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Abstract. Haviland and Thomason and Chung and Graham were the first
to investigate systematically some properties of quasi-random hypergraphs. In

particular, in a series of articles, Chung and Graham considered several quite
disparate properties of random-like hypergraphs of density 1/2 and proved
that they are in fact equivalent. The central concept in their work turned

out to be the so called deviation of a hypergraph. They proved that having
small deviation is equivalent to a variety of other properties that describe
quasi-randomness. In this paper, we consider the concept of discrepancy for
k-uniform hypergraphs with an arbitrary constant density d (0 < d < 1) and
prove that the condition of having asymptotically vanishing discrepancy is
equivalent to several other quasi-random properties of H, similar to the ones
introduced by Chung and Graham. In particular, we prove that the correct
‘spectrum’ of the s-vertex subhypergraphs is equivalent to quasi-randomness
for any s ≥ 2k. Our work may be viewed as a continuation of the work of

Chung and Graham, although our proof techniques are different in certain
important parts.

1. Introduction and the main result

The rich interplay between the investigation of deterministic combinatorial struc-
tures and random combinatorial structures has been an important feature of modern
combinatorics. One aspect of this interaction focuses on the study of deterministic
structures that ‘mimic’ the behavior of random ones, from certain specific points
of view.

In this paper, we are interested in ‘quasi-random’ hypergraphs, in the sense
of Chung and Graham [5, 6]. Haviland and Thomason [9, 10], Chung [4], and
Chung and Graham [5, 6] have already established the fundamental results in this
area. Babai, Nisan, and Szegedy [3] have implicitly found a connection between
communication complexity and what is known as ‘hypergraph discrepancy’, a key
concept, as we shall see, in the study of quasi-random hypergraphs. This connection
was explored further by Chung and Tetali [7]. Here, we carry out our investigation
very much along the lines of Chung and Graham [5, 6], except that we focus on
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hypergraphs of arbitrary constant density, making use of different techniques in
certain delicate parts.

In the remainder of this introduction, we carefully discuss a result of Chung and
Graham [5] and state our main result, Theorem 1.3 below.

1.1. The result of Chung and Graham. We need to start with some definitions.
For a set V and an integer k ≥ 2, let [V ]k denote the system of all k-element subsets
of V . A subset G ⊂ [V ]k is called a k-uniform hypergraph. If k = 2, we have a
graph. We sometimes use the notation G = (V (G), E(G)). If there is no danger of
confusion, we shall identify the hypergraphs with their edge sets. In particular, we
write |H| for the number of edges in H. Throughout this paper, the integer k is
assumed to be a fixed constant.

For any l-uniform hypergraph G and k ≥ l, let Kk(G) be the set of all k-element
sets that span a clique K(l)

k on k vertices. We also denote by Kk(2) the complete
k-partite k-uniform hypergraph whose every partite set contains precisely two ver-
tices. We refer to Kk(2) as the generalized octahedron, or, simply, the octahedron.

We also consider a function µH : [V ]k → {−1, 1} such that, for all e ∈ [V ]k, we
have

µH(e) =
{
−1, if e ∈ H

1, if e 6∈ H.
Let [k] = {1, 2, . . . , k} and let V 2k denote the set of all 2k-tuples (v1, v2, . . . , v2k),
where vi ∈ V (1 ≤ i ≤ 2k). Furthermore, let Π(k)

H : V 2k → {−1, 1} be given by

Π(k)
H (u1, . . . , uk, v1, . . . , vk) =

∏
ε=(εi)ki=1

µH(ε1, . . . , εk),

where the product is over all vectors ε = (εi)ki=1 with εi ∈ {ui, vi} for all i and we
understand µH to be 1 on arguments with repeated entries.

The deviation dev(H) of H is defined by

dev(H) =
1
m2k

∑
ui,vi∈V, i∈[k]

Π(k)
H (u1, . . . , uk, v1, . . . , vk).

Note that the quantity m2k dev(H) is essentially the difference between the number
of 2k-tuples that induce an even number of edges and the number of 2k-tuples that
induce an odd number of edges.

For two hypergraphs G and H, we denote by
(H
G
)

the set of all induced subhy-
pergraphs of H that are isomorphic to G. We also write

(H
G
)w

for the number of
weak (i.e., not necessarily induced) subhypergraphs of H that are isomorphic to G.
Furthermore, we need the notion of the link of a vertex.

Definition 1.1. Let H be a k-uniform hypergraph and x ∈ V (H). We shall call
the (k − 1)-uniform hypergraph

H(x) = {e \ {x} : e ∈ H, x ∈ e}

the link of the vertex x in H. For a subset W ⊂ V (H), we define H(W ) by

H(W ) =
⋂
x∈W

H(x).

For simplicity, if W = {x1, . . . , xk}, we write H(x1, . . . , xk).
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Observe that if H is k-partite, then H(x) is (k − 1)-partite for every x ∈ V .
Furthermore, if k = 2, then H(x) may be identified with the set of all vertices
connected to x, i.e., H(x) is the neighborhood of x; furthermore, H(x, x′) is the set
of all vertices connected to both x and x′, i.e., H(x, x′) is the ‘joint neighborhood’
of x and x′.

In [5], Chung and Graham proved that if the density of an m-vertex k-uniform
hypergraph H is 1/2, i.e., |H| = (1/2 + o(1))

(
m
k

)
, where o(1)→ 0 as m→∞, then

the following statements are equivalent:
Q1(s): for all k-uniform hypergraphs G on s ≥ 2k vertices and automorphism

group Aut(G),∣∣∣∣(HG
)∣∣∣∣ = (1 + o(1))

(
m

s

)
2−(sk) s!

|Aut(G)|
,

Q2: for all k-uniform hypergraphs G on 2k vertices and automorphism group
Aut(G), ∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

2k

)
2−(2k

k ) (2k)!
|Aut(G)|

,

Q3: dev(H) = o(1),
Q4: for almost all choices of x, y ∈ V , the (k − 1)-uniform hypergraph
H(x)4H(y), that is, the complement [V ]k−1 \ (H(x)4H(y)) of the sym-
metric difference of H(x) and H(y), satisfies Q2 with k replaced by k − 1,

Q5: for k − 1 ≤ r < 2k and almost all x, y ∈ V ,∣∣∣∣(H(x, y)

K
(k−1)
r

)∣∣∣∣ = (1 + o(1))
(
m

r

)
2−( r

k−1).

The equivalence of these properties is understood in the following sense. For two
properties involving o(1) terms P = P (o(1)) and P ′ = P ′(o(1)), the implication
“P ⇒ P ′” means that for every ε > 0 there is a δ > 0 so that any k-uniform
hypergraph H on m vertices satisfying P (δ) must also satisfy P ′(ε), provided m >
M0(ε).

Chung and Graham [5] stated that “it would be profitable to explore quasi-
randomness extended to simulating random k-uniform hypergraphs Gp(n) for p 6=
1/2, or, more generally, for p = p(n), especially along the lines carried out so
fruitfully by Thomason [12, 13].” Our present aim is to take the first steps in
this direction. In this paper, we concentrate on the case in which p is an arbitrary
constant. In certain crucial parts, our methods are different from the ones of Chung
and Graham. In fact, it seems to us that the fact that the density of H is 1/2 is
essential in certain proofs in [5] (especially those involving the concept of deviation).

1.2. Discrepancy and the subgraph counting formula. The following concept
was proposed by Frankl and Rödl and was later used by Chung [4] and Chung and
Graham in [5, 6]. For an m-vertex k-uniform hypergraph H with vertex set V , we
define the density d(H) and the discrepancy disc1/2(H) of H as follows:

d(H) = |H|
(
m

k

)−1

and
disc1/2(H) =

1
mk

max
G⊂[V ]k−1

∣∣|H ∩ Kk(G)| − |H̄ ∩ Kk(G)|
∣∣ , (1)
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where the maximum is taken over all (k − 1)-uniform hypergraphs G with vertex
set V , and H̄ is the complement [V ]k \ H of H.

To accommodate arbitrary densities, we extend the latter concept as follows.

Definition 1.2. Let H be a k-uniform hypergraph with vertex set V with |V | = m.
We define the discrepancy disc(H) of H as follows:

disc(H) =
1
mk

max
G⊂[V ]k−1

∣∣|H ∩ Kk(G)| − d(H)|Kk(G)|
∣∣, (2)

where the maximum is taken over all (k − 1)-uniform hypergraphs G with vertex
set V .

Observe that if d(H) = 1/2, then disc(H) = (1/2) disc1/2(H), so both notions
are equivalent. Following some initial considerations by Frankl and Rödl, Chung
and Graham investigated the relation between discrepancy and deviation. In fact,
Chung [4] succeeded in proving the following inequalities closely connecting these
quantities:

(i) dev(H) < 4k(disc1/2(H))1/2k ,
(ii) disc1/2(H) < (dev(H))1/2k .

For simplicity, we state the inequalities for the density 1/2 case. For the general
case, see Section 5 of [4].

Before we proceed, we need to introduce a new concept. If the vertex set of a
hypergraph is totally ordered, we say that we have an ordered hypergraph. Given
two ordered hypergraphs G≺ and H≺′ , where ≺ and ≺′ denote the orderings on
the vertex sets of G = G≺ and H = H≺′ , we say that a function f : V (G) → V (H)
is an embedding of ordered hypergraphs if (i) it is an injection, (ii) it respects the
orderings, i.e., f(x) ≺′ f(y) whenever x ≺ y, and (iii) f(g) ∈ H if and only if g ∈ G,
where f(g) is the set formed by the images of all the vertices in g. Furthermore, if
G = G≺ and H = H≺′ , we write (

H
G

)
≺

=
(
H≺′
G≺

)
for the number of such embeddings. We use the same symbol ‘≺’ for the orders
involved in case this causes no confusion.

As our main result, we shall prove the following extension of Chung and Graham’s
result (in the sense that the density of H is allowed to be different from 1/2).

Theorem 1.3. Let H = (V,E) be a k-uniform hypergraph of density d on m
vertices. Then the following statements are equivalent:

P1: disc(H) = o(1),
P2: disc(H(x)) = o(1) and d(H(x)) = (1 + o(1))d for all but o(m) vertices
x ∈ V and disc(H(x, y)) = o(1) and d(H(x, y)) = (1 + o(1))d2 for all but
o(m2) pairs x, y ∈ V ,

P3: disc(H(x, y)) = o(1) and d(H(x, y)) = (1+o(1))d2 for all but o(m2) pairs
x, y ∈ V ,

P4: the number of non-induced copies of Kk(2) in H is asymptotically mini-
mized among all k-uniform hypergraphs of density d; indeed,∣∣∣∣( H

Kk(2)

)w∣∣∣∣ = (1 + o(1))
m2k

2kk!
d2k , (3)
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P5: for every s ≥ 2k and all k-uniform hypergraphs G on s vertices with e(G)
edges and automorphism group Aut(G),∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

s

)
de(G)(1− d)(

s
k)−e(G) s!

|Aut(G)|
,

P ′5: for every ordering H≺′ of H and for every fixed integer s ≥ 2k, every
ordered k-uniform hypergraph G≺ on s vertices with e(G) edges is such that∣∣∣∣(HG

)
≺

∣∣∣∣ = (1 + o(1))
(
m

s

)
de(G)(1− d)(

s
k)−e(G),

P6: for all k-uniform hypergraphs G on 2k vertices with e(G) edges and auto-
morphism group Aut(G),∣∣∣∣(HG

)∣∣∣∣ = (1 + o(1))
(
m

2k

)
de(G)(1− d)(

2k
k )−e(G) (2k)!

|Aut(G)|
.

P ′6: for every ordering H≺′ of H, every ordered k-uniform hypergraph G≺ on
2k vertices with e(G) edges is such that∣∣∣∣(HG

)
≺

∣∣∣∣ = (1 + o(1))
(
m

2k

)
de(G)(1− d)(

2k
k )−e(G).

The equivalence between properties is understood in the sense of Chung and
Graham’s approach.

Note that, similarly to the case where k = 2 (see, e.g., [1, 2]), the equivalence
among the above properties may be used to develop a fast algorithm for checking
whether a given hypergraph is quasi-random. While it is hard to check whether
disc(H) ≤ δ directly from the definition of disc(H), one may check property P4 in
O(m2k) time. This may be further improved using techniques from [1, 11].

Some of the implications in Theorem 1.3 are fairly easy or are by now quite
standard. There are, however, two implications that appear to be quite difficult.

The proof of Chung and Graham that dev1/2(H) = o(1) implies P5 (the ‘sub-
graph counting formula’) is based on an approach that has its roots in a seminal
paper of Wilson [14]. This beautiful proof seems to make non-trivial use of the
fact that d(H) = 1/2. Our proof of the implication that small discrepancy implies
the subgraph counting formula (P1 ⇒ P ′5) is based on a different technique, which
works well in the arbitrary constant density case (see Section 6).

The second implication with a rather technical proof is P2 ⇒ P1. This proof is
based on the observation that in k-uniform k-partite hypergraphs the regularity of
links and pair-links implies the regularity of the whole hypergraph. For details, we
refer the reader to Sections 3.1 and 4.

Remark. Let us make some remarks on the asymptotic notation that we shall use.
Unless otherwise stated, we understand by o(1) a function approaching zero as the
number of vertices of a given hypergraph goes to infinity. We also use x ∼ y if
x = (1 + o(1))y and x & y if x ≥ (1 + o(1))y. Finally, we write O1(x) for a term y
such that |y| ≤ x.

2. Definitions

Besides introducing some definitions and notation, our aim in this section is to
argue that, for most of the purposes of this paper, we may restrict ourselves to the
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case of k-partite k-uniform hypergraphs. To this end, we first set up a few facts
concerning k-partite hypergraphs.

2.1. Definitions for partite hypergraphs. For simplicity, we first introduce the
term cylinder to mean partite hypergraphs.

Definition 2.1. Let k ≥ l ≥ 2 be two integers. We shall refer to any k-partite
l-uniform hypergraph H = (V1 ∪ · · · ∪ Vk, E) as a k-partite l-cylinder or (k, l)-
cylinder. If l = k − 1, we shall often write Hi for the subhypergraph of H induced

on
⋃
j 6=i Vj . Clearly, H =

⋃k
i=1Hi. We shall also denote by K

(l)
k (V1, . . . , Vk) the

complete (k, l)-cylinder with vertex partition V1 ∪ · · · ∪ Vk.

Definition 2.2. For a (k, l)-cylinder H, we shall denote by Kj(H), l ≤ j ≤ k, the
(k, j)-cylinder whose edges are precisely those j-element subsets of V (H) that span
cliques of order j in H.

Clearly, the quantity |Kj(H)| counts the total number of cliques of order j in H.
In the case in which l = 1, the (k, j)-cylinder Kj(H) is the complete k-partite
j-uniform hypergraph on

⋃
H =

⋃
h∈H h.

When we deal with cylinders, we have to measure density according to their
natural vertex partitions.

Definition 2.3. Let H be a (k, k)-cylinder with k-partition V = V1 ∪ · · · ∪ Vk. We
define the k-partite density or simply the density d(H) of H by

d(H) =
|H|

|V1| . . . |Vk|
.

To be precise, we should have a distinguished piece of notation for the notion of
k-partite density. However, the context will always make it clear which notion we
mean when we talk about the density of a (k, k)-cylinder.

We should also be careful when we talk about the discrepancy of a cylinder.

Definition 2.4. Let H be a (k, k)-cylinder with vertex set V = V1 ∪ · · · ∪ Vk. We
define the discrepancy disc(H) of H as follows:

disc(H) =
1

|V1| . . . |Vk|
max

G⊂[V ]k−1

∣∣|H ∩ Kk(G)| − d(H)|Kk(G)|
∣∣, (4)

where the maximum is taken over all (k, k − 1)-cylinders G with vertex set V =
V1 ∪ · · · ∪ Vk.

We now introduce a simple but important concept concerning the “regularity”
of a (k, k)-cylinder.

Definition 2.5. Let H be a (k, k)-cylinder with k-partition V = V1 ∪ · · · ∪ Vk
and let δ < α be two positive real numbers. We say that H is (δ, α)-regular if the
following condition is satisfied: if G is any (k, k − 1)-cylinder such that

|Kk(G)| ≥ δ|V1| . . . |Vk|, (5)

then
(α− δ)|Kk(G)| ≤ |H ∩ Kk(G)| ≤ (α+ δ)|Kk(G)|. (6)

One should observe that the (δ, α)-regularity of a hypergraph H does not imply
that H has density α; we may only conclude that the density of a (δ, α)-regular
hypergraph is between α− δ and α+ δ. Moreover, the following simple facts hold.

Fact 2.6. Let H be a (δ, α)-regular (k, k)-cylinder. Then disc(H) ≤ 2δ.
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Fact 2.7. Suppose H is a (k, k)-cylinder with k-partition V = V1 ∪ · · · ∪ Vk. Put
α = d(H) and assume that disc(H) ≤ δ. Then H is (δ1/2, α)-regular.

2.2. The k-partite reduction. Suppose H is a k-uniform hypergraph and let H′
be one of its k-partite spanning subhypergraphs. In this section, we try to relate
the deviation and the discrepancy of H′ to those of H.

Definition 2.8. LetH = (V,E) be a k-uniform hypergraph with m vertices and let
P = (Vi)k1 be a partition of the vertex set V . We denote by HP the (k, k)-cylinder
consisting of the edges h ∈ H satisfying |h ∩ Vi| = 1 for all i ∈ [k].

The following proposition holds.

Proposition 2.9. For any partition P = (Vi)
k
1 of V , we have

(i) disc(H) ≥ |d(HP)− d(H)||V1| . . . |Vk|/mk, and
(ii) disc(HP) ≤ 2 disc(H)mk/|V1| . . . |Vk|.

Proof. Let P = (Vi)
k
1 be any partition of V . Observe that HP consists precisely of

the vertex sets of those copies of K(k−1)
k in K = K

(k−1)
k (V1, . . . , Vk) which are also

edges in H; that is, HP = H∩Kk(K). Since |Kk(K)| = |Kk(K(k−1)
k (V1, . . . , Vk))| =

|V1| . . . |Vk|, this implies the first part of the proposition by taking G = K in (2).
On the other hand, let G0 ⊂ [V ]k−1 be a (k, k − 1)-cylinder for which the max-

imum is attained in (4), the definition of disc(HP). Observe that HP ∩ Kk(G0) =
H ∩Kk(G0). Then

disc(HP) =
1

|V1| . . . |Vk|
∣∣|HP ∩ Kk(G0)| − d(HP)|Kk(G0)|

∣∣
≤ 1
|V1| . . . |Vk|

∣∣|H ∩ Kk(G0)| − d(H)|Kk(G0)|
∣∣

+
1

|V1| . . . |Vk|
∣∣d(H)|Kk(G0)| − d(HP)|Kk(G0)|

∣∣
≤ mk

|V1| . . . |Vk|
disc(H) +

1
|V1| . . . |Vk|

|Kk(G0)| |d(H)− d(HP)|

≤ mk

|V1| . . . |Vk|
disc(H) + |d(H)− d(HP)|

≤ 2mk

|V1| . . . |Vk|
disc(H),

where in the last inequality we used (i). �

We shall also need the following fact, which follows easily from, say, Chebyshev’s
inequality.

Fact 2.10. Let H = (V,E) be an m-vertex k-uniform hypergraph. Then (1 −
o(1))km partitions P = (Vi)

k
1 of V satisfy

(i) |Vi| = (1 + o(1))m/k for all i ∈ [k],
(ii) |HP | = (1 + o(1))(k!/kk)|H|, and

(iii) d(HP) = (1 + o(1))d(H),
where o(1)→ 0 as |H|/mk−1 →∞.

An immediate consequence of the previous proposition and Fact 2.10 is the fol-
lowing.
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Claim 2.11. If disc(H) = o(1), then disc(HP) = o(1) for (1 − o(1))km partitions
P = (Vi)

k
1 of V .

With some more effort, one may prove a converse to Claim 2.11.

Claim 2.12. Suppose there exists a positive real number γ > 0 such that disc(HP) =
o(1) for γkm partitions P = (Vi)

k
1 of V . Then disc(H) = o(1).

Proof. Let S be a set of partitions P for which disc(HP) = o(1) and |S| ≥ γkm.
Suppose disc(H) ≥ δ for some fixed δ > 0, and let G0 be a (k − 1)-uniform hy-
pergraph for which the maximum is attained in (2), the definition of disc(H). Let
P = (Vi)

k
1 ∈ S be a partition satisfying the conclusion of Fact 2.10 with respect to

H, H∩Kk(G0), and Kk(G0). Such a partition must exist since γkm+(1−o(1))km >
km. Observe that, then,

|HP ∩ Kk(G0)| = |(H ∩Kk(G0))P | = (1 + o(1))
k!
kk
|H ∩ Kk(G0)|,

and

|Kk(G0 ∩K(k−1)
k (V1, . . . , Vk))| = |(Kk(G0))P | = (1 + o(1))

k!
kk
|Kk(G0)|,

and, from (iii) of Fact 2.10,

d(HP) = (1 + o(1))d(H).

For convenience, put K = K
(k−1)
k (V1, . . . , Vk). We use an approach similar to the

one in Proposition 2.9 to get

disc(H) =
1
mk

∣∣|H ∩ Kk(G0)| − d(H)|Kk(G0)|
∣∣

=
1
mk

∣∣∣∣(1 + o(1))
kk

k!
|HP ∩ Kk(G0)| − (1 + o(1))d(HP)

kk

k!
|Kk(G0 ∩K)|

∣∣∣∣
≤ 1
mk

kk

k!

∣∣|HP ∩ Kk(K ∩ G0)| − d(HP)|Kk(G0 ∩K)|
∣∣

+
1
mk

kk

k!
o(1) (|HP ∩ Kk(K ∩ G0)|+ d(HP)|Kk(G0 ∩K)|)

≤ (1 + o(1))
1
k!

disc(HP) +
1
mk

kk

k!
o(1)2

(
m

k

)
≤ 2
k!

disc(HP) +
2kk

(k!)2
o(1).

Since by our assumptions disc(HP) = o(1), we immediately obtain that disc(H) < δ
for large enough m, which is a contradiction. �

We now state the k-partite version of a part of our main result, Theorem 1.3.

Theorem 2.13. Suppose V = V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = n, and let
H = (V,E) be a (k, k)-cylinder with |H| = dnk. Then the following four conditions
are equivalent:

C1: H is (o(1), d)-regular;
C2: H(x) is (o(1), d)-regular for all but o(n) vertices x ∈ Vk and H(x, y) is

(o(1), d2)-regular for all but o(n2) pairs x, y ∈ Vk;
C3: H(x, y) is (o(1), d2)-regular for all but o(n2) pairs x, y ∈ Vk;
C4: the number of copies of Kk(2) in H is asymptotically minimized among

all such (k, k)-cylinders of density d, and equals (1 + o(1))n2kd2k/2k.
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Remark. The simplifying condition |V1| = · · · = |Vk| = n has the sole purpose of
making the proof more readable and transparent. The immediate generalization of
Theorem 2.13 for V1, . . . , Vk of arbitrary sizes holds.

The proof of Theorem 2.13 will be given in Sections 4 and 5.

3. The derivation of the general case

In this part, we prove Theorem 1.3. We divide this proof into five sections. In
Section 3.1, we show the equivalence of properties P1, P2, and P3. The proof of
P4 ⇒ P1 is in Section 3.2. Both sections use Theorem 2.13 as the main tool. In
Section 3.3, we prove P1 ⇒ P ′5 using the ‘subhypergraph counting formula’ from
Section 6. Then we show that P ′5 ⇒ P5 ⇒ P6 and P ′5 ⇒ P ′6 ⇒ P6 (see Section 3.4).
Finally, we prove P6 ⇒ P4 in Section 3.5. The flow of the whole proof is described
in the following diagram.

P2 ⇒ P3 ⇒ P1

⇑ ⇓
P1 P ′6 ⇐ P ′5
⇑ ⇓ ⇓
P4 ⇐ P6 ⇐ P5

3.1. Proof of P1 ⇔ P2 ⇔ P3. We are now ready to show that, in the first part of
the proof of Theorem 1.3, we may assume the hypergraph H to be k-partite. To be
more precise, we show that the equivalence P1 ⇔ P2 ⇔ P3 in Theorem 1.3 follows
from Theorem 2.13. We shall illustrate this on P1 ⇒ P2; the other implications are
handled similarly. In fact, we shall be somewhat sketchy; we shall only indicate the
double counting argument that gives this result.

Suppose that we have a k-uniform hypergraph H with density d such that
disc(H) = o(1). From Fact 2.10 and Claim 2.11 we know that for all but o(1)km

partitions P of V we have disc(HP) = o(1) and d(HP) = (1 + o(1))d. For ev-
ery partition P, denote by X(P) the set of all vertices x ∈ V such that either
disc(HP(x)) 6= o(1) or disc(HP) 6= o(1). From Theorem 2.13 and Facts 2.6 and 2.7,
we know that for all but o(1)km partitions P, we have |X(P)| = o(m). For the
remaining o(1)km partitions P, we use |X(P)| ≤ m. For a vertex x ∈ V , we define
P(x) to be the collection of all partitions P for which x ∈ X(P). One can easily
see that ∑

P
|X(P)| =

∑
x∈V
|P(x)|.

Let S be the set of vertices x ∈ V for which |P(x)| > (1/2)km. Then

o(1)kmm+ o(m)km ≥
∑
P
|X(P)| =

∑
x∈V
|P(x)| > 1

2
|S|km,

hence |S| = o(m). This means that, for almost all vertices x ∈ V , we have
disc(H(x)P) = disc(HP(x)) = o(1) for at least (1/2)km partitions P. By Claim 2.12,
it follows that disc(H(x)) = o(1) for all but o(m) vertices x ∈ V . We proceed sim-
ilarly in order to show that disc(H(x, y)) = o(1) for all but o(m2) pairs x, y ∈ V .
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3.2. The minimization of the number of octahedra. The aim of this section
is to show that property P1 can be derived from property P4 using the equivalence
of the k-partite properties C1 and C4. We start with the following lemma.

Lemma 3.1. Suppose a k-uniform hypergraph H on m vertices with density d =
d(H) is such that ∣∣∣∣( H

Kk(2)

)w∣∣∣∣ ∼ m2k

2kk!
d2k . (7)

Then, for almost all partitions P of V = V (H),∣∣∣∣( HPKk(2)

)w∣∣∣∣ ∼ n2k

2k
d2k (8)

holds for n = m/k.

Proof. Put

X(P) =
∣∣∣∣( HPKk(2)

)w∣∣∣∣ .
We consider X as a r.v. on the uniform probability space of all partitions P of the
vertex set V of H. Clearly, we may write X as a sum of 0–1 indicator random
variables as follows:

X =
∑
K
XK,

where the sum is over all K ⊂ H with K ∼= Kk(2) and XK(P) = 1 if and only
if K ⊂ HP . Note that P(XK = 1) = P(K ⊂ HP) = k!km−2k/km. Therefore,
using (7), we have

E(X) =
∑
K
E(XK) =

∑
K
P(XK = 1) ∼ m2k

2kk!
d2k k!km−2k

km
∼ n2k

2k
d2k . (9)

We now invoke a lemma that will be proved in Section 5.1. Indeed, Claim 5.2 states
that ∣∣∣∣( G

Kk(2)

)w∣∣∣∣ & n2k

2k
d2k (10)

for all (k, k)-cylinders G of density d with n vertices in each of its vertex classes.
Comparing (9) and (10), we deduce that the expectation of X is asymptotically
equal to minX, and hence

P

(
X ≥ (1 + η)

n2k

2k
d2k
)

= o(1)

for any fixed η > 0. This completes the proof of Lemma 3.1.
�

We turn to the proof of the implication P4 ⇒ P1.

Proof of P4 ⇒ P1. Let H be a k-uniform hypergraph on m vertices such that∣∣∣∣( H
Kk(2)

)w∣∣∣∣ ∼ m2k

2kk!
d2k , (11)

where d is the density d(H) of H. Lemma 3.1 then implies that almost all vertex
partitions P = (Vi)k1 are such that∣∣∣∣( HPKk(2)

)w∣∣∣∣ ∼ n2k

2k
d2k , (12)
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where n = m/k. The implication C4 ⇒ C1 of Theorem 2.13 gives that, then, the
(k, k)-cylinder HP is (o(1), d(HP))-regular for almost all P. We now use Fact 2.6
to conclude that HP satisfies disc(HP) = o(1) for a.a. P. We may then apply
Claim 2.12 with, say, γ = 1/2, to deduce that disc(H) = o(1); in other words,
property P1 holds for H. �

3.3. Proof of P1 ⇒ P ′5. In this section, we prove that any k-uniform hypergraphH
with disc(H) = o(1) must be such that any k-uniform hypergraph G on s vertices
must occur as an induced subhypergraph of H as many times as one would expect
if H were a truly random hypergraph with density d. Our proof will be based on a
certain technical result, the ‘subhypergraph counting formula’, which will be proved
in Section 6.

Proof of P1 ⇒ P ′5. We need to show that for every given integer s ≥ 2k, real number
ε > 0, and density d ∈ (0, 1), there exists a real number δ > 0 such that property
P1(δ) (i.e., property P1 with o(1) replaced by δ) implies property P ′5(ε, s) (i.e.,
property P ′5 with given s and o(1) replaced by O1(ε)).

Let δ0 = δ0(d, ε) be the positive real number determined by Corollary 6.13 and
d0 = min{d, 1− d}. Choose δ > 0 of the form 1/t2k, where t ∈ N, satisfying

δ =
1
t2k
≤
(
δ0
2

)4

, (13a)

and

δ1/2k =
1
t
≤ εd

(sk)
0

100s2
≤ 1
s
. (13b)

Let m ≥ m(d, ε) be an integer divisible by t and set n = m/t.
Suppose that H = H≺′ and G = G≺ are two ordered k-uniform hypergraphs such

that V (H) = {v1 ≺′ v2 ≺′ · · · ≺′ vm}, V (G) = {w1 ≺ w2 ≺ · · · ≺ ws}, d(H) = d,
and disc(H) ≤ δ.

For every i ∈ [t] set Vi = {vj+n(i−1) : j ∈ [n]} and note that V (H) =
⋃t
i=1 Vi

is a partition of V (H). An s-tuple {u1, . . . , us} is crossing, or transversal, if∣∣{u1, . . . , us} ∩ Vi
∣∣ ≤ 1 for all i ∈ [t]. Note that the number of non-crossing s-

tuples is bounded from above by

t

(
n

2

)(
m− 2
s− 2

)
=

1
2
m
(m
t
− 1
)(m− 2

s− 2

)
(s)2

(s)2

=
m(m− t)
t(m)2

(
s

2

)(
m− 2
s− 2

)
(m)2

(s)2
≤ 1
t

(
s

2

)(
m

s

)
.

Since the number of crossing s-tuples is
(
t
s

)
ns, we have the following fact.

Fact 3.2.
(
m
s

)
−
(
t
s

)
ns ≤

(
s
2

)(
m
s

)
/t.

For I ⊂ [t], put HI = H
[⋃

i∈I Vi
]

and observe that HI is an (|I|, k)-cylinder.
One can mimic the proof of Proposition 2.9 and obtain the following fact.

Fact 3.3. For every I ∈ [t]k, we have d(HI) = d+O1(δ1/2) and

disc(HI) ≤ 2δ × tk = 2δ1/2.

Consequently, owing to Fact 2.7, the cylinder HI is (2δ1/4, d)-regular.
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Thus, the (s, k)-cylinder HI satisfies the assumptions of Corollary 6.13 for every
I ∈ [t]s. Therefore, there exist (1 +O1(ε))de(G)(1− d)(

s
k)−e(G)ns transversal copies

of G in each HI (I ∈ [t]s).
Let I = {i1 < i2 < · · · < is} ∈ [t]s and consider one transversal copy of G in H

on vertices u1 ≺ u2 ≺ · · · ≺ us, where uj ∈ Vij for every j ∈ [s]. Then the mapping
ϕ : V (G) → V (H) defined by ϕ(wi) = ui (i ∈ [s]) is an injection preserving order,
and preserving edges and non-edges of G; thus, ϕ ∈

(H
G
)
≺. In view of the previous

paragraph, we have

(1 +O1(ε))de(G)(1− d)(
s
k)−e(G)ns ×

(
t

s

)
(14)

such mappings.
On the other hand, let ϕ ∈

(H
G
)
≺. The s-tuple {ϕ(w1) ≺′ ϕ(w2) ≺′ · · · ≺′ ϕ(ws)}

is either crossing or not.
In the first case, this s-tuple induces a transversal copy of G in H, and, therefore,

equation (14) yields the number of mappings ϕ for which this case occurs. In the
second case, {ϕ(w1) ≺′ ϕ(w2) ≺′ · · · ≺′ ϕ(ws)} is not crossing. By Fact 3.2, there
are at most

(
s
2

)(
m
s

)
/t mappings ϕ yielding this case.

Combining these two cases together implies that∣∣∣∣(HG
)
≺

∣∣∣∣ = (1 +O1(ε))de(G)(1− d)(
s
k)−e(G)ns ×

(
t

s

)
+O1

(
1
t

(
s

2

)(
m

s

))
.

To complete the proof, it suffices to show that

(1 +O1(ε))de(G)(1− d)(
s
k)−e(G)ns ×

(
t

s

)
+O1

(
1
t

(
s

2

)(
m

s

))
= (1 +O1(2ε))

(
m

s

)
de(G)(1− d)(

s
k)−e(G). (15)

Owing to (13b), we have

1
t

(
s

2

)(
m

s

)
<

ε

100

(
m

s

)
de(G)(1− d)(

s
k)−e(G), (16a)

and

ts −
(
s

2

)
ts−1 > ts − ε

100
ts. (16b)

Since (16a) holds, (15) follows from the following inequality

(1− ε/2)
(
m

s

)
≤ ns

(
t

s

)
≤ (1 + ε/2)

(
m

s

)
.

While the right-hand side of this inequality is immediate, the left-hand side is
a consequence of (16b). �

3.4. Proof of P ′5 ⇒ P ′6 ⇒ P6 and P ′5 ⇒ P5 ⇒ P6. Implications P5 ⇒ P6 and
P ′5 ⇒ P ′6 are trivial since P6 (respectively, P ′6) is a special case of P5 (respectively,
P ′5). Moreover, P ′6 ⇒ P6 is a special case of P ′5 ⇒ P5, therefore, it suffices to prove
that P ′5 ⇒ P5.
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Proof of P ′5 ⇒ P5. Given two hypergraphs G and H, let us denote by
(H
G
)

inj
the

set of injections ϕ : V (G) → V (H) such that ϕ(g) ∈ H if and only if g ∈ G.
Moreover, we write

(H
G
)w

inj
for the set of such injections such that ϕ(g) ∈ H when-

ever g ∈ G. Thus,
(H
G
)

inj
is the set of embeddings ϕ of G into H such that ϕ(V (G))

induces an isomorphic copy of G in H, whereas
(H
G
)w

inj
is the set of embeddings ϕ

such that ϕ(V (G)) induces a superhypergraph of G in H. If G has automorphism
group Aut(G), it is easy to verify that we have∣∣∣∣∣

(
H
G

)
inj

∣∣∣∣∣ =
∣∣∣∣(HG

)∣∣∣∣ ∣∣Aut(G)
∣∣, (17)

and similarly for
(H
G
)w

inj
and

(H
G
)w

.
Suppose now that H is an ordered hypergraph with ordering ≺′. Then,(

H
G

)
inj

=
⋃
≺

(
H≺′
G≺

)
, (18)

where the union ranges over the set of all total orderings ≺ of V (G). Furthermore,
a moment’s thought shows that the union in (18) is a disjoint union. Hence∣∣∣∣∣

(
H
G

)
inj

∣∣∣∣∣ =
∑
≺

∣∣∣∣(H≺′G≺
)∣∣∣∣ . (19)

Since P ′5 holds, we have∣∣∣∣(H≺′G≺
)∣∣∣∣ = (1 + o(1))

(
m

s

)
de(G)(1− d)(

s
k)−e(G)

for every total ordering ≺ of V (G). Since there exist s! total orderings of V (G),
combining (17) and (19) yields P5. �

3.5. Minimization of octahedra from subhypergraph counting. We now
prove that property P6 (which concerns a certain ‘subhypergraph counting formula’
for induced subhypergraphs) implies property P4 (which concerns the number of
(weak) subhypergraphs isomorphic to octahedra). The proof will have two parts.
In the first part we shall show that, for every hypergraph H with density d, the
number of copies of Kk(2) in H is bounded from below by

(1 + o(1))
m2k

2kk!
d2k

(see Lemma 3.5). In the second part, we shall prove that P6 implies the asymptotic
equality (3) given in property P4 of Theorem 1.3. We start with the following
lemma.

Lemma 3.4. Suppose the k-uniform hypergraph H with m vertices and with den-
sity d = d(H) is such that HP satisfies∣∣∣∣( HPKk(2)

)w∣∣∣∣ & n2k

2k
d2k (20)

for almost all partitions P = (Vi)k1 of the vertex set V = V (H), where n = m/k.
Then ∣∣∣∣( H

Kk(2)

)w∣∣∣∣ & m2k

2kk!
d2k . (21)
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Proof. This lemma follows easily from a double counting argument. Let us consider
the family of pairs (K,P) such that

(i) Kk(2) ∼= K ⊂ H,
(ii) P = (Vi)k1 is such that (20) holds and |Vi| ∼ n = m/k (1 ≤ i ≤ k),

and, finally,

(iii) K ⊂ HP .

On the one hand, the number N of such pairs (K,P) is∑
P

∣∣{K : (i) and (iii) hold
}∣∣, (22)

where the sum is over all P for which (ii) holds. Thus, because of our assumption
on H and Fact 2.10, we have that

N & km
n2k

2k
d2k . (23)

On the other hand, we have that

N =
∑
K

∣∣{P : (ii) and (iii) hold
}∣∣ ∼ ∣∣∣∣( H

Kk(2)

)w∣∣∣∣ k!km−2k, (24)

where the sum is over all K that satisfy (i). Above, we again made use of Fact 2.10
to estimate the number of relevant partitions P for each fixed K. Comparing (23)
and (24), we deduce (21). �

The proof of the lower bound on the number of Kk(2) in H is straightforward
now.

Lemma 3.5. For any m-vertex k-uniform hypergraph H with density d = d(H),∣∣∣∣( H
Kk(2)

)w∣∣∣∣ & m2k

2kk!
d2k . (25)

Proof. We know that all but o(1)km partitions P satisfies |Vi| = n ∼ m/k and
d(HP) ∼ d (see Fact 2.10). By Claim 5.2 we know that∣∣∣∣( HPKk(2)

)∣∣∣∣ & n2k

2k
d2k ,

and, therefore, by Lemma 3.4, (25) holds. �

Proof of P6 ⇒ P4. Let H be a k-uniform hypergraph on m vertices such that, for
any k-uniform hypergraph G on 2k vertices, we have∣∣∣∣(HG

)∣∣∣∣ ∼ (m2k
)
de(G)(1− d)(

2k
k )−e(G) (2k)!

|Aut(G)|
, (26)

where d = d(H) is the density of H and Aut(G) is the automorphism group of G.
From (17) it follows that, for any such G, we have∣∣∣∣∣

(
H
G

)
inj

∣∣∣∣∣ ∼ (m)2kd
e(G)(1− d)(

2k
k )−e(G), (27)
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where, as usual, (a)b = a(a − 1) . . . (a − b + 1). We are interested in estimat-
ing

∣∣∣(HG)winj

∣∣∣. Clearly, (
H
G

)w

inj

=
⋃
G′

(
H
G′

)
inj

, (28)

where the union ranges over all k-uniform hypergraphs G′ with the same vertex set
as G and G′ ⊃ G. Furthermore, a moment’s thought shows that the union in (28)
is a disjoint union. Hence∣∣∣∣∣

(
H
G

)w

inj

∣∣∣∣∣ =
∑
G′

∣∣∣∣∣
(
H
G′

)
inj

∣∣∣∣∣
∼
∑
G′

(m)2kd
e(G′)(1− d)(

2k
k )−e(G′)

=
∑
t≥0

∑
e(G′)=e(G)+t

(m)2kd
e(G)+t(1− d)(

2k
k )−e(G)−t

=
∑
t≥0

((2k
k

)
− e(G)
t

)
(m)2kd

e(G)+t(1− d)(
2k
k )−e(G)−t

= (m)2kd
e(G)

∑
t≥0

((2k
k

)
− e(G)
t

)
dt(1− d)(

2k
k )−e(G)−t

= (m)2kd
e(G).

Thus, ∣∣∣∣∣
(
H

Kk(2)

)w

inj

∣∣∣∣∣ ∼ (m)2kd
2k .

It now suffices to recall the analogue of (17) for weak subhypergraphs to conclude
the proof of P4, since |Aut(Kk(2))| = k!2k. �

4. Proof of C1 ⇔ C2

In this section, we shall prove the equivalence of conditions C1 and C2 in Theo-
rem 2.13. We start with a fairly standard proof of C1 ⇒ C2 (see Section 4.1), and
then, in Section 4.2, we prove the converse C2 ⇒ C1.

4.1. Proof of C1 ⇒ C2. The proof follows from the two claims below.

Claim 4.1. Suppose 0 < ε1/2 < d, V = V1 ∪ · · · ∪ Vk, |V1| = · · · = |Vk| = n, and
let H = (V,E) be a (ε, d)-regular (k, k)-cylinder. Then for all but at most 2ε1/2n
vertices x ∈ Vk, the link H(x) is (ε1/2, d)-regular.

Proof. Let X− be the set of all vertices x ∈ Vk with the following property: there
exists a (k − 1, k − 2)-cylinder Fx with (k − 1)-partition V1 ∪ · · · ∪ Vk−1 such that

|Kk−1(Fx)| ≥ ε1/2nk−1, (29)

but
|H(x) ∩ Kk−1(Fx)| <

(
d− ε1/2

)
|Kk−1(Fx)|. (30)
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We also define X+ to be the set of all vertices x ∈ Vk satisfying (29) for which we
have

|H(x) ∩ Kk−1(Fx)| ≥
(
d+ ε1/2

)
|Kk−1(Fx)|.

Suppose that |X−| > ε1/2n and define a (k, k − 1)-cylinder G by

G = K
(k−1)
k−1 (V1, . . . , Vk−1) ∪

⋃
x∈X−

{e ∪ {x} : e ∈ Fx}

Observe that

|Kk(G)| =
∑
x∈X−

|Kk−1(Fx)| ≥ |X−|ε1/2nk−1 ≥ εnk,

and, therefore, by the regularity of H,

|H ∩ Kk(G)| ≥ (d− ε)|Kk(G)| = (d− ε)
∑
x∈X−

|Kk−1(Fx)|.

On the other hand, from (30) we obtain

|H ∩ Kk(G)| =
∑
x∈X−

|H(x) ∩ Kk−1(Fx)| <
(
d− ε1/2

) ∑
x∈X−

|Kk−1(Fx)|,

which is a contradiction.
Hence |X−| ≤ ε1/2n. Similarly we obtain |X+| ≤ ε1/2n. �

Claim 4.2. Suppose 0 < ε < 1/16, 2ε1/2 < d, V = V1 ∪ · · · ∪ Vk, |V1| = · · · =
|Vk| = n, and let H = (V,E) be a (ε, d)-regular (k, k)-cylinder. Then, H(x, y) is
(ε1/4, d2)-regular for all but at most 4ε1/4n2 pairs of vertices x, y ∈ Vk.

Proof. From the previous claim we know that there are at most 2ε1/2n vertices x
in Vk with (ε1/2, d)-irregular link H(x). These vertices form at most 2ε1/2n2 pairs
and we shall exclude them from further considerations.

For a vertex x ∈ Vk denote by Y −x the set of all vertices y ∈ Vk with the following
property: there exists a (k−1, k−2)-cylinder Fy with (k−1)-partition V1∪· · ·∪Vk−1

such that
|Kk−1(Fy)| ≥ ε1/4nk−1, (31)

but
|H(x, y) ∩ Kk−1(Fy)| <

(
d2 − ε1/4

)
|Kk−1(Fy)|. (32)

We also denote by Y +
x the set of all vertices y ∈ Vk for which there is a (k−1, k−2)-

cylinder Fy that satisfies (31), but

|H(x, y) ∩ Kk−1(Fy)| >
(
d2 + ε1/4

)
|Kk−1(Fy)|.

Suppose there exists a vertex x ∈ Vk with (ε1/2, d)-regular link H(x) for which
|Y −x | ≥ ε1/4n. Define a (k, k − 1)-cylinder G by

G = H(x) ∪
⋃

y∈Y −x

{e ∪ {y} : e ∈ Fy}.

Then
|Kk(G)| =

∑
y∈Y −x

|H(x) ∩ Kk−1(Fy)|.
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Note that (31) together with the (ε1/2, d)-regularity of H(x) implies that

|H(x) ∩ Kk−1(Fy)| ≥
(
d− ε1/2

)
|Kk−1(Fy)|

for all y ∈ Y −x . Hence

|Kk(G)| ≥
∑
y∈Y −x

(
d− ε1/2

)
|Kk−1(Fy)|

≥
(
d− ε1/2

)
|Y −x |ε1/4nk−1 ≥

(
d− ε1/2

)
ε1/2nk ≥ εnk. (33)

By the (ε, d)-regularity of H and (33), we have

|H ∩ Kk(G)| ≥ (d− ε)|Kk(G)| ≥ (d− ε)
(
d− ε1/2

) ∑
y∈Y −x

|Kk−1(Fy)|. (34)

On the other hand, the size of H ∩ Kk(G) can be bounded from above using (32)
as follows:

|H ∩ Kk(G)| =
∑
y∈Y −x

|H(x, y) ∩ Kk−1(Fy)| <
(
d2 − ε1/4

) ∑
y∈Y −x

|Kk−1(Fy)|. (35)

Comparing (34) and (35), we get

(d− ε)
(
d− ε1/2

)
< d2 − ε1/4,

which implies

ε1/4 <
(
ε+ ε1/2

)
d < ε+ ε1/2,

which is not true for ε < 1/16.
Hence we have |Y −x | ≤ ε1/4n. We also obtain |Y +

x | ≤ ε1/4n in exactly the same
way. Consequently, the number of “bad” pairs is bounded by 2ε1/2n2+2ε1/4n×n ≤
4ε1/4n2. �

4.2. Proof of C2 ⇒ C1. The objective of this section is to prove the following
theorem.

Theorem 4.3. For every δ > 0 and d > 0 there exist ε > 0 and n0 ∈ N such
that the following holds. If H is a (k + 1, k + 1)-cylinder with (k + 1)-partition
V1 ∪ · · · ∪ Vk+1 such that

(i) |Vi| = n ≥ n0 for all i ∈ [k + 1],
(ii) |H| = dnk+1,
(iii) H(x) is (ε, d)-regular for all but at most εn vertices x ∈ Vk+1, and
(iv) H(x, y) is (ε, d2)-regular for all but at most εn2 pairs x, y ∈ Vk+1,

then H is (δ, d)-regular.

Remark. Here, we work with (k+ 1, k+ 1)-cylinders to simplify the notation. With
this choice, we shall encounter (k + 1)-, k-, and (k − 1)-uniform hypergraphs.

Proof. Let H be a (k + 1, k + 1)-cylinder satisfying assumptions (i)–(iv). We shall
assume that

ε = (δ/4)32 < δ < d ≤ 1. (36)
Suppose that H is not (δ, d)-regular, i.e., Definition 2.5 fails. Without loss of

generality (by taking complements) we may assume that the second inequality in
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(6) is not true, therefore, there exists a (k+1, k)-cylinder G =
⋃k+1
i=1 Gi with (k+1)-

partition V1 ∪ · · · ∪ Vk+1 such that

|Kk+1(G)| ≥ δnk+1 (37)

but
|H ∩ Kk+1(G)|
|Kk+1(G)|

> d+ δ. (38)

We now work on this ‘witness’ G for the irregularity of H.

Fact 4.4. There exist subcylinders G′i ⊂ Gi (i ∈ [k]) such that G∗ = G′1 ∪ · · · ∪ G′k ∪
Gk+1 satisfies the following four conditions:

(1) Kk(G∗(x)) = ∅ or |Kk(G∗(x))| ≥ εnk for all x ∈ Vk+1,
(2) H(x) is (ε, d)-regular for all x ∈ Vk+1 with |Kk(G∗(x))| ≥ εnk,
(3) |Kk+1(G∗)| ≥ (δ/2)nk+1,
(4) |H ∩ Kk+1(G∗)| ≥ (d+ δ/2)|Kk+1(G∗)|.

Proof. For every vertex x ∈ Vk+1 with |Kk(G(x))| < εnk or with (ε, d)-irregular
link H(x), delete all edges in G that contain x. Notice that this operation does not
remove any edge from Gk+1 and produces a subhypergraph G∗ = G′1∪· · ·∪G′k∪Gk+1

that satisfies conditions (1) and (2).
Moreover, every removal reduces the size of Kk+1(G) (and H ∩ Kk+1(G)) by at

most εnk if |Kk(G(x))| < εnk or by at most nk if H(x) is (ε, d)-irregular. Since
there are at most εn vertices x with (ε, d)-irregular link, we obtain that

|Kk+1(G∗)| ≥ |Kk+1(G)| − n× εnk − εn× nk,
and

|H ∩ Kk+1(G∗)| ≥ |H ∩ Kk+1(G)| − n× εnk − εn× nk,
The first inequality together with assumption (37) shows that

|Kk+1(G∗)| ≥ |Kk+1(G)| − 2εnk+1 ≥ δnk+1 − 2(δ/4)32nk+1 ≥ (δ/2)nk+1.

Similarly, the second inequality, (37), and (38) yield

|H ∩ Kk+1(G∗)| ≥ |H ∩ Kk+1(G)| − 2εnk+1 ≥ (d+ δ)|Kk+1(G)| − 2(δ/4)32nk+1

≥ (d+ δ/2)|Kk+1(G)|+ (δ/2)δnk+1 − 2(δ/4)32nk+1

≥ (d+ δ/2)|Kk+1(G∗)|,
and the proof is complete. �

We have to work on G∗ further to obtain a witness with more structure. We
shall need the following definition.

Definition 4.5. For each e ∈ Gk+1 define two parameters g(e) and h(e) by

g(e) =
∣∣{x ∈ Vk+1 : {x} ∪ e ∈ Kk+1(G∗)}

∣∣,
h(e) =

∣∣{x ∈ Vk+1 : {x} ∪ e ∈ H ∩ Kk+1(G∗)}
∣∣.

Fact 4.6. Put δ′ = δ2/16. Then there exists a subcylinder G′k+1 ⊂ Gk+1 such that
G′ = G′1 ∪ · · · ∪ G′k ∪ G′k+1, where the G′i (i ∈ [k]) are taken from Fact 4.4, satisfies
the following five conditions:

(1) Kk(G′(x)) = ∅ or |Kk(G′(x))| ≥ εnk for all x ∈ Vk+1,
(2) H(x) is (ε, d)-regular for all x ∈ Vk+1 with |Kk(G′(x))| ≥ εnk,
(3) |Kk+1(G′)| ≥ δ′nk+1,
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(4) h(e)/g(e) ≥ d+ δ/4 for all e ∈ G′k+1,
(5) g(e) ≥ δ′n for all e ∈ G′k+1.

Proof. We decompose Gk+1 into two subcylinders G∗k+1 ∪ G∗∗k+1, where

G∗∗k+1 =
{
e ∈ Gk+1 :

h(e)
g(e)

≥ d+
δ

4

}
and

G∗k+1 = Gk+1\G∗∗k+1.

Let G∗ be as in Fact 4.4. Observe that∑
e∈Gk+1

g(e) = |Kk+1(G∗)|
Fact 4.4 (3)

≥ (δ/2)nk+1

and ∑
e∈Gk+1

h(e) = |H ∩ Kk+1(G∗)|
Fact 4.4 (4)

≥ (d+ δ/2)|Kk+1(G∗)|.

Then for G∗∗ = G′1 ∪ · · · ∪ G′k ∪ G∗∗k+1 we have

|Kk+1(G∗∗)| =
∑

e∈G∗∗k+1

g(e) ≥
∑

e∈G∗∗k+1

h(e) =
∑

e∈Gk+1

h(e)−
∑

e∈G∗k+1

h(e)

>

(
d+

δ

2

)
|Kk+1(G∗)| −

(
d+

δ

4

) ∑
e∈Gk+1

g(e)

=
(
d+

δ

2

)
|Kk+1(G∗)| −

(
d+

δ

4

)
|Kk+1(G∗)| = δ

4
|Kk+1(G∗)| ≥ δ2

8
nk+1.

Note that at least (δ2/16)nk edges e of G∗∗k+1 must have g(e) ≥ (δ2/16)n, otherwise
we would have

|Kk+1(G∗)| < δ2

16
nk · n+ nk · δ

2

16
n =

δ2

8
nk+1,

which would be a contradiction. Remove all edges e with g(e) < (δ2/16)n from
G∗∗k+1 and obtain G′k+1. Then, G′k+1 satisfies condition (4) because of the definition
of G∗∗k+1 ⊃ G′k+1. It satisfies condition (5) because all edges e with g(e) < (δ2/16)n
have been removed, and G′ also satisfies condition (3) because

|Kk+1(G′)| ≥ |Kk+1(G∗∗)| − nk · δ
2

16
n ≥ δ2

8
nk+1 − δ2

16
nk+1 =

δ2

16
nk+1.

Finally, G′ must satisfy (1) and (2) because we did not change any of G′i (i ∈ [k]). �

Before we come back to the proof of Theorem 4.3, we state an auxiliary lemma.
Let 0 < α ≤ 1 and 0 < µ < 1 be given. Let G be a bipartite graph with vertex
classes X1 ∪X2 and let H be a subgraph of G. We call an ordered pair of vertices
(x, y) ∈ X1 ×X1 good if

|H(x) ∩G(y)| = α(1 +O1(µ))|G(x, y)| (39)

and
|H(x, y)| = α2(1 +O1(µ))|G(x, y)|. (40)

We also call a pair bad if it is not good.
The auxiliary lemma is as follows.
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Lemma 4.7 (Dementieva, Haxell, Nagle, and Rödl [8]). Let 0 < α ≤ 1 and 0 <
µ < 1 be given. Suppose the bipartite graphs G and H are such that∑

bad (x,y)∈X1×X1

|G(x, y)| < µα2

(1− α)2 + α2

∑
z∈X2

|G(z)|2. (41)

Then ∑
z∈X2

(|H(z)| − α|G(z)|)2 ≤ 5µα2
∑
z∈X2

|G(z)|2. (42)

The following corollary of the above lemma holds.

Corollary 4.8. Let 0 < α ≤ 1, 0 < µ ≤ 1, and ν > 0 be given. Let G and H be
bipartite graphs as in Lemma 4.7. Denote by W the set of all vertices z ∈ X2 such
that |H(z)| ≥ (α+ ν)|G(z)|. Then∑

z∈W
|G(z)| ≤

(
5µ/ν2

)1/2 |X1||X2|. (43)

Proof. Clearly, 5µα2
∑
z∈X2

|G(z)|2 ≤ 5µα2|X1|2|X2| ≤ 5µ|X1|2|X2|. On the other
hand,∑

z∈X2

(|H(z)| − α|G(z)|)2 ≥
∑
z∈W

(|H(z)| − α|G(z)|)2 ≥ ν2
∑
z∈W
|G(z)|2

≥ ν2

|W |

(∑
z∈W
|G(z)|

)2

≥ ν2

|X2|

(∑
z∈W
|G(z)|

)2

.

Finally, using inequality (42), we get (43). �

We now turn back to the proof of Theorem 4.3. We define two auxiliary bipartite
graphs G = (X1 ∪X2, E(G)) and H = (X1 ∪X2, E(H)) in the following way:

X1 = Vk+1,

X2 = V1 × · · · ×Xk,

E(G) = {(x, e) : e ∈ Kk(G′(x))},
E(H) = {(x, e) : e ∈ H(x) ∩ Kk(G′(x))}.

(44)

Notice that |X1| = n and |X2| = nk. Then∑
x∈X1

|G(x)| =
∑
e∈X2

|G(e)| ≥
∑

e∈G′k+1

|G(e)| = |Kk+1(G′)| ≥ δ′nk+1 = δ′|X1||X2|.

(45)
Now we prove that the graphs G and H defined by (44) satisfy the assumptions

of Corollary 4.8 with α = d, µ = ε1/2 and ν = δ/4. Indeed, observe that
• if |Kk(G′(x, y))| ≥ εnk andH(x) is (ε, d)-regular, then |H(x)∩Kk(G′(x, y))| =

(d+O1(ε))|Kk(G′(x, y))|, i.e.,

|H(x) ∩G(y)| = d(1 +O1(ε1/2))|G(x, y)|,
and
• if |Kk(G′(x, y))| ≥ εnk andH(x, y) is (ε, d2)-regular, then |H(x, y)∩Kk(G′(x, y))| =

(d2 +O1(ε))|Kk(G′(x, y))|, i.e.,

|H(x, y)| = d2(1 +O1(ε1/2))|G(x, y)|.
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Denote by I1 the set of all pairs (x, y) such that |G(x, y)| < ε|X2|, by I2 the set of
all pairs (x, y) such that H(x, y) is (ε, d2)-irregular, and by I3 the set of all pairs
(x, y) such that H(x) is (ε, d)-irregular.

Both observations above imply that every pair (x, y) ∈ X1 ×X1 such that H(x)
is (ε, d)-regular, H(x, y) is (ε, d2)-regular, and |G(x, y)| ≥ ε|X2| is good. In other
words, the set of bad pairs is a subset of I1 ∪ I2 ∪ I3 and, therefore,∑

bad (x,y)

|G(x, y)| ≤
∑

(x,y)∈I1

|G(x, y)|+
∑

(x,y)∈I2

|G(x, y)|+
∑

(x,y)∈I3

|G(x, y)|.

One can easily see that |I1| ≤ |X1|2, |I2| ≤ ε|X1|2, |I3| ≤ ε|X1| × |X1|, and

•
∑

(x,y)∈I1

|G(x, y)| ≤ ε|X2| × |I1| ≤ ε|X1|2|X2|,

•
∑

(x,y)∈I2

|G(x, y)| ≤ |X2| × |I2| ≤ ε|X1|2|X2|,

•
∑

(x,y)∈I3

|G(x, y)| ≤ |X2| × |I3| ≤ ε|X1|2|X2|.

Consequently,
∑

bad (x,y)

|G(x, y)| ≤ 3ε|X1|2|X2|.

Suppose that condition (41) of Lemma 4.7 is not satisfied, i.e.,∑
bad (x,y)

|G(x, y)| ≥ d2ε1/2

(1− d)2 + d2

∑
z∈X2

|G(z)|2.

Since
∑
z∈X2

|G(z)|2 ≥
(∑

z∈X2
|G(z)|

)2
/|X2|, we get

d2ε1/2

(1− d)2 + d2

(∑
z∈X2

|G(z)|

)2

≤ 3ε|X1|2|X2|2.

In other words,

∑
z∈X2

|G(z)| ≤

(
3ε
(
(1− d)2 + d2

)
d2ε1/2

)1/2

|X1||X2|.

On the other hand, we know (see (45)) that
∑
z∈X2

|G(z)| ≥ (δ2/16)|X1||X2|, and,
therefore, comparing both inequalities yields

δ2

16
≤

(
3ε
(
(1− d)2 + d2

)
d2ε1/2

)1/2

.

This is a contradiction since 3ε×
(
(1− d)2 + d2

)
/(d2ε1/2) ≤ ε1/2/d2 = (δ/4)16/d2 ≤

(δ/4)14 < δ4/256. Thus, G and H also satisfy condition (41) of Lemma 4.7.
Set W = G′k+1. Then, because of property (3), clearly |W | ≥ (δ2/16)nk+1/n =

(δ2/16)nk = (δ2/16)|X2|, and for every e ∈ W we have |H(e)| ≥ (d + δ/4)|G(e)|.
We apply Corollary 4.8 and obtain that

∑
z∈W
|G(z)| ≤

(
80ε1/2

δ2

)1/2

|X1||X2|.
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On the other hand, since |G(e)| ≥ (δ2/16)|X1| for every e ∈W , we get∑
z∈W
|G(z)| ≥ |W | × δ2

16
|X1| ≥

δ4

256
|X1||X2|.

This is a contradiction because(
80ε1/2

δ2

)1/2

≤ 4
(
δ

4

)7

<
δ4

256
.

�

5. Proof of C2 ⇔ C3 ⇔ C4

Sections 5.1, 5.2, and 5.3 are devoted to the proofs of C3 ⇒ C4, C4 ⇒ C3,
and C3 ⇒ C2 (note that implication C2 ⇒ C3 trivially holds). In these sections,
we shall be sketchy in places because the arguments are standard or somewhat
repetitive.

5.1. Proof of C3 ⇒ C4. We start with a standard “cherry counting lemma” for
bipartite graphs (a cherry is a path of length 2).

Claim 5.1. Let G = (X ∪ Y,E) be a bipartite graph with |X| = n, |Y | = m, and
assume that |E| = dmn. For x, x′ ∈ X, put dx,x′ = |G(x, x′)|/m. Then∑

{dx,x′ : x, x′ ∈ X, x 6= x′} ≥
(
dn

2

)
.

Proof. Observe first that ∑
x∈X
|G(x)| = |E| =

∑
y∈Y
|G(y)|

and ∑X

x6=x′
|G(x, x′)| =

∑
y∈Y

(
|G(y)|

2

)
,

where we write
∑X
x6=x′ for the sum over all pairs {x, x′} of distinct vertices from X.

Then

m
∑X

x6=x′
dx,x′ =

∑X

x6=x′
|G(x, x′)|

=
∑
y∈Y

(
|G(y)|

2

)
≥ m

(
m−1

∑
y∈Y |G(y)|
2

)
= m

(
dn

2

)
,

where, naturally, we used the convexity of
(
x
2

)
. �

Claim 5.2. Let H = (V1 ∪ · · · ∪ Vk, E) be a (k, k)-cylinder with |E| = dnk,
where |Vi| = n for all i ∈ [k]. Then the number of copies of Kk(2) in H is bounded
from below by (1 + o(1))(n2k/2k)d2k .

Proof. We proceed by induction on k. For k = 2, the statement follows from the
previous claim and the Cauchy–Schwarz inequality. Indeed, let G = (X ∪ Y,E) be
a bipartite graph with |X| = |Y | = n, and assume that |E| = dn2. For x, x′ ∈ X,



HYPERGRAPHS, QUASI-RANDOMNESS, AND REGULARITY 23

put dx,x′ = |G(x, x′)|/n. Here and below we use the notation
∑X
x6=x′ introduced in

the proof of Claim 5.1. Then the number of copies of K2(2) in G is given by∣∣∣∣( G

K2(2)

)∣∣∣∣ =
∑X

x6=x′

(
|G(x, x′)|

2

)
=
∑X

x6=x′

(
dx,x′n

2

)
.

By the Cauchy–Schwarz inequality and Claim 5.1, we have∣∣∣∣( G

K2(2)

)∣∣∣∣ =
∑X

x6=x′

(
dx,x′n

2

)
= (1 + o(1))

(
n

2

)∑X

x6=x′
d2
x,x′

≥ (1 + o(1))
(∑X

x6=x′
dx,x′

)2

≥ (1 + o(1))
(
dn

2

)2

= (1 + o(1))
n4

4
d4.

(46)

We now proceed to the induction step. Suppose k ≥ 3, suppose that the claim
is true for k − 1, and let H = (V1 ∪ · · · ∪ Vk, E) be a (k, k)-cylinder such that
|E| = dnk. Consider an auxiliary bipartite graph with bipartition X = Vk and
Y = V1 × · · · × Vk−1 and edge set

E = {(x, y) ∈ X × Y : y ∈ H(x)}.

Then |X| = n and |Y | = m = nk−1. For x, x′ ∈ X, put dx,x′ = |G(x, x′)|/m.
Using the induction assumption, H(x, x′) contains & n2(k−1)d2k−1

x,x′ /2
k−1 copies of

Kk−1(2). Furthermore, from the previous claim we know that
∑X
x6=x′ dx,x′ ≥

(
dn
2

)
.

Then ∣∣∣∣( H
Kk(2)

)∣∣∣∣ =
∑X

x6=x′

∣∣∣∣(H(x, x′)
Kk−1(2)

)∣∣∣∣
≥ (1 + o(1))

∑X

x6=x′
n2(k−1) 1

2k−1
d2k−1

x,x′

≥ (1 + o(1))
n2(k−1)

2k−1

(
n

2

)((
dn

2

)/(
n

2

))2k−1

= (1 + o(1))
n2k

2k
d2k ,

as required. �

The proof of C3 ⇒ C4 is then straightforward.

Proof of C3 ⇒ C4. The first part (i.e., the inequality) follows from the previous
claim. To obtain the asymptotic equality in the case in which the joint links are
almost all (ε, d2)-regular, we observe the following.

For k = 2 we use the fact that (ε, d2)-regularity of joint links means that dx,x′ ∼
d2 for almost all pairs of vertices x, x′ ∈ Vk. Then we have the asymptotic equality
at every step of equation (46), which is exactly what we need to show.

For k > 2, since H(x, x′) is (ε, d2)-regular for almost all pairs of vertices x, x′ ∈
Vk, by the induction assumption H(x, x′) contains (1 + o(1))n2(k−1)(d2)2k−1

/2k−1

copies of Kk−1(2). Hence the number of copies of Kk(2) containing x, x′ is

(1 + o(1))n2(k−1) 1
2k−1

(d2)2k−1
,
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and so, summing over all x, x′ ∈ X with x 6= x′, we have that the number of copies
of Kk(2) in H is

(1 + o(1))
(
n

2

)
n2(k−1) 1

2k−1
(d2)2k−1

= (1 + o(1))
n2k

2k
d2k ,

as required. �

5.2. Proof of C4 ⇒ C3. The proof of this implication will be based on Claims 5.1
and 5.2 and on a standard application of the Cauchy–Schwarz inequality.

Proof of C4 ⇒ C3. For k = 2, this implication follows from the following. Let
G = (X∪Y,E) be a bipartite graph with |X| = |Y | = n, and |E| = dn2, and assume
that G contains (1 + o(1))n4d4/4 copies of K2(2), i.e.,

∣∣∣( G
K2(2)

)∣∣∣ = (1 + o(1))n4d4/4.

But then we must have equality everywhere in (46), which means that dx,x′ ∼ d2

for almost all pairs of vertices x, x′ ∈ X. This shows, however, that G(x, x′) is
(ε, d2)-regular for almost all pairs of vertices x, x′ ∈ X.

Assume now we have k > 2. Let H = (V1 ∪ · · · ∪ Vk, E) be a (k, k)-cylinder with
|Vi| = n for all i ∈ [k] and |E| = dnk. Suppose that H contains (1 + o(1))n2kd2k/2k

copies of Kk(2).
Consider an auxiliary bipartite graph with bipartition X = Vk and Y = V1 ×

· · · × Vk−1 and edge set

E = {(x, y) ∈ X × Y : y ∈ H(x)}.

Then |X| = n and |Y | = m = nk−1. For x, x′ ∈ X, put dx,x′ = |G(x, x′)|/m. From
Claim 5.1 we obtain ∑X

x6=x′
dx,x′ ≥

(
dn

2

)
,

and so

∑X

x6=x′
d2k−1

x,x′ ≥
(
n

2

)((
n

2

)−1∑X

x6=x′
dx,x′

)2k−1

≥
(
n

2

)((
dn

2

)/(
n

2

))2k−1

≥ (1 + o(1))
n2

2
d2k . (47)

We apply Claim 5.2 to H(x, x′) and obtain that it contains at least

(1 + o(1))n2(k−1)d2k−1

x,x′ /2
k−1

copies of Kk−1(2). Consequently∣∣∣∣( H
Kk(2)

)∣∣∣∣ =
∑X

x6=x′

∣∣{copies of Kk(2) containing x, x′}
∣∣

≥ (1 + o(1))
∑X

x6=x′
n2(k−1)

2k−1
d2k−1

x,x′ (48)

(47)

≥ (1 + o(1))
n2(k−1)

2k−1

n2

2
d2k

= (1 + o(1))
n2k

2k
d2k .
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On the other hand, by C4 we have that∣∣∣∣( H
Kk(2)

)∣∣∣∣ = (1 + o(1))
n2k

2k
d2k . (49)

From (48) and (49) we conclude that dx,x′ ∼ d2 for almost all pairs x, x′ ∈ X =
Vk, and therefore that H(x, x′) contains (1 + o(1))n2(k−1)(d2)2k−1

/2k−1 copies of
Kk−1(2). In view of the induction assumption this means that H(x, x′) is (ε, d2)-
regular for almost all pairs x, x′ ∈ Vk, i.e., C3 holds. �

5.3. Proof of C3 ⇒ C2. We start with the following claim.

Claim 5.3. Let c > 0 be a fixed constant. Let G = (X ∪ Y,E) be a bipartite graph
with |X| = n, |Y | = m, and assume that |G(x, x′)| ∼ c2m for almost all pairs x,
x′ ∈ X. Then |G(x)| ∼ cm for almost all vertices x ∈ X.

Proof. Indeed, suppose that |G(x)| ≥ (c+ε)m for all vertices x ∈ X ′, where X ′ ⊂ X
is “big”. Let G′ be the subgraph of G induced on X ′ ∪ Y and let |G′(y)| = cy|X ′|
for all y ∈ Y . Note that |G′(x, x′)| = |G(x, x′)| for all x, x′ ∈ X ′. Then we have∑X′

x6=x′
|G(x, x′)| ∼ 1

2
c2m|X ′|2,

where we write
∑X′

x6=x′ for the sum over all pairs {x, x′} of distinct vertices from X ′.
On the other hand,∑X′

x6=x′
|G(x, x′)| =

∑
y∈Y

(
|G′(y)|

2

)
∼
∑
y∈Y

1
2
c2y|X ′|2.

Hence
∑
y∈Y c

2
y ∼ c2m which implies, by the Cauchy–Schwarz inequality, that

cy ∼ c for almost all y ∈ Y . But then,

cm|X ′| ∼
∑
y∈Y

cy|X ′| = E(G′) =
∑
x∈X′

|G′(x)| ≥ (c+ ε)m|X ′|,

which is a contradiction. The same applies to the set of all vertices x ∈ X for which
|G(x)| ≤ (c− ε)m. �

Now we give a proof of the implication C3 ⇒ C2.

Proof of C3 ⇒ C2. We proceed by induction on k. For k = 2, the statement follows
from Claim 5.3.

Let k > 2 be given. We shall prove that C3 ⇒ C2 holds for k. Thus, assume
that the link H(x, y) is (ε, d2)-regular for almost all x, y ∈ Vk. We shall prove that
for almost all x ∈ Vk the link H(x) is (ε′, d)-regular, where ε′ → 0 as ε→ 0.

Consider an auxiliary bipartite graph G = (X ∪ Y,E) with bipartition X = Vk
and Y = [V1]2 × · · · × [Vk−1]2 and edge set

E = {(x, y) ∈ X × Y : y spans a copy of Kk−1(2) in H(x)}.

Then |X| = n and |Y | =
(
n
2

)k−1 ∼ n2(k−1)/2k−1. Let x and x′ be such that
H(x, x′) is (ε, d2)-regular. Since H(x, x′) is a (k − 1, k − 1)-cylinder, we may apply
the implication C3 ⇒ C4 that we have already proved to deduce that H(x, x′)
contains ∼ n2(k−1)(d2)2k−1

/2k−1 = n2(k−1)d2k/2k−1 copies of Kk−1(2). This means
that almost all pairs of vertices x, x′ ∈ X have their common neighborhood of size
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|G(x, x′)| ∼ n2(k−1)d2k/2k−1. Setting m =
(
n
2

)k−1 and c = d2k−1
, one may apply

Claim 5.3 to infer that

|G(x)| ∼ d2k−1 n2(k−1)

2k−1
(50)

for almost all x ∈ X. For each x ∈ X, set dx = |H(x)|/nk−1. Using Claim 5.2, we
get that

|G(x)| & d2k−1

x

n2(k−1)

2k−1

for all x and hence d & dx for almost all x ∈ X. However,

dnk = |H| =
∑
x∈X
|H(x)| =

∑
x∈X

dxn
k−1,

whence dn =
∑
x∈X dx. We may conclude that dx ∼ d for almost all x ∈ X.

This, in view of (50), means that H(x) satisfies condition C4 for (k−1)-cylinders.
Since C4 ⇒ C3 holds for (k − 1)-cylinders (already proved), C3 ⇒ C2 holds for
(k− 1)-cylinders (induction assumption), and C2 ⇒ C1 holds for (k− 1)-cylinders
(already proved), we conclude that H(x) is (ε′, d)-regular for almost all x ∈ X, as
required. �

6. Proof of the subhypergraph counting formula

The heart of the proof of P1 ⇒ P ′5 is in proving a counting lemma, which we
now formulate. We shall need several definitions and further notation.

Definition 6.1. Let s and k, s ≥ k ≥ 2, be two integers. An (s, k)-complex H is

a system
{
H(i)

}k
i=1

such that

(a) H(1) is a partition V1 ∪ · · · ∪ Vs,
(b) H(i) is an (s, i)-cylinder with s-partition H(1) for every 1 < i ≤ k,
(c) H(i) underlies H(i+1) for every 1 ≤ i < k, i.e., H(i+1) ⊂ Ki+1(H(i)).

Now we define the notion of regularity for a (k, k)-cylinder with respect to an
underlying (k, k − 1)-cylinder.

Definition 6.2. Let G be a (k, k − 1)-cylinder underlying a (k, k)-cylinder H. We
say that H is (ε, d)-regular with respect to G if the following condition is satisfied:
whenever G′ ⊂ G is a (k, k − 1)-cylinder such that∣∣Kk(G′)

∣∣ ≥ ε∣∣Kk(G)
∣∣,

we have

(d− ε)
∣∣Kk(G′)

∣∣ ≤ ∣∣H ∩Kk(G′)
∣∣ ≤ (d+ ε)

∣∣Kk(G′)
∣∣.

Note that this definition coincides with Definition 2.5 if k = 2 or if G is the
complete (k, k− 1)-cylinder on V1 ∪ · · · ∪Vk. We extend the above definition to the
case of (s, k)-cylinders H.

Definition 6.3. Let G be an (s, k − 1)-cylinder underlying an (s, k)-cylinder H.

We say that H is (ε, d)-regular with respect to G if H
[⋃

j∈I Vj

]
is (ε, d)-regular with

respect to G
[⋃

j∈I Vj

]
for all I ∈ [s]k.

Now we are ready to introduce the concept of regularity for an (s, k)-complexH.
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Definition 6.4. Let d = (d2, . . . , dk) be a vector of positive real numbers such that
0 < di ≤ 1 for all i = 2, . . . , k. We say that the (s, k)-complex H is (δ,d)-regular if
H(i+1) is (δ, di+1)-regular with respect to H(i) for every 1 ≤ i < k.

Let H(k) be an (s, k)-cylinder with s-partition V1 ∪ · · · ∪ Vs. We say that a copy
of a k-uniform hypergraph G ⊂ H(k) is transversal in H(k) if |V (G)∩ Vi| ≤ 1 for all
1 ≤ i ≤ s. Our key counting result is as follows.

Theorem 6.5. Fix 2 ≤ k ≤ s. For any ε > 0 and any d2, . . . , dk > 0, there
exist δ0 > 0 and n0 ∈ N for which the following assertion holds. If δ < δ0 and H is
a (δ,d)-regular (s, k)-complex on V1∪· · ·∪Vs, where d = (d2, . . . , dk) and |Vi| = n ≥
n0 for all i, then the number of transversal K(k)

s in H(k) is (1+O1(ε))d(sk)
k . . . d

(s2)
2 ns.

In the proof of this theorem, we shall need the following notions of “link” and
“extended link” for complexes.

Definition 6.6. LetH be an (s, k)-complex on V1∪· · ·∪Vs, where s ≥ k, and x ∈
Vs. We define H(x) =

{
H(i)(x)

}k
i=2

and, if s > k, we also set H̃(x) =
{
H̃(i)
x

}k
i=1

,

where H̃(i)
x (i ∈ [k]) is the i-uniform hypergraph defined by

H̃(i)
x =

{
H(i+1)(x) if 1 ≤ i < k,

H(k) ∩ Kk(H(k)(x)) if i = k.
(51)

In (51) above, H(i)(x) is the usual link of the vertex x in the (s, i)-cylinder H(i),
and H(k) ∩Kk(H(k)(x)) denotes the (s− 1, k)-cylinder formed by the edges of H(k)

that are cliques in the link H(k)(x). Note that H̃(x) can be viewed as an extension
of H(x) in a sense that

H̃(x) =H(x) ∪
{
H(k) ∩ Kk(H(k)(x))

}
.

It is easy to see that H(x) is an (s− 1, k− 1)-complex and H̃(x) is an (s− 1, k)-
complex. Indeed, since H is an (s, k)-complex, for 1 ≤ i < k, we have H(i+1) ⊂
Ki+1(H(i)) (cf. Definition 6.1). Hence, for every vertex x ∈ Vs, we have

H(i+1)(x) ⊂ Ki+1(H(i)(x)),

and, therefore,
H̃(i+1)
x ⊂ Ki+1(H̃(i)

x ).
For i = k, we have

H̃(k)
x = H(k) ∩ Kk(H(k)(x)) ⊂ Kk(H(k)(x)) = Kk(H̃(k−1)

x )

directly from Definition 6.6.
The proof of Theorem 6.5 is based on the following two propositions.

Proposition 6.7. For any 2 ≤ k < s, any δ̃ > 0, and any d2, . . . , dk > 0, there
are constants δ > 0 and n0 ∈ N for which the following assertion holds. Let
H be a (δ,d)-regular (s, k)-complex on V1 ∪ · · · ∪ Vs, where d = (d2, . . . , dk) and
|Vi| = n ≥ n0 for all i ∈ [s], and let d̃ = (d2d3, . . . , dk−1dk, dk). Then, for all but at
most δ̃n vertices x ∈ Vs, the extended link H̃(x) is a (δ̃, d̃)-regular (s−1, k)-complex.

Proposition 6.8. For any k > 2, any δ′ > 0, and any d2, . . . , dk > 0, there are
constants δ > 0 and n0 ∈ N for which the following assertion holds. Let H be
a (δ,d)-regular (k + 1, k)-complex on V1 ∪ · · · ∪ Vk+1, where d = (d2, . . . , dk) and
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|Vi| = n ≥ n0 for all i ∈ [k + 1], and let d′ = (d2d3, . . . , dk−1dk). Then, for all but
at most δ′n vertices x ∈ Vk+1, the link H(x) is a (δ′,d′)-regular (k, k− 1)-complex.

For our induction to work, we shall prove Theorem 6.5 and Propositions 6.7
and 6.8 simultaneously.

Proof of Theorem 6.5 and Propositions 6.7 and 6.8. For given s ≥ k ≥ 2, we de-
note the statement of Theorem 6.5 by S(s, k) and for s > k ≥ 2, we denote the
statement of Proposition 6.7 by L(s, k). We shall prove (i)–(vi) below.

(i) The statement S(2, 2) is true.
(ii) The implication S(k, k − 1)⇒ S(k, k) holds for every k ≥ 3.

(iii) The implication S(s, k), L(s+1, k)⇒ S(s+1, k) holds for every s ≥ k ≥ 2.
(iv) The statement L(3, 2) is true.
(v) The implication L(k + 1, k)⇒ L(s, k) holds for every s > k ≥ 2.

(vi) The implication S(k, k − 1), L(k + 1, k − 1) ⇒ L(k + 1, k) holds for every
k > 2.

From (i)–(vi), one may easily deduce by induction (see the diagram below) that
Theorem 6.5 holds for every s ≥ k ≥ 2 and Proposition 6.7 holds for every s > k ≥
2.

S(2, 2), L(3, 2)︸ ︷︷ ︸
(i, iv)

(iii, v)−−−−→ S(3, 2), L(4, 2)
(iii, v)−−−−→ S(4, 2), L(5, 2)

(iii, v)−−−−→ . . .

y(ii, vi)

S(3, 3), L(4, 3)
(iii, v)−−−−→ S(4, 3), L(5, 3)

(iii, v)−−−−→ . . .y(ii, vi)

S(4, 4), L(5, 4)
(iii, v)−−−−→ . . .

The purpose of Proposition 6.8 is to simplify the proof of (vi) (this is also the
reason why we prove this proposition for (k + 1, k)-complexes only). Indeed, if we
denote by L′(k) the statement of Proposition 6.8, we shall prove the following:

(vi ′) The implication S(k, k − 1), L(k + 1, k − 1)⇒ L′(k) holds for every k > 2.
(vi ′′) The implication S(k, k − 1), L′(k)⇒ L(k + 1, k) holds for every k > 2.

Clearly (vi ′) and (vi ′′) imply (vi).
Moreover, from (i)–(vi) one can deduce that L′(k) holds for every k > 2, that

is, Proposition 6.8 holds as well.
Now we prove statements (i)–(v), (vi ′), and (vi ′′).

(i) (Proof of S(2, 2)) Statement S(2, 2) follows directly from the definition
of regularity: a (δ, d2)-regular (2, 2)-cylinder H(2) contains (d2 + O1(δ))n2

edges.
(ii) (Proof of S(k, k − 1)⇒ S(k, k)) Suppose now that S(k, k − 1) is true

for some k ≥ 3 and let H be a (δ,d)-regular (k, k)-complex. Observe
first that

{
H(i)

}k−1

i=1
forms a (δ, (d2, . . . , dk−1))-regular (k, k − 1)-complex;

therefore, if δ � ε′, the number of transversal K(k−1)
k in H(k−1) is (1 +

O1(ε′))d( k
k−1)
k−1 . . . d

(k2)
2 nk. Furthermore, we know that H(k) is (δ, dk)-regular
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with respect to H(k−1). In particular, this means that

(dk − δ)
∣∣∣Kk(H(k−1))

∣∣∣ ≤ ∣∣∣H(k) ∩ Kk(H(k−1))
∣∣∣ ≤ (dk + δ)

∣∣∣Kk(H(k−1))
∣∣∣ .

Since
∣∣H(k) ∩ Kk(H(k−1))

∣∣ counts the number of transversal K(k)
k in H(k),

we conclude that this number is (1 + O1(ε))d(kk)
k d

( k
k−1)
k−1 . . . d

(k2)
2 nk, if ε′ � ε

and δ � min{ε, dk}.
(iii) (Proof of S(s, k), L(s+ 1, k)⇒ S(s+ 1, k)) Assume that S(s, k) and

L(s+1, k) are true for some s ≥ k ≥ 2 and consider a (δ,d)-regular (s+1, k)-
complex H on V1 ∪ · · · ∪ Vs+1, where |Vi| = n � n0 for all i ∈ [s + 1] and
n0 is a large positive integer.

From L(s+1, k) we know that H̃(x) is a (δ̃, d̃)-regular (s, k)-cylinder for
all but δ̃n vertices x ∈ Vs+1, as long as δ � δ̃. From S(s, k) we immediately
have that H(k) ∩ Kk(H(k)(x)) contains

(1 +O1(ε′))d(sk)
k (dkdk−1)(

s
k−1) . . . (d3d2)(

s
2)(d2n)s

transversal K(k)
s for any such ‘good’ x if δ̃ � ε′. Each such transversal

K
(k)
s in H(k) ∩ Kk(H(k)(x)) together with x span a transversal K(k)

s+1 in
H(k). Hence, the total number of transversal K(k)

s+1 in H(k) is bounded from
below by

(1− ε′)(1− δ̃)nd(sk)
k (dkdk−1)(

s
k−1) . . . (d3d2)(

s
2)(d2n)s

= (1− ε′)(1− δ̃)d(sk)+( s
k−1)

k . . . d
(s2)+(s1)
2 ns+1

≤ (1− ε)d(s+1
k )

k . . . d
(s+1

2 )
2 ns+1.

(52)

For the upper bound we get

(1 + ε′)nd(sk)
k (dkdk−1)(

s
k−1) . . . (d3d2)(

s
2)(d2n)s + δ̃n× ns

= (1 + ε′)d(sk)+( s
k−1)

k . . . d
(s2)+(s1)
2 ns+1 + δ̃ns+1

≤ (1 + ε)d(s+1
k )

k . . . d
(s+1

2 )
2 ns+1,

(53)

provided that max{ε′, δ̃} � min{ε, d2, . . . , dk}.
(iv) (Proof of L(3, 2)) Let H(2) be a (δ, d2)-regular (3, 2)-cylinder and, for

x ∈ V3 and i = 1, 2, set V ′i = H(2)
i (x). It follows from Claim 4.1 that

(d2 − δ)n ≤ |V ′i | ≤ (d2 + δ)n, i = 1, 2, for all but 2δ1/2n vertices x ∈ V3.
We shall show that H(2)[V ′1 ∪ V ′2 ] is (2δ1/2, d2)-regular.

Indeed, let U1 ⊂ V ′1 , U2 ⊂ V ′2 , such that |K2(U1 ∪ U2)| ≥ 2δ1/2|V ′1 ||V ′2 |.
Note that 2δ1/2|V ′1 ||V ′2 | ≥ 2δ1/2(d2 − δ)2n2 ≥ δn2 = δ|V1||V2|, where we
used the fact that δ � d2. The (δ, d2)-regularity of H(2) concludes the
argument.

(v) (Proof of L(k + 1, k)⇒ L(s, k)) This fact follows from the simple ob-
servation that every (s, k)-complex H can be viewed as a union of

(
s−1
k

)
many (k + 1, k)-complexes that contain Vs.

(vi′) (Proof of S(k, k − 1), L(k + 1, k − 1)⇒ L′(k)) Assume that state-
ments S(k, k − 1) and L(k + 1, k − 1) are true and let H = {H(i)}ki=1 be
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a (δ,d)-regular (k + 1, k)-complex on V1 ∪ · · · ∪ Vk+1, where |Vi| = n� n0

for all i ∈ [k + 1] and n0 is a large positive integer.
To prove L′(k), it suffices to show that for all but at most δ′n vertices

x ∈ Vk+1, the link H(x) is a (δ′,d′)-regular (k, k − 1)-complex, where
d′ = (d2d3, . . . , dk−1dk) and δ′ → 0 as δ → 0.

Observe first that {H(i)}k−1
i=1 is a (δ, (d2, d3, . . . , dk−1))-regular (k+1, k−

1)-complex. Thus, we can apply statement L(k + 1, k − 1) on {H(i)}k−1
i=1

and obtain that (cf. (51))
(a) {H(i)(x)}k−1

i=2 is a (δ̃, (d2d3, . . . , dk−2dk−1))-regular (k, k− 2)-complex,
and

(b) H(k−1) ∩Kk(H(k−1)(x)) is (δ̃, dk−1)-regular with respect to H(k−1)(x)
for all but at most δ̃n vertices x ∈ Vk+1,where δ̃ → 0 as δ → 0.

Hence, the only thing remaining to prove statement L′(k) is the reg-
ularity of H(k)(x) with respect to H(k−1)(x). We do this by showing
that for all but 4kδ̃1/2n vertices x ∈ Vk+1 satisfying (a) and (b), the link
H(k)(x) is (2δ̃1/2, dk−1dk)-regular with respect to H(k−1)(x). Consequently,
H(x) is a (δ′,d′)-regular for all but at most δ′n vertices x ∈ Vk+1, where
δ′ = δ̃ + 4kδ̃1/2 → 0 as δ → 0.

Suppose that there exist t ≥ 2δ̃1/2n vertices x1, . . . , xt satisfying (a)
and (b) for which H(k)(xi) is not (2δ̃1/2, dk−1dk)-regular with respect to
H(k−1)(xi), i ∈ [t]. More precisely, suppose that for every i ∈ [t], there
exists a (k − 1, k − 2)-cylinder Gi ⊂ H(k−1)(xi) such that

|Kk−1(Gi)| ≥ 2δ̃1/2|Kk−1(H(k−1)(xi))| (54a)

and

|H(k)(xi) ∩ Kk−1(Gi)| <
(
dk−1dk − 2δ̃1/2

)
|Kk−1(Gi)|. (54b)

Suppose further that these (k − 1, k − 2)-cylinders have (k − 1)-partition
V1 ∪ · · · ∪ Vk−1. We define a (k, k − 1)-cylinder G by

G = H(k−1)[V1 ∪ · · · ∪ Vk−1] ∪
t⋃
i=1

{xi ∪ e : e ∈ Gi} .

It is easy to see that

|Kk(G)| =
t∑
i=1

|H(k−1) ∩ Kk−1(Gi)| (55a)

and

|H(k) ∩ Kk(G)| =
t∑
i=1

|H(k)(xi) ∩ Kk−1(Gi)|. (55b)

We combine equations (54b) and (55b) and obtain

|H(k) ∩ Kk(G)| <
(
dk−1dk − 2δ̃1/2

) t∑
i=1

|Kk−1(Gi)|.
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On the other hand, we shall show that

|H(k) ∩ Kk(G)| ≥
(
dk−1dk − 2δ̃1/2

) t∑
i=1

|Kk−1(Gi)|, (56)

which will be a contradiction. Thus, t < 2δ̃1/2n. The same applies to the
cases in which all the (k − 1, k − 2)-complexes Gi have the same (k − 1)-
partition V1∪· · ·∪Vk \Vj for some j ∈ [k], or when we consider the opposite
inequality in (54b).

Now we deduce (56). Using assumption (b), (54a), Gi ⊂ H(k−1)(xi), and
2δ̃1/2 ≥ δ̃, we obtain that for every i ∈ [t],

|H(k−1) ∩ Kk−1(Gi)| ≥ (dk−1 − δ̃)|Kk−1(Gi)|
(54a)

≥ 2δ̃1/2(dk−1 − δ̃)|Kk−1(H(k−1)(xi))|.
(57)

Consequently, combining (55a) and (57) yields

|Kk(G)| ≥ 2δ̃1/2(dk−1 − δ̃)
t∑
i=1

|Kk−1(H(k−1)(xi))|. (58)

For k > 3, by (a), the (k, k − 2)-complex {H(i)(x)}k−1
i=2 restricted on

V1 ∪ · · · ∪Vk−1 is a (δ̃, (d2d3, . . . , dk−2dk−1))-regular (k− 1, k− 2)-complex,
and hence by S(k − 1, k − 2) we have∣∣∣Kk−1

(
H(k−1)(xi)

)∣∣∣ = (1 +O1(1/4))(dk−1dk−2)(
k−1
k−2) . . . (d3d2)(

k−1
2 )(d2n)k−1

= (1 +O1(1/4))d(k−1
k−2)
k−1 d

( k
k−2)
k−2 . . . d

(k2)
2 nk−1,

provided that δ̃ � min{d2, . . . , dk−1, 1/4}. It follows from (δ, d2)-regularity
of H(2) that this equation holds also for k = 3. We may assume that
S(k − 1, k − 2) is true since this has already been verified in our inductive
proof of S(k, k − 1) (see the proof diagram above). Hence,

|Kk(G)| ≥ t× 2δ̃1/2(dk−1 − δ̃)× (1− 1/4)d(k−1
k−2)
k−1 d

( k
k−2)
k−2 . . . d

(k2)
2 nk−1 (59)

≥ 2δ̃d( k
k−1)
k−1 d

( k
k−2)
k−2 . . . d

(k2)
2 nk.

Since, {H(i)[V1∪· · ·∪Vk−1∪Vk+1]}k−1
i=1 is a (δ, (d2, . . . , dk−1))-regular (k, k−

1)-complex, using S(k, k − 1), we obtain∣∣∣Kk (H(k−1)[V1 ∪ · · · ∪ Vk−1 ∪ Vk+1]
)∣∣∣ = (1 +O1(1/4))d( k

k−1)
k−1 . . . d

(k2)
2 nk, (60)

provided that δ � min{d2, . . . , dk−1, 1/4}.
Combining (59) and (60) yields

|Kk(G)| ≥ δ̃
∣∣∣Kk (H(k−1)[V1 ∪ · · · ∪ Vk−1 ∪ Vk+1]

)∣∣∣ . (61)

We apply (δ, dk)-regularity of H(k) with respect to H(k−1) and obtain

|H(k) ∩ Kk(G)| ≥ (dk − δ)|Kk(G)|. (62)
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Putting equations (55a), (57), and (62) together yields

|H(k) ∩ Kk(G)| ≥ (dk − δ)× (dk−1 − δ̃)
t∑
i=1

|Kk−1(Gi)|

≥
(
dkdk−1 − 2δ̃1/2

) t∑
i=1

|Kk−1(Gi)|,

provided that δ � δ̃.
(vi′′) (Proof of S(k, k − 1), L′(k)⇒ L(k + 1, k)) Assume that statements

S(k, k−1) and L′(k) are true and letH be a (δ,d)-regular (k+1, k)-complex
on V1 ∪ · · · ∪ Vk+1, where |Vi| = n� n0 forl all i ∈ [k+ 1] and n0 is a large
positive integer.

To prove L(k+1, k), we need to show that for all but at most δ̃n vertices
x ∈ Vk+1, the extended link H̃(x) is a (δ̃, d̃)-regular (k, k)-complex, where
d̃ = (d2d3, . . . , dk−1dk, dk) and δ̃ → 0 as δ → 0.

Our assumption that L′(k) is true means that
{
H̃(i)
x

}k−1

i=1
= {H(i)(x)}ki=2

= H(x) is a (δ′, (d2d3, . . . , dk−1dk))-regular (k, k − 1)-complex for all but
at most δ′n vertices x ∈ Vk+1, where δ′ → 0 as δ → 0.

Hence, the only thing remaining to prove L(k+ 1, k) is the regularity of
H̃(k)
x = H(k) ∩Kk(H(k)(x)) with respect to H̃(k−1)

x = H(k)(x) for almost all
vertices x ∈ Vk+1. We prove this by showing that H(k) ∩ Kk(H(k)(x)) is
(2δ′1/2, dk)-regular with respect to H(k)(x) for every x ∈ Vk+1 for which the
linkH(x) is (δ′, (d2d3, . . . , dk−1dk))-regular. Then, H̃(x) is a (δ̃, d̃)-regular
for all but at most δ̃n vertices x ∈ Vk+1, where δ̃ = 2δ′1/2 → 0 as δ → 0.

Suppose that G is a (k, k−1)-cylinder, G ⊂ H(k)(x), such that |Kk(G)| ≥
2δ′1/2|Kk(H(k)(x))|. We need to show that

(dk−2δ′1/2) |Kk(G)| ≤
∣∣∣H(k) ∩ Kk(H(k)(x)) ∩ Kk(G)

∣∣∣ ≤ (dk+2δ′1/2) |Kk(G)| . (63)

Since G ⊂ H(k)(x) and, therefore, Kk(G) ⊂ Kk(H(k)(x)), we have∣∣∣H(k) ∩ Kk(H(k)(x)) ∩ Kk(G)
∣∣∣ =

∣∣∣H(k) ∩ Kk(G)
∣∣∣ . (64)

Consequently, (63) is simply

(dk − 2δ′1/2) |Kk(G)| ≤
∣∣∣H(k) ∩ Kk(G)

∣∣∣ ≤ (dk + 2δ′1/2) |Kk(G)| . (65)

Observe first that
• since {H(i)(x)}ki=2 is a (δ′, (d2d3, . . . , dk−1dk))-regular (k, k−1)-complex,

by S(k, k − 1) we have∣∣∣Kk (H(k)(x)
)∣∣∣ = (1 +O1(1/4))(dkdk−1)(

k
k−1) . . . (d3d2)(

k
2)(d2n)k, (66)

provided that δ′ � min{d2, . . . , dk, 1/4};
• similarly, {H(i)[V1∪· · ·∪Vk]}k−1

i=1 is a (δ, (d2, . . . , dk−1))-regular (k, k−
1)-complex; thus, using S(k, k − 1) again,∣∣∣Kk (H(k−1)[V1 ∪ · · · ∪ Vk]

)∣∣∣ = (1 +O1(1/4))d( k
k−1)
k−1 . . . d

(k2)
2 nk, (67)

provided that δ � min{d2, . . . , dk, 1/4}.
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Now we use equations (66) and (67) to derive (65). Indeed,

|Kk(G)| ≥ 2δ′1/2|Kk(H(k)(x))|
(66)

≥ 2δ1/2(1− 1/4)(dkdk−1)(
k
k−1) . . . (d3d2)(

k
2)(d2n)k

≥ δ(1 + 1/4)d( k
k−1)
k−1 . . . d

(k2)
2 nk

(67)

≥ δ
∣∣∣Kk (H(k−1)[V1 ∪ · · · ∪ Vk]

)∣∣∣ , (68)

provided that d( k
k−1)
k . . . d

(k2)
3 dk2 ≥ δ1/2. This last condition is satisfied since

we assume that δ � min{d2, . . . , dk}. Finally, the (δ, dk)-regularity of H(k)

with respect to H(k−1) gives (65), as long as δ � δ′.

�

In Definition 6.3, we assumed that for every I ∈ [s]k, the restriction H
[⋃

j∈I Vj

]
is (ε, d)-regular with respect to G

[⋃
j∈I Vj

]
. In other words, the density dI of the

subgraphH
[⋃

j∈I Vj

]
is roughly the same for every I ∈ [s]k. Now we allow different

values of dI (I ∈ [s]k) and state a straightforward extension of Theorem 6.5. We
start with some definitions.

Definition 6.9. Let G be an (s, k−1)-cylinder underlying an (s, k)-cylinder H and

let ~d = (dI)I∈[s]k be a list of
(
s
k

)
positive real numbers dI , where 0 < dI ≤ 1. We

say that H is (ε, ~d)-regular with respect to G if H
[⋃

j∈I Vj

]
is (ε, dI)-regular with

respect to G
[⋃

j∈I Vj

]
for all I ∈ [s]k.

Definition 6.10. For every integer i (2 ≤ i ≤ k) let ~di = (dI)I∈[s]i be a list of(
s
i

)
positive real numbers dI , where 0 < dI ≤ 1, and put ~d = (~d2, . . . , ~dk). We say

that the (s, k)-complex H is (δ, ~d)-regular if H(i+1) is (δ, ~di+1)-regular with respect
to H(i) for every 1 ≤ i < k.

Now we are ready to state an extension of Theorem 6.5.

Corollary 6.11. Fix 2 ≤ k ≤ s. For any ε > 0 and any ~d2, . . . , ~dk as described
in Definition 6.10, there exist δ0 > 0 and n0 ∈ N for which the following asser-
tion holds. If δ < δ0 and H is a (δ, ~d)-regular (s, k)-complex on V1 ∪ · · · ∪ Vs,
where |Vi| = n ≥ n0 for all i, then the number of transversal K(k)

s in H(k) is
(1 +O1(ε))

∏k
i=2

∏
I∈[s]i dI × ns.

The proof of this corollary follows the lines of the proof of Theorem 6.5 and we
omit it here. For us, the most interesting case occurs when all underlying cylinders
are complete, that is dI = 1 for every I ∈ [s]i and 2 ≤ i < k. In this case, the
number of transversal K(k)

s in H(k) is (1 + O1(ε))
∏
I∈[s]k dI × ns. We restate this

observation in the following corollary.

Corollary 6.12. Fix 2 ≤ k ≤ s. For any ε > 0 and any list ~d = (dI)I∈[s]k of
(
s
k

)
positive real numbers dI , where 0 < dI ≤ 1, there exist δ0 > 0 and n0 ∈ N for which
the following assertion holds. If δ < δ0 and H is a (δ, ~d)-regular (s, k)-cylinder on
V1 ∪ · · · ∪ Vs, where |Vi| = n ≥ n0 for all i ∈ [s], then the number of transversal
K

(k)
s in H is (1 +O1(ε))

∏
I∈[s]k dI × ns.
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Let G be an arbitrary k-uniform hypergraph on s vertices v1, . . . , vs. We define
an (s, k)-cylinder H̃ in the following way. For every I ∈ [s]k, we set

H̃

[⋃
i∈I

Vi

]
=

{
H
[⋃

i∈I Vi
]

if {vi : i ∈ I} ∈ E(G),
H̄ =

(∏
i∈I Vi

)
\ H

[⋃
i∈I Vi

]
otherwise.

Observe that every transversal copy of G inH corresponds to exactly one transversal
copy of K(k)

s in H̃. Consequently, applying the the previous corollary on H̃, we
deduce the following counting formula.

Corollary 6.13 (Subhypergraph counting formula). Fix 2 ≤ k ≤ s. For
any ε > 0 and any 0 < d ≤ 1, there exist δ0 > 0 and n0 ∈ N for which the
following assertion holds. If the hypergraph H is a (δ, d)-regular (s, k)-cylinder
on V1 ∪ · · · ∪ Vs, where |Vi| = n ≥ n0 for all i ∈ [s] and δ < δ0, and G is an
arbitrary k-uniform hypergraph on s vertices, then the number of transversal G in
H is (1 +O1(ε))de(G)(1− d)(

s
k)−e(G)ns.

Clearly, one may generalize Corollary 6.13 above to the case in which the (s, k)-
cylinder H has a non-constant density vector ~d = (dI)I∈[s]k .
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