Lent 2009

Discrete Mathematics MA 210

Notes for lectures 19 and 20

4 Coding Theory

4.4 Some examples of binary codes

4.4.1 Parity check codes

Let C_e be the set of all sequences in $\{0,1\}^n$ with even weigh. Hence C_e contains all 0, 1sequences of length n with an even number of 1's. We have seen before that the number of 0, 1-sequences of length n with an even number of 1's is the same as the number of 0, 1sequences of length n with an odd number of 1's. Since the total number of 0, 1-sequences of length n is 2^n , the number of 0, 1-sequences of length n with an even number of 1's is $2^n/2 = 2^{n-1}$. Hence we have that $|C_e| = 2^{n-1}$. You should convince yourself that the minimum distance of C_e is $\delta(C_e) = 2$. Hence C_e can detect one error.

Another way to get the code C_e is as follows: To every 0, 1-sequence of length $n - 1 \ \bar{x}^- \in \{0,1\}^{n-1}$ we add an extra *n*-thbit as follows: if the number of 1's in \bar{x}^- is even, then the extra bit is 0. If the number of 1's in \bar{x}^- is odd, then the extra bit is 1. In other words, the extra bit makes the total number of 1's even. Let C^+ be the collection of all words that results in this way, by varying \bar{x}^- over all sequebces in $\{0,1\}^n$. Then $C^+ = C_e$.

The extra bit we added is sometimes called the *parity check bit*. The codes C_e are called *parity check codes*.

For n = 4, we get the parity check code

 $C_e = \{0000, 0011, 0101, 1001, 1100, 1010, 0110, 1111\}.$

4.4.2 *d*-repetition code

Let *k* and *d* be positive integers, and set $n = k \cdot d$. Then the *d*-repetition code of length *n* is obtained as follows: For every $\bar{y} \in \{0, 1\}^k$, form \bar{x} by putting *d* copies of \bar{y} in a row. Let *C* be the collection of all all words \bar{x} that can be formed in this way.

It is easy to see that the *d*-repetition code *C* of length *n* has minimum distance $\delta(C) = d$. For k = 2 and d = 3, we get n = 6 and

 $C = \{000000, 010101, 101010, 111111\}.$

4.5 Preliminaries for linear codes

From now on we no longer consider $\{0,1\}$ as just a set with two element, but as a set with additional algebraic structure. We define addition in $\{0,1\}$ modulo 2:

$$0 + 0 = 0$$
, $1 + 0 = 1$, $0 + 1 = 1$, $1 + 1 = 0$.

For two words $\bar{x} = x_1 x_2 \dots x_n \in \{0,1\}^n$ and $\bar{y} = y_1 y_2 \dots y_n \in \{0,1\}^n$, we define the sum $\bar{z} = \bar{x} + \bar{y}$ as $\bar{z} = z_1 z_2 \dots z_n$, where $z_i = x_i + y + i$ for $i = 1, 2, \dots, n$.

With addition defined above, the set $\{0,1\}^n$ becomes an abelian group with identity $\overline{\mathbf{0}}$ in which every element is its own inverse (why?).

4.6 Linear codes

A code $C \subseteq \{0,1\}^n$ is called a *linear binary code* if for all $\bar{x}, \bar{y} \in C$ also $\bar{x} + \bar{y} \in C$.

Fact 4.8. If C is a linear code, then $\overline{\mathbf{0}} \in C$.

It follows from Fact 4.8 and from the definition of the linear code that every linear code $C \subseteq \{0,1\}^n$ is a subgroup of $\{0,1\}^n$. By Lagrange's Theorem, the size of C must divide the size of $\{0,1\}^n$. Since the size of $\{0,1\}^n$ is 2^n , the size of C must be 2^k for some $k, 0 \le k \le n$. We call this k the *dimension* of C.

Theorem 4.9. *Let C be a linear code. Then the minimum distance of C is the minimum weight of a non-zero codeword in C; hence*

$$\delta(C) = \min\{w(\bar{x}) : \bar{x} \in C, \, \bar{x} \neq \bar{\mathbf{0}}\}.$$

4.7 Construction of linear codes

Let *H* be a binary matrix with *k* rows and *n* columns. For a word $\bar{x} \in \{0, 1\}^n$, we write \bar{x}' for the word \bar{x} considered as a *column vector*. Then $H\bar{x}'$ is a column vector with *k* entries.

Theorem 4.10. Let *H* be a binary matrix with *n* columns. Then the set

$$C = \{ \bar{x} \in \{0, 1\}^n : H \bar{x}' = \bar{\mathbf{0}}' \}$$

is a linear code.

If *C* is a code constructed as above, then the matrix *H* is called the *parity-check matrix* or just the *check matrix* of *C*.

For example, let *H* be the matrix

$$H = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

Then the code *C* contains every word $\bar{x} = x_1 x_2 x_3$ satisfying

$$H\bar{\mathbf{x}}' = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \bar{\mathbf{0}}'.$$

This gives $x_1 + x_3 = 0$ and $x_2 = 0$, which is the same as $x_1 = x_3$ and $x_2 = 0$. We conclude that $C = \{000, 101\}$.

4.8 Correcting errors in linear codes

Theorem 4.11. *Let H be a binary matrix in which no column consists entirely of zeros, and in which no two columns are the same. Then the code C with H as the chceck matrix can correct one error.*

Suppose that *C* is a code with minimum distance at least 3. Hence we know we must be able to correct if at most one error occurs. So suppose that a codeword $\bar{x} \in C$ is transmitted and a word \bar{y} with at most one error is received. How can we determine whether \bar{y} is a correct word or, if not, what the error is?

Remember that the receiver only knows \bar{y} . So, in order to check whether \bar{y} is a codeword, the receiver can compare \bar{y} with all the codewords in *C*. If there is no match, then the receiver should check again and find a codeword that differs from \bar{y} in exactly one bit.

Now, this can be a rather tedious process, especially when the code is large. However, for linear codes we can do much better. Let *C* be a linear code determined by the check matrix *H* with minimum distance at least 3. Suppose that a codeword \bar{x} is sent and an error occurs in the *i*-th bit. Hence, the word \bar{y} that is received satisfies

$$\bar{y}=\bar{x}+\bar{e}_i,$$

where \bar{e}_i is the word with all bits equal to 0, except the *i*-th bit, which is 1. Then we can calculate

$$H\bar{y}' = H(\bar{x} + \bar{e}_i) = H\bar{x}' + H\bar{e}'_i.$$

Since \bar{x} is a codeword, we have $H\bar{x} = \bar{\mathbf{0}}'$. So,

$$H\bar{y}' = H\bar{e}'_i.$$

It is easy to see that $H\bar{e}'_i$ is equal to the *i*-th column of *H*.

So, we have the following procedure to detect and correct single errors in a linear code *C* with $\delta(C) \ge 3$ and with the check matrix *H*:

- 1. Compute $H\bar{y}'$, where \bar{y}' is the received word.
- 2. If $H\bar{y}' = \bar{\mathbf{0}}'$, then \bar{y} is a codeword.
- 3. If $H\bar{y}' \neq \bar{\mathbf{0}}'$, then locate the *i*-th column of *H* that equals to $H\bar{y}'$. Correct the *i*-th bit of \bar{y} .