so we would like to have codes that can not only detect errors, but also tell us
which bits are wrong and how to correct them.

Notice that in binary codes, each bit has only two possible values (0 or 1), so knowing which
bits are wrong also tells us what are their correct values.

The way to get to error-correcting is by assuming that there is only a small probability that
one errors occurs and, hence, if p < q, the it is more likely that p errors have occurred than
that q have occurred. So, if a word ȳ is received and it is not a codeword, then we look for
a codeword x̄ ∈ C that differs from ȳ in the smallest possible numbers of bits. A problem
can arise if this codeword is not unique, or it is not the original codeword (if too many errors
occurred).

A more formal way to describe the process above is saying that if a word ȳ is received, then
we look for a codeword x̄ ∈ C such that

dH(ȳ, x̄) = min{dH(ȳ, z̄) : z̄ ∈ C}.

The principle above is called the nearest-neighbour decoding.

Definition 4.6. A code C is d-error-correcting if the code can always uniquely correct up to
d errors for every codeword.

MA 210 — Discrete Mathematics Notes for lectures 17 — Page 4

Theorem 4.7. A code C is d-error-correcting if and only if δ(C) ≥ 2d + 1.

For the proof see Biggs, Section 24.1.

Suppose we are given the code C = {000000, 111000, 000111, 111111}. Since δ(C) = 3, this
code is 1-error-correcting. For instance, if 011000 is received, then it is decoded to the code-
word 111000.

