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Abstract. We say that a family of graphs G = {Gn : n ≥ 1} is p-quasi-random,
0 < p < 1, if it shares typical properties of the random graph G(n, p); for a definition,
see below. We denote by Qw(p) the class of all graphs H for which e(Gn) ≥ (1 +
o(1))p

(
n
2

)
and the number of not necessarily induced labeled copies of H in Gn is at

most (1 + o(1))pe(H)nv(H) imply that G is p-quasi-random. In this note, we show that
all complete bipartite graphs Ka,b, a, b ≥ 2, belong to Qw(p) for all 0 < p < 1.

1. Notation

We start with fixing notation. For positive integers k, n and a real number x, we
set [n] = {1, . . . , n} and (x)k = x(x− 1)× · · · × (x− k + 1).

Given a graph G with vertex set V (G) and edge set E(G), v(G) stands for
|V (G)| and e(G) for |E(G)|. Furthermore, for a subset X of V (G), G[X] denotes
the subgraph induced by the vertices of X, and e(X) denotes the number of
edges of G[X]. Given a vertex x ∈ V (G), NG(x) is the set of all vertices adjacent
to x and, similarly, for a subset X of V (G), NG(X) denotes the set of all vertices
adjacent to every vertex in X. Clearly, NG(X) =

⋂
x∈X NG(x). We also put

deg(x) = degG(x) =
∣∣NG(x)

∣∣ and deg(X) = degG(X) =
∣∣NG(X)

∣∣.
For a graph G = Gn on n vertices, let λ1(G), . . . , λn(G),

λ1(G) ≥ |λ2(G)| ≥ · · · ≥ |λn(G)| ,

be the eigenvalues of its adjacency matrix.
Given two graphs G and H, a labeled induced copy of H in G is an injection

ψ : V (H) → V (G) such that {x, x′} ∈ E(H) if and only if {ψ(x), ψ(x′)} ∈ E(G).
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A labeled weak (i.e. not necessarily induced) copy of H in G is an injection
ψ : V (H) → V (G) such that if {x, x′} ∈ E(H), then {ψ(x), ψ(x′)} ∈ E(G).
Denote by

(
G
H

)
the set of all labeled induced copies of H in G and by

(
G
H

)w
the

set of all weak labeled copies of H in G.

2. Introduction

The theory of quasi-random graphs deals with properties of graphs, which are
equivalent in the sense that a graph satisfying one of the properties must possess
them all.

The study of quasi-random graphs was initiated by A.G. Thomason, cf. [11,
12], and systematically studied by Chung, Graham, and Wilson [5]. Their results
were later extended to the case of uniform hypergraphs of a constant density, see
[3,2,4,6].

Chung, Graham, and Wilson [5] proved the following theorem.

Theorem 1. Let 0 < p < 1, G = {Gn : n ∈ N} be a family of graphs, t ≥ 4 be an
even integer, s ≥ 4 be an integer. The following properties P1–P5 are equivalent
for the family G:

P1(s): For all graphs Hs on s vertices,∣∣∣∣(Gn

Hs

)∣∣∣∣ = (1 + o(1))pe(Hs)(1− p)(
s
2)−e(Hs)ns .

P2(t): e(Gn) ≥ (1 + o(1))p
(
n
2

)
and

∣∣∣(Gn

Ct

)w
∣∣∣ ≤ (1 + o(1))ptnt, where Ct denotes a

t-cycle.
P3: e(Gn) ≥ (1 + o(1))p

(
n
2

)
and λ1(Gn) = (1 + o(1))pn, λi(Gn) = o(n) for i ≥ 2.

P4: For all X ⊆ V (Gn), e(X) = p
2 |X|

2 + o(n2).
P5: For all but at most o(n) vertices x ∈ V (Gn), degGn

(x) = (1 + o(1))pn and
for all but at most o(n2) pairs of vertices x, x′ ∈ V (Gn), degGn

(x, x′) =
(1 + o(1))p2n.

The equivalence of these properties is understood in the following sense. For two
properties involving o(1) terms P = P (o(1)) and P ′ = P ′(o(1)), the implication
“P ⇒ P ′” means that for every ε > 0 there is a δ > 0 so that any graph Gn

satisfying P (δ) must also satisfy P ′(ε), provided n > N0(ε).
The families G satisfying properties P1 – P5 above are called p-quasi-random.

We also refer to any property equivalent to any of P1 – P5 as a p-quasi-random
property.

Since [5], many other p-quasi-random properties have been discovered (e.g.
[9,10]). Given a graph H = Ht, let Pw(H) be the following property:

Pw(H) : e(Gn) ≥ (1 + o(1))p
(
n

2

)
and

∣∣∣∣(Gn

H

)w∣∣∣∣ ≤ (1 + o(1))pe(H)nt.

One may ask to determine the class Qw = Qw(p) of all graphs H for which
Pw(H) is a p-quasi-random property. By the above theorem, all even cycles
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belong to this class. Chung, Graham, and Wilson further observed (cf. [5]) that
K2,t belong to Qw = Qw(p), however, odd cycles do not. As remarked in [1] one
does not expect Qw to be a large class. In this note, we show that all complete
bipartite graphs Ka,b, a, b ≥ 2, belong to Qw(p) for all 0 < p < 1 (cf. Theorem 2
below).

3. Bipartite Graphs

Our goal is to prove the following theorem. We will use Corollary 1 in its proof.
The proof of the corollary is postponed to Section 4.

Theorem 2. Let a, b ≥ 2 be integers. For 0 < p < 1, let Gp be a family of graphs
{Gn : e(Gn) ≥ (1 + o(1))p

(
n
2

)
}. If for every Gn ∈ Gp∣∣∣∣( Gn

Ka,b

)w∣∣∣∣ ≤ (1 + o(1))pabna+b, (1)

then Gp is p-quasi-random.

Proof. Note that adding (or removing) o(n2) edges to Gn ∈ G does not affect
whether G satisfies property P4 and, consequently, whether G is p-quasi-random
or not. Further, it also doesn’t change (1).

Hence, we may assume degGn
(x) > A1 for every vertex x ∈ V (Gn), degGn

(x, x′) >
A2 for all pairs of vertices x, x′ ∈ V (Gn), and degGn

(X) > Aa for all subsets
X ∈ [V (Gn)]a. Here [V (Gn)]a stands for the set of all a-element subsets of V (Gn)
and A1, A2 and Aa are numbers given by Corollary 1. Indeed, let Y be any subset
of V (Gn) with 2(A1+A2+Aa) vertices and set Z = V (Gn)\Y . We add to E(Gn)
any missing edge between Y and Z and any missing edge within Y . Altogether, we
increase the number of edges by at most 2(A1+A2+Aa)×n+4(A1+A2+Aa)2 =
o(n2). It is easy to see that every vertex (pair of vertices, or a-element subset,
respectively) has more than A1 (A2, or Aa respectively) common neighbors in
Y .

Then, note that∣∣∣∣( Gn

Ka,b

)w∣∣∣∣ =
∑

X∈[V (Gn)]a

a!b!
(

degGn
(X)

b

)
. (2)

We use the convexity of
(
y
b

)
1 for y ≥ 0, Jensen’s inequality, and the fact that∣∣[V (Gn)]a

∣∣ =
(
n
a

)
to estimate the right-hand side of (2). Indeed,∑

X∈[V (Gn)]a

a!b!
(

degGn
(X)

b

)
≥ a!b!

(
n

a

)(∑
X∈[V (Gn)]a degGn

(X)/
(
n
a

)
b

)
. (3)

1 We say that function
(

y
b

)
= (y)b/b! is convex on interval [0,∞) if the function

gb(y) =

{
0 for 0 ≤ y ≤ b− 1,

(y)b/b! for y ≥ b− 1

is convex (in the usual sense) for y ≥ 0.
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Note that, by double counting and the convexity of
(
y
a

)
,∑

X∈[V (Gn)]a

degGn
(X) =

∑
x∈V (Gn)

(
degGn

(x)
a

)
≥ n

(
2e(Gn)/n

a

)
.

Since e(Gn) ≥ (1 + o(1))p
(
n
2

)
, we obtain∑

X∈[V (Gn)]a

degGn
(X) ≥ (1 + o(1))npa

(
n

a

)
.

We combine this with (2) and (3) and conclude that∣∣∣∣( Gn

Ka,b

)w∣∣∣∣ ≥ (1+ o(1))na

(
(1+ o(1))npa

(
n

a

)
/

(
n

a

))
b

= (1+ o(1))pabna+b. (4)

Comparing (4) with (1), we obtain an asymptotic equality in all inequalities.
Hence, by Corollary 1 (note that degGn

(x) > A1 for every vertex x ∈ V (Gn)
is necessary to verify assumption (i) of this proposition), we get that for all but
o(n) vertices x ∈ V (Gn) we have degGn

(x) = (1 + o(1))pn. Similarly, for all but
o(na) sets X ∈ [V (Gn)]a, we have degGn

(X) = (1 + o(1))pan.
Consequently, ∑

X∈[V (Gn)]a

(
degGn

(X)
2

)
= (1 + o(1))

(
n

a

)
p2a

(
n

2

)
. (5)

On the other hand, by a double counting,∑
X∈[V (Gn)]a

(
degGn

(X)
2

)
=

∑
{x,x′}∈[V (Gn)]2

(
degGn

(x, x′)
a

)
. (6)

The right-hand side of (6) can be estimated using Jensen’s inequality again:∑
{x,x′}∈[V (Gn)]2

(
degGn

(x, x′)
a

)
≥

(
n

2

)(∑
{x,x′}∈[V (Gn)]2 degGn

(x, x′)/
(
n
2

)
a

)
. (7)

Since
∑

{x,x′}∈[V (Gn)]2 degGn
(x, x′) =

∑
y∈V (Gn)

(degGn
(y)

2

)
= (1 + o(1))p2n

(
n
2

)
,

we obtain∑
{x,x′}∈[V (Gn)]2

(
degGn

(x, x′)
a

)
≥

(
n

2

)(∑
{x,x′}∈[V (Gn)]2 degGn

(x, x′)/
(
n
2

)
a

)

≥
(
n

2

)(
(1 + o(1))p2n

(
n
2

)
/
(
n
2

)
a

)
= (1 + o(1))

(
n

a

)
p2a

(
n

2

)
.

(8)

Comparing (5) and (8) yields an asymptotic equality in (7). Consequently, by
Corollary 1 (note that degGn

(x, x′) > A2 for every pair x, x′ ∈ V (Gn) is needed
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to verify assumption (i) of this corollary), we have degGn
(x, x′) = (1 + o(1))p2n

for all but at most o(n2) pairs x, x′ ∈ V (Gn). Then, Gp is quasi-random by
property P5, Theorem 1.

We remark that the combined use of convexity and Corollary 1 was already
considered in [8,7] to address quasi-randomness for sparse graphs.

4. A Variant of the Cauchy-Schwarz Inequality

Since the function xk, k ≥ 2, is a strictly convex function, we have

ak
1 + · · ·+ ak

n

n
≥

(
a1 + · · ·+ an

n

)k

(9)

by Jensen’s inequality with equality iff a1 = a2 = · · · = an. The proposition
below shows that if equality in (9) holds asymptotically, then almost all ai’s are
roughly equal to their average.

Proposition 1. For every δ > 0 and a positive integer k ≥ 2 there exists ε > 0
such that for non-negative reals a1, a2, . . . , an satisfying

(i)
∑n

i=1 ai ≥ (1− ε)na, and
(ii)

∑n
i=1 a

k
i < (1 + ε)nak,

we have
∣∣{i : |a− ai| < δa}

∣∣ > (1− δ)n.

Proof. We distinguish two cases: k = 2 and k > 2.
The first case (k = 2) was already considered by Kohayakawa, Rödl, and

Sissokho in [7]. We include their proof for the sake of completeness. Given δ > 0
and non-negative reals a1, a2, . . . , an, we set ε = δ3/3 and B =

∣∣{i : |a− ai| ≥
δa}

∣∣. We prove the proposition by showing |B| < δn.
Indeed, it follows from the definition of B that

n∑
i=1

(ai − a)2 > |B|δ2a2. (10)

By our assumption,

n∑
i=1

(ai − a)2 =
n∑

i=1

a2
i − 2a

n∑
i=1

ai +
n∑

i=1

a2

≤ (1 + ε)a2 − 2a(1− ε)na+ na2 = 3εna2. (11)

Combining (10) and (11) yields |B|δ2a2 < 3εna2, which implies |B| < (3ε/δ2)n =
δn.

For the case when k > 2, we will use the well-known fact that for k > 2, we
have ( n∑

i=1

a2
i /n

)1/2

≤
( n∑

i=1

ak
i /n

)1/k

. (12)
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Set ε = δ3/3. Then

n∑
i=1

a2
i

(12)

≤
( n∑

i=1

ak
i /n

)2/k

n
(ii)

≤
((

1 + δ3/3
)
ak

)2/k

n ≤
(
1 + δ3/3

)
a2n

because 2/k < 1. Thus the proof follows from the k = 2 case.

The following corollary is similar to Proposition 1 but we consider function(
x
k

)
instead of xk.

Corollary 1. For every 0 < δ < 1 and positive integer k ≥ 2 there exists ε > 0
and Ak > 0 such that for non-negative reals a1, a2, . . . , an, a satisfying

(i) a > Ak and ai > Ak for all i ∈ [n],
(ii)

∑n
i=1 ai ≥ (1− ε)na, and

(iii)
∑n

i=1

(
ai

k

)
< (1 + ε)n

(
a
k

)
,

we have
∣∣{i : |a− ai| < δa}

∣∣ > (1− δ)n.

Proof. Set ε = δ3/12. Our conclusion follows from the fact that a1, . . . , an and
a satisfy the assumptions of Proposition 1. Since (ii) holds, we must only show
that

∑n
i=1 a

k
i ≤

(
1 + δ3/3

)
nak.

Since lim
x→∞

xk/(x)k = 1 for every positive integer k, there exists a real number

Ak such that xk < (1 + ε)(x)k whenever x > Ak. By (i)-(iii), we obtain

n∑
i=1

ak
i

(i)
< (1+ε)

n∑
i=1

(ai)k = (1+ε)k!
n∑

i=1

(
ai

k

)
(iii)
< (1+ε)2k!n

(
a

k

)
≤

(
1+δ3/3

)
nak.

5. Concluding remarks

In [5], the authors introduced forcing families of graphs. Let G = {Gn : n ≥ 1}
be a family of graphs. A family F of graphs is p-forcing if

∣∣∣(Gn

F

)w
∣∣∣ = (1 +

o(1))pe(F )nv(F ) for all F ∈ F and Gn ∈ G implies G is p-quasi-random. Chung,
Graham, and Wilson [5] asked what families were p-forcing, and, as an example
of p-forcing families, they mentioned {P2, C2t}, t ≥ 2, and {P2,K2,t}, t ≥ 2.

Clearly, if H is any graph for which Pw(H) is p-quasi-random, then {P2,H}
is p-forcing. In particular, {P2,Ka,b} is a p-forcing family for every a, b ≥ 2.
It would be interesting to decide whether {P2,H} is p-forcing (or Pw(H) is p-
quasi-random) for every connected bipartite graph H with at least one cycle. We
are not aware of an example of any bipartite graph H with at least one cycle for
which Pw(H) is not p-quasi-random.
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We also remark that if we consider induced copies instead of weak ones, then
we do not obtain p-quasi-random properties. In particular, define the following
property:

Pind(H) : e(Gn) ≥ (1 + o(1))p
(
n

2

)
and∣∣∣∣(Gn

H

)∣∣∣∣ ≤ (1 + o(1))pe(H)(1− p)(
v(H)

2 )−e(H)nv(H).

Then, for every connected graph H, one can find a non-degenerate interval I ⊂
[0, 1] such that for each p ∈ I there exists a family Gp = {Gn : e(Gn) ≥ (1 +
o(1))p

(
n
2

)
} satisfying Pind(H) but Gp is not p-quasi-random. We remark that

one can choose all Gn ∈ Gp of the form Gn = 2G(n/2, q), where G(n/2, q) is
a random graph with edge probability q, and leave the details to the interested
reader.
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