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Abstract. A bipartite graph G = (V1 ∪ V2, E) is (δ, d)-regular if˛̨
d− d(V ′

1 , V ′
2 )

˛̨
< δ

whenever V ′
i ⊂ Vi, |V ′

i | ≥ δ|Vi|, i = 1, 2. Here, d(V ′
1 , V ′

2 ) = e(V ′
1 , V ′

2 )/|V ′
1 ||V ′

2 |
stands for the density of the pair (V ′

1 , V ′
2 ).

An easy counting argument shows that if G = (V1 ∪ V2 ∪ V3, E) is a
3-partite graph whose restrictions on V1 ∪V2, V1 ∪V3, V2 ∪V3 are (δ, d)-
regular, then G contains (d3 ± f(δ))|V1||V2||V3| copies of K3. This fact
and its various extensions are the key ingredients in most applications
of Szemerédi’s Regularity Lemma.

To derive a similar results for r-uniform hypergraphs, r > 2, is a
harder problem. In 1994, Frankl and Rödl developed a regularity lemma
and counting argument for 3-uniform hypergraphs. In this paper, we
exploit their approach to develop a counting argument for 4-uniform
hypergraphs.

1. Introduction

While proving his well-known Density Theorem [Sze75], E. Szemerédi
discovered an auxiliary lemma which he soon transformed into a powerful
tool in extremal graph theory. This result, named the Regularity lemma
[Sze78], states that all sufficiently large graphs can be approximated by
“random-like” graphs. This feature is especially useful in situations when
the problem in question is easier to prove for random graphs.

In particular, one such situation is the counting copies of a given small
graph in another graph. Although this problem is very hard in general,
there is a simple argument (called the Counting Lemma) which counts these
copies in the approximation produced by the Regularity Lemma. Since the
Counting Lemmas as well as the Regularity Lemma have had numerous ap-
plications (see [KS96, KSSS02] for survey), a natural question arises whether
they can be generalized to hypergraphs.
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Chung [Chu91] and Frankl and Rödl [FR92] considered regularity lemmas
for hypergraphs. Yet these regularity lemmas failed to produce “random-
like” approximations in which one could count copies of given small hyper-
graphs. This is perhaps the main reason why the regularity lemmas from
[FR92, Chu91] did not have many applications. As an attempt to improve
the situation, Frankl and Rödl considered a strengthening of the approach
from [FR92] that for 3-uniform hypergraph enables to find a copy of the com-
plete 3-uniform hypergraph on four vertices K

(3)
4 in a “δ-regular” 3-uniform

hypergraph. Their result was announced already in [Ro91], but it has been
published only recently [FR02]. Frankl and Rödl’s result was later general-
ized to the counting of arbitrary small 3-uniform hypergraphs by Nagle and
Rödl [NR03]. These counting lemmas have already had several applications
(see e.g. [KNR03, NR02, RR98]).

The purpose of this paper is to develop a further extension of the counting
lemma from [FR02] and generalize it to 4-uniform hypergraphs.

Let us mention that our result, together with the regularity lemma for
k-uniform hypergraphs recently developed in [RS04], can be used in several
applications. In particular, it gives an answer to the problem of Székely
(cf. [Ma02], page 227) and confirms Conjecture 1.5 in [FR02] for k = 5.
Since the argument for counting in 4-uniform hypergraphs presented in this
paper is technical and long, these applications will appear in a separate note
[RS04a].

1.1. Notation and basic definitions. We start with some definitions. For
a set V and an integer k ≥ 2, let [V ]k denote the system of all k-element
subsets of V . An ordered pair G = (V (G), E(G)) = (V,E), where E = E(G)
is a subset of [V ]k, is called a k-uniform hypergraph. If k = 2, we have a
graph.

Let V = V1 ∪ · · · ∪ Vs be a partition, we say that a set e ⊂ V is crossing
if |e ∩ Vj | ≤ 1 for all j = 1, 2, . . . , s. Furthermore, a hypergraph G =
(V1 ∪ · · · ∪Vs, E) is said to be s-partite if its all edges are crossing. We shall
also denote by K

(k)
s (V1, . . . , Vs) the complete k-uniform s-partite hypergraph

with partition V1 ∪ · · · ∪ Vs.
This paper deals with s-partite k-uniform hypergraphs, which we call

(s, k)-cylinders.

Definition 1.1. Let s ≥ k ≥ 1 be two integers. We define an (s, k)-cylinder
G as follows.

For k = 1, G is a partition V (G) = V1 ∪ . . . ∪ Vs. For k > 1, G is any
s-partite k-uniform hypergraph.

If there is no danger of confusion, we shall identify (s, k)-cylinders with
their edge sets.

Definition 1.2. Let k = 1 and let G, G′ be two (s, 1)-cylinders, V (G) =
V1 ∪ . . . ∪ Vs and V (G′) = V ′

1 ∪ . . . ∪ V ′
s . We say that G′ is a subcylinder of

G if V ′
i ⊂ Vi for all i = 1, 2, . . . , s.



COUNTING SUBGRAPHS IN QUASI-RANDOM 4-UNIFORM HYPERGRAPHS 3

For k > 1 and two (s, k)-cylinders G, G′, we say that G′ is a subcylinder
of G if E(G′) ⊂ E(G). Moreover, G′ is an induced subcylinder of G, and we
write G′ = G[V (G′)], if E(G′) = E(G) ∩ [V (G′)]k.

If s = k + 1, we will often write an (s, k)-cylinder G as G =
⋃s

i=1 ∂iG,
where ∂iG is the subcylinder of G induced on

⋃
j 6=i Vj .

A subcylinder G′ = (V ′, E′) of G is a clique in G if E′ = [V ′]k.

Definition 1.3. For an (s, 1)-cylinder G = V1 ∪ · · · ∪ Vs and 1 ≤ j ≤ s, we

define Kj(G) = K
(j)
s (V1, . . . , Vs). For an (s, k)-cylinder G, where k > 1, we

shall denote by Kj(G), k ≤ j ≤ s, the j-uniform hypergraph whose edges
are precisely those j-element subsets of V (G) that span cliques of order j in
G.

Clearly, for k > 1, the quantity |Kj(G)| counts the total number of cliques
of order j in G. We will often face a situation when we need to describe
that one cylinder ‘lies on’ another cylinder. To this end, we define the term
underlying cylinder.

Definition 1.4. Let G be an (s, k− 1)-cylinder and H be an (s, k)-cylinder
with the same s-partition. We say that G underlies H if H ⊂ Kk(G).

Through this paper, we will work with a series of underlying cylinders.
To accommodate this situation, we introduce the notion of complex.

Definition 1.5. Let s and k, s ≥ k ≥ 2, be two integers. An (s, k)-complex
H is a system of cylinders

{
H(i)

}k

i=1
such that

(a) H(1) is an (s, 1)-cylinder V1 ∪ · · · ∪ Vs,

(b) for every i ∈ [k − 1], H(i) underlies H(i+1), i.e. H(i+1) ⊂ Ki+1(H(i)).

1.2. Regularity for graphs. Before we state the Regularity Lemma, we
must introduce the concept of regular pairs.

Definition 1.6 ([Sze78]). Let G = (V,E) be a graph and δ be a positive
real number, 0 < δ ≤ 1. We say that a pair (A,B) of two disjoint subsets
of V is δ-regular if

|d(A′, B′)− d(A,B)| < δ

for any two subsets A′ ⊂ A, B′ ⊂ B, |A′| ≥ δ|A|, |B′| ≥ δ|B|. Here,
d(A,B) = |E(A,B)|/(|A||B|) stands for the density of the pair (A,B).

This definition states that a regular pair has uniformly distributed edges.
The Regularity Lemma of Szemerédi [Sze78] enables us to partition the
vertex set V (G) of a graph G into t + 1 sets V0 ∪ V1 ∪ . . .∪ Vt in such a way
that most of the pairs (Vi, Vj) satisfy Definition 1.6. The precise statement
is following.

Theorem 1.7 (Regularity Lemma [Sze78]). For every δ > 0 and t0 ∈ N
there exist two integers N0 = N0(δ, t0) and T0 = T0(δ, t0) with the following
property: for every graph G with n ≥ N0 vertices there is a partition of the
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vertex set into t + 1 classes

V = V0 ∪ V1 ∪ . . . ∪ Vt

such that

(i) t0 ≤ t ≤ T0,
(ii) |V0| ≤ δn, |V1| = . . . = |Vt|, and
(iii) all but at most δ

(
t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t, are δ-regular.

Moreover, this lemma is sufficiently strong to ensure the existence of var-
ious small subgraphs in G. The easiest case, when we count copies of K3, is
summarized in the next fact.

Fact 1.8. Let G be a graph and Vi, Vj , Vk be mutually disjoint subsets of
V (G). If all (Vi, Vj), (Vi, Vk), and (Vj , Vk) are δ-regular pairs in G with
density d and 2δ < d, then

(1−2δ)(d−δ)3|Vi||Vj ||Vk| ≤
∣∣K3(G∩K(Vi, Vj , Vk))

∣∣ ≤ [
2δ+(d+δ)3

]
|Vi||Vj ||Vk|.

This fact and its extensions (cf. Fact 4.5) are a key to many applications
of the Regularity Lemma (cf. [CRST83, KSS97, KS96, KSSS02]).

1.3. Regularity for hypergraphs. Now we define the notion of regularity
for cylinders:

Definition 1.9. Let G be a (k, k − 1)-cylinder underlying a (k, k)-cylinder
H. We say thatH is (δ, d)-regular with respect to G if the following condition

is satisfied: whenever G′ ⊂ G is a (k, k − 1)-cylinder such that∣∣Kk(G
′
)
∣∣ ≥ δ

∣∣Kk(G)
∣∣

then ∣∣H ∩Kk(G
′
)
∣∣ = (d± δ)

∣∣Kk(G
′
)
∣∣.

Here, d ± δ stands for a number in the interval (d − δ, d + δ). Note that
for k = 2, Definition 1.9 varies from Szemerédi’s definition of a δ-regular
pair (V1, V2) (cf. [Sze78]). This is because the (2, 1)-cylinder G′ is a pair of
sets V ′

i ⊂ Vi, i = 1, 2, and the condition |Kk(G′)| ≥ δ|Kk(G)| translates to
|V ′

1 ||V ′
2 | ≥ δ|V1||V2|. However, it is easy to observe that:

• (δ, d)-regularity implies δ1/2-regularity in the sense of Definition 1.6,
and

• δ-regularity in the above sense gives also (δ, d)-regularity.

For k > 2, the situation becomes more complicated and due to the quan-
tification of constants in the hypergraph regularity lemma (Remark 4.6,
[FR02]), Definition 1.9 is not strong enough to have the effect of Definition
1.6 in the case k = 2. To overcome this problem, Frankl and Rödl introduced
in [FR02] the concept of (δ, r)-regularity. Here we present this concept in
more general form.
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Definition 1.10. Let r ∈ N and G be a (k, k − 1)-cylinder underlying
a (k, k)-cylinder H. We say that H is (δ, d, r)-regular with respect to G if
the following condition is satisfied: whenever G1, . . . ,Gr ⊂ G are (k, k − 1)-
cylinders such that ∣∣∣∣ r⋃

j=1

Kk(Gj)
∣∣∣∣ ≥ δ

∣∣Kk(G)
∣∣,

then ∣∣∣∣H ∩
r⋃

j=1

Kk(Gj)
∣∣∣∣ = (d± δ)

∣∣∣∣ r⋃
j=1

Kk(Gj)
∣∣∣∣.

We extend the above definition to the case of an (s, k)-cylinder H.

Definition 1.11. Let r ∈ N and G be an (s, k − 1)-cylinder underlying
an (s, k)-cylinder H. We say that H is (δ, d, r)-regular with respect to G if

H
[⋃

j∈I Vj

]
is (δ, d, r)-regular with respect to G

[⋃
j∈I Vj

]
for all I ∈ [s]k.

Now we are ready to introduce the concept of regularity for an (s, k)-
complex H.

Definition 1.12. Let r ∈ N and d = (d2, . . . , dk) and δ = (δ2, . . . , δk) be
two vectors of positive real numbers such that 0 < δi < di ≤ 1 for all
i = 2, . . . k. We say that an (s, k)-complex H is (δ,d, r)-regular if

(a) H(2) is (δ2, d2)-regular with respect to H(1), and

(b) H(i+1) is (δi+1, di+1, r)-regular with respect to H(i) for every i ∈
[k − 1]\{1}.

Frankl and Rödl proved the following theorem:

Theorem 1.13 ([FR02]). For any ν > 0 and any d3 ∈ (0, 1] there is a real
number δ3 such that for any positive real number d2 ∈ (0, 1] there exist δ2

and r, n0 ∈ N such that if H = {H(1),H(2),H(3)} is a (δ,d, r)-regular (4, 3)-
complex, where H(1) = V1 ∪ V2 ∪ V3 ∪ V4, |V1| = |V2| = |V3| = |V4| = n > n0,

d = (d2, d3) and δ = (δ2, δ3), then H(3) contains (1± ν)d(4
3)

3 d
(4
2)

2 n4 copies of
K

(3)
4 .

This theorem plays the role of Fact 1.8. Indeed, it enables us to find copies
of the complete 3-uniform hypergraph on 4 vertices K

(3)
4 in 3-cylinders un-

derlied by a regular sparse 2-cylinder. However, this theorem would be
useless without an appropriate version of a regularity lemma for 3-uniform
hypergraphs. Such a lemma was also introduced in [FR02]. Moreover, this
result was extended by Nagle and Rödl in [NR03] who developed an argu-
ment for counting copies of the complete 3-uniform hypergraph on k vertices
K

(3)
k .

Theorem 1.14 ([NR03]). For any integer k ≥ 4, ν > 0 and any d3 ∈ (0, 1]
there is a real number δ3 such that for any positive real number d2 ∈ (0, 1]
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there exist δ2 and r, n0 ∈ N such that if H = {H(1),H(2),H(3)} is a (δ,d, r)-
regular (k, 3)-complex, where H(1) = V1 ∪ V2 ∪ . . . ∪ Vk, |V1| = |V2| = . . . =
|Vk| = n > n0, d = (d2, d3) and δ = (δ2, δ3), then H(3) contains (1 ±

ν)d(k
3)

3 d
(k
2)

2 nk copies of K
(3)
k .

1.4. The main result. Our goal is to prove the following analogy of The-
orem 1.13 for 4-cylinders.

Theorem 1.15 (Main Theorem). For any ν > 0 the following statement
holds.

For every d4 ∈ (0, 1], there is a real number δ4 such that for any d3 ∈ (0, 1],
there exists a real number δ3 such that for any d2 ∈ (0, 1], there are δ2 and
n0, r ∈ N with the property that whenever H = {H(1), H(2), H(3), H(4)} is
a (δ,d, r)-regular (5, 4)-complex with vertex set H(1) = V1∪V2∪V3∪V4∪V5,
where |V1| = |V2| = |V3| = |V4| = |V5| = n > n0, d = (d2, d3, d4) and
δ = (δ2, δ3, δ4), then H(4) contains

(1± ν)d(5
4)

4 d
(5
3)

3 d
(5
2)

2 n5

copies of the complete 4-uniform hypergraph on 5 vertices K
(4)
5 .

This theorem has the following intuitive meaning: consider a random
(5, 4)-complex H = {H(1), H(2), H(3), H(4)} consisting of

i) vertex set H(1) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, |V1| = |V2| = |V3| = |V4| =
|V5| = n,

ii) a random 5-partite graph H(2), the edges of which are generated
with probability d2,

iii) a random 5-partite 3-uniform hypergraph H(3), whose edges are cho-
sen from triangles of H(2) independently with probability d3, and

iv) a random 5-partite 4-uniform hypergraph H(4), whose edges are cho-
sen from copies of K

(3)
4 in H(3) independently with probability d4.

It is easy to show that under the above setup, the number of copies of K
(4)
5

in H(4) is
(1 + o(1))d(5

4)
4 d

(5
3)

3 d
(5
2)

2 n5, (1.1)
where o(1) → o as n →∞.

The aim of this paper is to show that the quasi-random properties ensured
by the hypergraph regularity lemma [RS04] imply that the number of copies
of K

(4)
5 in such a quasi-random (5, 4)-complex is also given by (1.1).

At the first sight, it seems perhaps surprising that proving (1.1) in a quasi-
random setup is significantly more complicated than in a random setup. This
difficulty is, however, less surprising if one realizes that Theorem 1.15 quite
easily implies a special but already difficult case of Szemerédi’s Density
Theorem (cf. [Sze75]), namely that for any ε > 0 there exists n0 such
that every εn element subset of {1, . . . , n}, n > n0, contains an arithmetic
progression of length 5.
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We also remark that all auxiliary results of this paper are easy to prove
and understand in the random setup given by i)-iv). Unfortunately, their
verification in the quasi-random setup is far from being obvious. This leads
us to believe that the following conjecture is true (but it is likely hard to
prove).

Conjecture 1.16. For any ν > 0 and any k ∈ N, the following is true:
∀dk ∈ (0, 1] ∃δk ∀dk−1 ∈ (0, 1] ∃δk−1 . . . ∀d2 ∈ (0, 1] ∃δ2 ∃r ∈ N ∃n0 ∈ N

such that if H = {H(i)}k
i=1 is a (δ,d, r)-regular (k+1, k)-complex with vertex

set H(1) = V1 ∪ V2 ∪ . . . ∪ Vk+1, where |V1| = |V2| = . . . = |Vk+1| = n > n0,
d = (d2, . . . , dk) and δ = (δ2, . . . , δk), then H(k) contains

(1± ν)
k∏

s=2

d
(k+1

s )
s × nk+1

copies of K
(k)
k+1.

1.5. Extensions of Theorem 1.15. In Definition 1.11, we assumed that
for every I ∈ [s]k, the restriction H

[⋃
j∈I Vj

]
is (δ, d, r)-regular with respect

to G
[⋃

j∈I Vj

]
. In other words, the density dI of the subgraph H

[⋃
j∈I Vj

]
is roughly the same for every I ∈ [s]k. Now we allow different values of dI

(I ∈ [s]k) and state a straightforward extension of Theorem 1.15. We start
with some definitions.

Definition 1.17. Let G be an (s, k−1)-cylinder underlying an (s, k)-cylinder

H, r ∈ N, and let ~d = (dI)I∈[s]k be a list of
(

s
k

)
positive real numbers dI ,

where 0 < dI ≤ 1. We say that H is (δ, ~d, r)-regular with respect to G if
H

[⋃
j∈I Vj

]
is (δ, dI , r)-regular with respect to G

[⋃
j∈I Vj

]
for all I ∈ [s]k.

Definition 1.18. Let r ∈ N and, for every integer i, 2 ≤ i ≤ k, let ~di =
(dI)I∈[s]i be a list of

(
s
i

)
positive real numbers dI , where 0 < dI ≤ 1, and put

~d = (~d2, . . . , ~dk). Let δ = (δ2, . . . , δk) be a vector of positive real numbers
such that 0 < δi < dI for all I ∈ [s]i and i = 2, . . . , k. We say that the

(s, k)-complex H is (δ, ~d, r)-regular if H(i+1) is (δi+1, ~di+1, r)-regular with

respect to H(i) for every 1 ≤ i < k.

Now we are ready to state a slight extension of Theorem 1.15.

Theorem 1.19. For any ν > 0 the following statement holds.
For every ~d4 = (dI)I∈[5]4 ∈ (0, 1]5, there is a real number δ4 such that for

any ~d3 = (dI)I∈[5]3 ∈ (0, 1]10, there exists a real number δ3 such that for any
~d2 = (dI)I∈[5]2 ∈ (0, 1]10, there are δ2 and r, n0 ∈ N with the property that
whenever H = {H(1),H(2),H(3),H(4)} is a (δ, ~d, r)-regular (5, 4)-complex
with vertex set H(1) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, where |V1| = |V2| = |V3| =
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|V4| = |V5| = n > n0, ~d = (~d2, ~d3, ~d4) and δ = (δ2, δ3, δ4), then H(4) contains

(1± ν)
4∏

i=2

∏
I∈[5]i

dI × n5

copies of K
(4)
5 .

The proof of this theorem follows the lines of the proof of Theorem 1.15
and we omit it here.

For us, the most interesting case occurs when all underlying cylinders
have their densities dI independent on the choice of I, i.e. dI = di for every
I ∈ [5]i and i = 2, 3. In this case, the number of K

(4)
5 ’s in H(4) is

(1± ν)
∏

I∈[5]4

dI × d
(5
3)

3 d
(5
2)

2 n5. (1.2)

Suppose now that also the densities dI , |I| = 4, are independent on the
choice of I, i.e. dI = d4 for every I ∈ [5]4.

Let G be an arbitrary 4-uniform hypergraph on 5 vertices v1, . . . , v5. We
define a (5, 4)-cylinder H̃(4) = H̃(4)(G) in the following way. For every
I ∈ [5]4, we set

H̃(4)
[ ⋃

i∈I

Vi

]
=

{
H

[⋃
i∈I Vi

]
if {vi : i ∈ I} ∈ E(G),

K4(H(3)
[⋃

i∈I Vi

]
) \ H

[⋃
i∈I Vi

]
otherwise.

Observe that the density of H̃(4)
[⋃

i∈I Vi

]
is d4 if {vi : i ∈ I} ∈ E(G), and it

is 1− d4 otherwise. Applying (1.2), we get∣∣K5(H̃(4)(G))
∣∣ = (1± ν)de(G)

4 (1− d4)(
5
4)−e(G)d

(5
3)

3 d
(5
2)

2 n5. (1.3)

Consequently, we deduce the following counting formula.

Corollary 1.20 (Subhypergraph counting formula). For any ν > 0
and any 4-uniform hypergraph G on 5 vertices with automorphism group
Aut(G), the following statement holds.

For every d4 ∈ (0, 1], there is a real number δ4 such that for any d3 ∈ (0, 1],
there exists a real number δ3 such that for any d2 ∈ (0, 1], there are δ2 and
r, n0 ∈ N with the property that whenever H = {H(1),H(2),H(3),H(4)} is
a (δ,d, r)-regular (5, 4)-complex with vertex set H(1) = V1∪V2∪V3∪V4∪V5,
where |V1| = |V2| = |V3| = |V4| = |V5| = n > n0, d = (d2, d3, d4) and
δ = (δ2, δ3, δ4), then H(4) contains

(1± ν)de(G)
4 (1− d4)(

5
4)−e(G)d

(5
3)

3 d
(5
2)

2 n5 5!
|Aut(G)|

induced copies of G whose vertex sets are crossing.

Similarly, if we set dI = d2 for all I ∈ [5]2, dI = d3 for all I ∈ [5]3, and
we know that dI ≥ d4 for all I ∈ [5]4 in Theorem 1.19, then we obtain the
following corollary.
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Corollary 1.21. For any ν > 0 the following statement holds.
For every d4 ∈ (0, 1] there exists δ4 such that for every d3 ∈ (0, 1] there

exists δ3 such that for every d2 ∈ (0, 1] there exist δ2 and r, n0 ∈ N so that
whenever H = {H(1), H(2), H(3), H(4)} is a (δ, ~d, r)-regular (5, 4)-complex,
where

• H(1) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 and |V1| = |V2| = |V3| = |V4| = |V5| =
n > n0,

• ~d4 = (dI)I∈[5]4 and dI ≥ d4 for every I ∈ [5]4,
• ~d3 = (dI)I∈[5]3 and dI = d3 for every I ∈ [5]3,
• ~d2 = (dI)I∈[5]2 and dI = d2 for every I ∈ [5]2,
• ~d = (~d2, ~d3, ~d4) and δ = (δ2, δ3, δ4),

then H(4) contains at least

(1− ν)d(5
4)

4 d
(5
3)

3 d
(5
2)

2 n5

copies of K
(4)
5 .

2. Auxiliary results

The goal of this section is to present our tools for the proof of the Main
Theorem. We first state all necessary concepts and then propositions that
we later use in the actual proof. One of the central concepts in the proof of
Theorem 1.15 is the notion of the link of a vertex.

Definition 2.1. Let G be a k-uniform hypergraph and x ∈ V (G). We will
call the set

G(x) = {e \ {x} : e ∈ G, x ∈ e}

the link of the vertex x in G. Note that G(x) is a (k−1)-uniform hypergraph.
Moreover, if G is an (s, k)-cylinder, then G(x) is an (s − 1, k − 1)-cylinder.
For a subset W ⊂ V (G), we define G(W ) by

G(W ) =
⋂

x∈W

G(x). (2.1)

For simplicity, if W = {x1, . . . , xk}, we write G(x1, . . . , xk).

Through the remainder of the paper we fix a (δ,d, r)-regular (5, 4)-complex
H =

{
H(1), H(2), H(3), H(4)

}
and ν > 0, and we will assume that H(1) =

V1 ∪ . . . ∪ V5 and |V1| = . . . = |V5| = n > n0. The purpose of this condition
is to simplify the proof and all statements remain valid for partite sets with
different sizes.

Let us recall the quantification of the constants in Theorem 1.15:

∀d4∃δ4∀d3∃δ3∀d2∃δ2∃r∃n0. (2.2)
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Due to this quantification we may assume

ν � δ4 > 0,

1 > d4 � δ4 > 0, 1 > d3 � δ3 > 0, 1 > d2 � δ2 > 0 (2.3a)

r � max{1/d4, 1/d3, 1/d2},
n0 is sufficiently large.

Since one usually applies Theorem 1.15 after applying the Regularity Lemma
(cf. Theorem 7.15 in [RS04]), we may assume the following order of constants
that is guaranteed by this Lemma.

d4 � δ4 � d3 � δ3 � d2 � δ2 > 0. (2.3b)

We remark, however, that this order is not crucial for the proof and the
authors decided to use it only for the sake of clearer presentation.

Our proof will be based on the following four propositions. The first
proposition states that for almost all vertices x, the number of copies of K4

induced on the neighborhood H(2)(x) of x in H(2) is bounded.

Proposition 2.2. For all but at most 8δ
1/2
2 n vertices x ∈ V1∣∣K4(H(2)[H(2)(x)])
∣∣ ≤ 2d

(5
2)

2 n4. (2.4)

Next proposition bounds the number of copies of K4 induced on the joint
neighborhood of a pair x, x′ in H(2) for almost all pairs of vertices x, x′.

Proposition 2.3. For all but at most 16δ
1/2
2 n2 pairs of vertices x, x′ ∈ V1∣∣K4(H(2)[H(2)(x, x′)])
∣∣ ≤ 2d14

2 n4. (2.5)

The third proposition shows that for almost all pairs x, x′, the number of
copies of K

(3)
4 induced by those 3-edges of H(3) which are also triangles in

the link H(3)(x, x′), is bounded.

Proposition 2.4. For all but at most 60δ
1/16
3 n2 pairs of vertices x, x′ ∈ V1∣∣K4

(
H(3) ∩ K3(H(3)(x, x′))

)∣∣ ≤ 2d16
3 d14

2 n4. (2.6)

The last proposition shows that the number of copies of K
(3)
4 in the link

H(4)(x) is roughly the same for almost all vertices x.

Proposition 2.5. For all but but at most 100δ
1/4
4 n vertices x ∈ V1∣∣K4(H(4)(x))

∣∣ = (1± ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4. (2.7)

Since the proofs of these propositions are rather complex, we defer them
until later. Propositions 2.2 and 2.3 are proved in Section 4. In order to
prove Propositions 2.5 and 2.4, we need the so called `-graphs Lemma (see
Section 5) and a number of additional claims about (s, 3)-cylinders (see
Sections 6, 7 and 9) and (s, 4)-cylinders (see Section 10). Therefore, the
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proof of Propositions 2.4 is in Section 8, and the proof of Proposition 2.5 is
given in Section 11.

We will also need the following lemma which follows from Markov’s in-
equality.

Lemma 2.6 (Picking Lemma, [PRS04]). Let V be a set of size m, k be a
nonnegative integer, and P1, . . .Pk be arbitrary graphs on V . Furthermore,
suppose that |P1| ≤ σ1m

2, |P2| ≤ σ2m
2, . . ., |Pk| ≤ σkm

2. Then for every
subset W ⊂ V with at least cm elements and a positive integer t such that

2σ1t
2

c2
<

1
k
, (2.8)

there exists a choice of t vertices x1, x2, . . . , xt ∈ W such that
(i) {xu, xv} 6∈ P1 for all 1 ≤ u < v ≤ t,
(ii) for all i ∈ [k]\{1}, {xu, xv} 6∈ Pi for all but at most (2kσi/c2)t2 pairs

1 ≤ u < v ≤ t.

In our proofs, we will also need the following observation, which is an
easy consequence of the Inclusion-Exclusion Principle.

Observation 2.7. Let X be a set and A1, . . . , At t of its arbitrary finite
subsets. Then ∣∣ t⋃

i=1

Ai

∣∣ ≥ t∑
i=1

|Ai| −
∑

1≤i<j≤t

|Ai ∩Aj |. (2.9)

Furthermore, if a×
∑t

i=1 |Ai| −
∑

1≤i<j≤t |Ai ∩Aj | ≥ 0 for some a ∈ (0, 1),
then ∣∣ t⋃

i=1

Ai

∣∣ ≥ (1− a)
t∑

i=1

|Ai|. (2.10)

Now we are ready to prove the Main Theorem.

3. Proof of the Main Theorem

3.1. Lower bound. Let W be the set of all vertices x ∈ V1 satisfying
inequality (2.7). Thus, for every vertex x ∈ W we have:∣∣K4(H(4)(x))

∣∣ = (1± ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4. (3.1)

By Proposition 2.5 we know that

|W | ≥
(
1− 100δ

1/4
4

)
n.

Since the proof is rather complex and long, we outline its idea first. For

every vertex x ∈ W there are (1±ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4 copies of K
(3)
4 in H(4)(x).

Notice that every such K
(3)
4 together with x form a copy of

(
K

(4)
5 \ edge

)
in H(4). Therefore, we would like to apply the (δ4, d4, r)-regularity of H(4)

on these copies to obtain the uncounted for edge.
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The number of copies of K
(3)
4 in H(4)(x) is, however, insufficient to ap-

ply the (δ4, d4, r)-regularity of H(4). Indeed, from Theorem 1.13 we have
|K4(∂1H(3))| ≥ (1/2)d6

2d
4
3n

4. To apply the (δ4, d4, r)-regularity of H(4), we
need to satisfy ∣∣K4(H(4)(x))

∣∣ ≥ δ4

∣∣K4(∂1H(3))
∣∣.

Since
∣∣K4(H(4)(x))

∣∣ ≤ (1 + ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4, we obtain

(1 + ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4 ≥ δ4 × (1/2)d6
2d

4
3n

4

or (1 + ν/2)d4
4d

6
3d

4
2 ≥ (1/2)δ4. This is impossible to satisfy due to the order

of constants and quantification of this theorem.
Thus, we must use the full power of r-regularity. We select r = 2δ

1/2
4 /(d4

2d
6
3)

vertices x1, . . . , xr from W in such a way that the size of
⋃r

j=1K4(H(4)(xj))
is sufficiently large to apply the regularity of H(4), i.e.∣∣∣∣ r⋃

j=1

K4(H(4)(xj))
∣∣∣∣ ≥ δ4

∣∣K4(∂1H(3))
∣∣. (3.2)

In order to choose this r-tuple of vertices with a large union, we will use the
Picking Lemma and the fact that∣∣∣∣ r⋃

j=1

K4(H(4)(xj))
∣∣∣∣ ≥ r∑

j=1

∣∣K4(H(4)(xj))
∣∣− ∑

1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩K4

(
H(4)(xj)

)∣∣.
The Picking Lemma and Proposition 2.5 will guarantee the choice of

the r-tuple x1, . . . , xr for which
∑r

j=1

∣∣K4(H(4)(xj))
∣∣ is “large”, whereas

the same lemma and Propositions 2.3 and 2.4 will make the second term∑
1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩ K4

(
H(4)(xj)

)∣∣ “small”.

Since (3.2) holds, we will be able to apply the (δ4, d4, r)-regularity of H(4)

to obtain ∣∣∣∣H(4) ∩
r⋃

j=1

K4(H(4)(xj))
∣∣∣∣ = (d4 ± δ4)

∣∣∣∣ r⋃
j=1

K4(H(4)(xj))
∣∣∣∣.

Observe that the left-hand side of the above equation counts the number
of copies of K

(4)
5 that use one of x1, . . . , xr as a vertex. Also note that this

number is O(n4) which is far less than what Theorem 1.15 promises. To get
a full amount of copies of K

(4)
5 as claimed by the Theorem, we will iterate

this process as long as we are able to use the Picking Lemma.
After describing the idea, we start with a detailed proof. We define two

graphs P1 and P2, both with vertex set V1 and edge sets defined by:

E(P1) =
{

xx′ :
∣∣K4

(
H(2)[H(2)(x, x′)]

)∣∣ > 2d14
2 n4

}
,

E(P2) =
{

xx′ :
∣∣K4

(
H(3) ∩ K3

(
H(3)(x, x′)

))∣∣ > 2d16
3 d14

2 n4
}

.
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It follows from Propositions 2.3 and 2.4 that the sizes of P1 and P2 are
bounded, more precisely, |P1| ≤ 16δ

1/2
2 n2 and |P2| ≤ 60δ

1/16
3 n2.

We apply the Picking Lemma on W = V1 with parameters σ1 = 16δ
1/2
2 ,

σ2 = 60δ
1/16
3 , t = r = 2δ

1/2
4 /(d4

2d
6
3), c = δ

1/2
4 , and obtain r vertices

x1, . . . , xr ∈ W such that all pairs {xi, xj} satisfy∣∣K4

(
H(2)[H(2)(xi, xj)]

)∣∣ ≤ 2d14
2 n4, (3.3)

and all but
(
2× 2× 60δ

1/16
3 /δ4

)
r2 ≤ δ

1/32
3 r2 pairs {xi, xj} satisfy∣∣K4

(
H(3) ∩ K3

(
H(3)(xi, xj)

))∣∣ ≤ 2d16
3 d14

2 n4. (3.4)

This is possible as long as

|W | ≥ c× n = δ
1/2
4 n. (3.5)

Now we estimate the size of
⋃r

j=1K4(H(4)(xj)). We first apply Observa-
tion 2.7:∣∣∣∣ r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≥ r∑
j=1

∣∣K4

(
H(4)(xj)

)∣∣− ∑
1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩K4

(
H(4)(xj)

)∣∣.
The next step is to estimate both terms on the right-hand side. The first
term is easier to handle, we use inequality (3.1):

r∑
j=1

∣∣K4

(
H(4)(xj)

)∣∣ ≥ r × (1− ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4. (3.6)

To get an estimate for the second term, we must observe several facts:

• K4(H(4)(xi)) ∩ K4(H(4)(xj)) = K4(H(4)(xi, xj)) for every 1 ≤ i <
j ≤ r.

• K
(3)
4 in H(4)(xi, xj) is also a copy of K

(3)
4 in H(3) ∩K3(H(3)(xi, xj)).

• K
(3)
4 in H(4)(xi, xj) is also a copy of K

(3)
4 in K3

(
H(2)[H(2)(xi, xj)]

)
.

Since we know that all but at most δ
1/32
3 r2 pairs {xi, xj} satisfy (3.4), for

these pairs we use the estimate∣∣K4

(
H(4)(xi, xj)

)∣∣ ≤ ∣∣K4

(
H(3) ∩ K3(H(3)(xi, xj))

)∣∣ ≤ 2d16
3 d14

2 n4. (3.7)

The remaining δ
1/32
3 r2 pairs {xi, xj} satisfy inequality (3.3), thus we estimate∣∣K4

(
H(4)(xi, xj)

)∣∣ as∣∣K4

(
H(4)(xi, xj)

)∣∣ ≤ ∣∣K4

(
H(2)[H(2)(xi, xj)]

)∣∣ ≤ 2d14
2 n4. (3.8)

Now we combine (3.7) and (3.8) to obtain∑
1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩K4

(
H(4)(xj)

)∣∣ ≤ (
r

2

)
×2d16

3 d14
2 n4+δ

1/32
3 r2×2d14

2 n4.
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We use the assumption δ3 � d3 and conclude that δ
1/32
3 r2 × 2d14

2 n4 ≤
d16

3 r2d14
2 n4. Then,∑

1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩ K4

(
H(4)(xj)

)∣∣ ≤ 2r2d16
3 d14

2 n4. (3.9)

Using (3.6), (3.9), and the definition of r (recall r = 2δ
1/2
4 /(d4

2d
6
3)), we obtain

that∣∣∣∣ r⋃
j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≥ r × (1− ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4 − 2r2d16
3 d14

2 n4

≥ δ
1/2
4 d4

4d
4
3d

6
2n

4 − 8δ4d
4
3d

6
2n

4
(2.3a)

≥ 2δ4d
4
3d

6
2n

4.

(3.10)

On the other hand, we observe that (4, 3)-cylinder ∂1H(3), i.e. the sub-
graph ofH(3) induced on

⋃
j 6=1 Vj , is (δ3, d3, r)-regular with respect to ∂1H(2),

and that ∂1H(2) is (δ2, d2)-regular. Furthermore, the quantification of this
theorem allows us to choose δ3 and δ2 so that the assumptions of Theo-
rem 1.13 are satisfied. Consequently, we infer that

∣∣K4

(
∂1H(3)

)∣∣ ≤ 2d4
3d

6
2n

4.
Therefore, ∣∣∣∣ r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≥ δ4

∣∣K4

(
∂1H(3)

)∣∣,
so, by the (δ4, d4, r)-regularity of H(4) with respect to H(3), we obtain∣∣∣∣H(4) ∩

r⋃
j=1

K4

(
H(4)(xj)

)∣∣∣∣ = (d4 ± δ4)
∣∣∣∣ r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣. (3.11)

From the above inequality and (3.1), one can easily conclude:∣∣∣∣H(4) ∩
r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≤ (d4 + δ4)
∣∣∣∣ r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣
≤ (d4 + δ4)

r∑
j=1

∣∣K4

(
H(4)(xj)

)∣∣ ≤ (d4 + δ4)r(1 + ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4.

In order to get a lower bound on
∣∣∣∣H(4) ∩

⋃r
j=1K4

(
H(4)(xj)

)∣∣∣∣, we first use

(3.11):∣∣∣∣H(4) ∩
r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≥ (d4 − δ4)
∣∣∣∣ r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣. (3.12)

Second, we want to apply Observation 2.7 with a = δ
1/4
4 and obtain:∣∣∣∣ r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≥ (
1− δ

1/4
4

) r∑
j=1

∣∣K4

(
H(4)(xj)

)∣∣. (3.13)
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In order to do this, we must show that

δ
1/4
4 ×

r∑
j=1

∣∣K4

(
H(4)(xj)

)∣∣− ∑
1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩ K4

(
H(4)(xj)

)∣∣ ≥ 0.

This is easy to verify using (3.6), (3.9), and d4 � δ4. Indeed,

δ
1/4
4 ×

r∑
j=1

∣∣K4

(
H(4)(xj)

)∣∣ (3.6)

≥ δ
1/4
4 × δ

1/2
4 d4

4d
4
3d

6
2n

4 ≥ 8δ4d
4
3d

6
2n

4,

and ∑
1≤i<j≤r

∣∣K4

(
H(4)(xi)

)
∩ K4

(
H(4)(xj)

)∣∣ (3.9)

≤ 2r2d16
3 d14

2 n4 ≤ 8δ4d
4
3d

6
2n

4.

Then, we combine inequalities (3.12) and (3.13) and get∣∣∣∣H(4) ∩
r⋃

j=1

K4

(
H(4)(xj)

)∣∣∣∣ ≥ d4

(
1− δ

1/4
4

)2
r∑

j=1

∣∣∣∣K4

(
H(4)(xj)

)∣∣∣∣.
Combining the last inequality with (3.6) yields∣∣∣∣H(4)∩

r⋃
j=1

K4

(
H(4)(xj)

)∣∣∣∣ (3.6)

≥
(
1−δ

1/4
4

)2×r×(1−ν/2)d5
4d

(5
3)

3 d
(5
2)

2 n4. (3.14)

So far we produced only const. × n4 cliques K
(4)
5 , while we promised to

deliver const. × n5. Therefore, we remove vertices x1, . . . , xr from W and
iterate the whole process again. Due to (3.5), we can repeat this process
as long as |W | > δ

1/2
4 n. This way we produce a sequence of at least

(
1 −

100δ
1/4
4 − δ

1/2
4

)
n/r but not more than n/r r-tuples X(1) = {x1, . . . , xr} ={

x
(1)
1 , . . . , x

(1)
r

}
, X(2) =

{
x

(2)
1 , . . . , x

(2)
r

}
, etc. Analogously to (3.14), each

iteration produces at least(
1− δ

1/4
4

)2 × r × (1− ν/2)d5
4d

(5
3)

3 d
(5
2)

2 n4 ≥ (1− 3ν/4)rd5
4d

(5
3)

3 d
(5
2)

2 n4

copies of K
(4)
5 , each of which uses exactly one vertex from X(i) =

{
x

(i)
1 , . . .,

x
(i)
r

}
.

Note that ν � δ4 and, therefore, the following lower bound on the number
of K

(4)
5 ’s in H(4) holds:

∣∣K5

(
H(4)

)∣∣ ≥ (1− 3ν/4)rd5
4d

(5
3)

3 d
(5
2)

2 n4 ×
(
1− 100δ

1/4
4 − δ

1/2
4

)n

r
(2.3a)

≥ (1− ν)d5
4d

(5
3)

3 d
(5
2)

2 n5.
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3.2. Upper bound. Due to the quantification of the Main Theorem, we
can choose δ4, δ3, δ2, and r in such a way that the lower bound derived in
the previous subsection holds with ν replaced with νd5

4/2. In particular, we
have ∣∣K5(H(4))

∣∣ ≥ (
1− νd5

4/2
)
d
(5
4)

4 d
(5
3)

3 d
(5
2)

2 n5.

Using (1.3), we obtain∣∣K5(H̃(4)(G))
∣∣ ≥ (

1− νd5
4/2

)
d

e(G)
4 (1− d4)(

5
4)−e(G)d

(5
3)

3 d
(5
2)

2 n5 (3.15)

for every subhypergraph G of K
(4)
5 . Furthermore, notice that

K5(H(3)) =
⋃

G⊂K
(4)
5

K5(H̃(4)(G)),

and this union is disjoint because each I ∈ K5(H(3)) induces exactly one
subgraph G of K

(4)
5 . Consequently∣∣K5(H(3))

∣∣ =
∑

G⊂K
(4)
5

∣∣K5(H̃(4)(G))
∣∣ =

∣∣K5(H(4))
∣∣ +

∑
G(K

(4)
5

∣∣K5(H̃(4)(G))
∣∣

(3.15)

≥
∣∣K5(H(4))

∣∣ +
(
1− νd5

4/2
) ∑
G(K

(4)
5

d
e(G)
4 (1− d4)(

5
4)−e(G)d

(5
3)

3 d
(5
2)

2 n5

=
∣∣K5(H(4))

∣∣ +
(
1− νd5

4

/
2)

(
1− d5

4

)
d
(5
3)

3 d
(5
2)

2 n5.

On the other hand, we select δ4, δ3, δ2, and r in such a way that the
assumptions of Theorem 1.14 are satisfied with ν replaced with νd5

4/2. Then,
we have ∣∣K5(H(3))

∣∣ ≤ (
1 + νd5

4/2
)
d
(5
3)

3 d
(5
2)

2 n5.

Comparing the last two inequalities yields∣∣K5(H(4))
∣∣ ≤ ((

1 + νd5
4/2

)
−

(
1− νd5

4/2
)(

1− d5
4

))
d
(5
3)

3 d
(5
2)

2 n5.

One can easily observe that
(
1+νd5

4/2
)
−

(
1−νd5

4/3
)(

1−d5
4

)
≤ 1+νd5

4/2−
1 + νd5

4/2 + d5
4 = (1 + ν)d5

4. Consequently∣∣K5(H(4))
∣∣ ≤ (1 + ν)d(5

4)
4 d

(5
3)

3 d
(5
2)

2 n5.

4. More definitions and facts about (s, 2)-cylinders

The main goal of this Chapter is to extend the notation from the Intro-
duction and to provide some basic facts about (s, 2)-cylinders. We will also
prove Propositions 2.2 and 2.3. Note that we will omit the elementary proofs
of statements below and the reader familiar with applications of Szemerédi’s
Regularity Lemma is encouraged to skip this section entirely.
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Definition 4.1. Let G be an (s, 2)-cylinder with s-partition U = U1 ∪ . . .∪
Us. We define the neighborhood of a vertex u ∈ U by N(u) = NG(u) = G(u)
and the degree of u by deg(u) = degG(u) = |G(u)|. If W is a subset of vertices
of U , we define N(W ) = NG(W ) = G(W ) and deg(W ) = degG(W ) =
|G(W )|.

If u 6∈ Uj , j ∈ [s], then we set Nj(u) = NG,j(u) = NG(u) ∩ Uj and
degj(u) = degG,j(u) = |NG,j(u)|. Similarly, if W ∩ Uj = ∅, we set Nj(W ) =
NG,j(W ) = NG(W ) ∩ Uj and degj(W ) = degG,j(W ) = |NG,j(W )|.

Note that almost all of vertices in a regular (2, 2)-cylinder have nearly the
same degree. More precisely, the following fact is true:

Fact 4.2. Let G = (U1∪U2, E) be a (δ, d)-regular bipartite graph with |U1| =
|U2| = m and 0 < δ ≤ d. Then deg(u) = (d ± δ)m for all but at most 2δm
vertices u ∈ U1.

This fact extends to an arbitrary subset W of vertices.

Fact 4.3. Let k be a positive integer such that (d − δ)2k ≥ δ, and let
G be a (δ, d)-regular (s, 2)-cylinder with s-partition U1 ∪ . . . ∪ Us, |U1| =
. . . = |Us| = m. Then, all but at most 2k(s − 1)δ1/2mk k-tuples of vertices
{u1, u2, . . . uk} ⊆ U1 satisfy the following condition:

For every i ∈ [k] and every j ∈ [s]\{1}, if W is any subset of {u1, u2, . . . uk},
|W | = i, then

degj(W ) = (d± δ)im. (4.1)

We will also use the following easy consequence of the definition of (δ, d)-
regularity.

Fact 4.4. Let G be a (δ, d)-regular (s, 2)-cylinder with s-partition U1 ∪ . . .∪
Us, and let U ′

1 ⊆ U1, U ′
2 ⊆ U2, . . ., U ′

k ⊆ Uk, be subsets such that |U ′
j | ≥

δ1/4m for all j ∈ [k]. Let G′ be the subcylinder induced on U ′
1 ∪ . . . ∪ U ′

s.
Then, G′ is (δ1/2, d)-regular.

Regular cylinders have the property that one can count the actual number
of copies of small complete graphs. The precise statement is summarized in
the following fact (see e.g. [NR03]):

Fact 4.5. For any positive integer s and positive real numbers d, δ such that
δ1/4 ≤ (d− δ)s−1, there exists a function θs,d(δ), θs,d(δ) → 0 as δ → 0, such
that whenever G is a (δ, d)-regular (s, 2)-cylinder with s-partition U1∪. . .∪Us,
|U1| = . . . = |Us| = m, then

|Ks(G)| =
(
1± θs,d(δ)

)
msd(s

2). (4.2)

We will frequently use the following easy corollary of Fact 4.5.

Corollary 4.6. If δ is sufficiently small (i.e. δ ≤ δ(s, d)), then

(3/4)msd(s
2) ≤ |Ks(G)| ≤ (5/4)msd(s

2). (4.3)
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Now we are ready to prove Propositions 2.2 and 2.3.

Proof of Proposition 2.2. By Fact 4.3 all but at most 8δ
1/2
2 n vertices x ∈ V1

satisfy
degj(x) = (d2 ± δ2)n

for j = 2, 3, 4, 5. For each such vertex, the (4, 2)-cylinder H(2)[H(2)(x)] is
(δ1/2

2 , d2)-regular by Fact 4.4. Since δ2 � d2 by assumption (2.3a), Corol-
lary 4.6 implies that∣∣K4(H(2)[H(2)(x)])

∣∣ ≤ (5/4)d(4
2)

2 × (d2 + δ2)4n4 ≤ 2d
(5
2)

2 n4.

�

Proof of Proposition 2.3. The proof follows the lines of the proof of Propo-
sition 2.2 where we replace vertex x satisfying degj(x) = (d2 ± δ2)n for
j = 2, 3, 4, 5, with a pair of vertices {x, x′} satisfying degj(x, x′) = (d2±δ2)2n
for j = 2, 3, 4, 5. �

We now define the notion of a good vertex.

Definition 4.7 (G-good vertex). Let G be a (δ, d)-regular (s, 2)-cylinder
with s-partition U1 ∪ . . . ∪ Us, |U1| = . . . = |Us| = m. A vertex u ∈ U1 is
called G-good if it satisfies

(i) degj(u) = (d± δ)m for j = 2, . . . , s and (s− 1, 2)-cylinder G[G(u)] is

(δ1/2, d)-regular,

(ii) u extends to at most δ1/4m pairs {u, u′} ⊂ U1 satisfying degj(u, u′) 6=
(d ± δ)2m for some j ∈ {2, . . . , s}, or for which (s − 1, 2)-cylinder

G[G(u, u′)] is not (δ1/2, d)-regular,

(iii) u extends to at most δ1/4m2 triples {u, u′, u′′} ⊂ U1 not satisfying
degj(u, u′, u′′) = (d ± δ)3m for j = 2, . . . , s, or for which (s − 1, 2)-
cylinder G[G(u, u′, u′′)] is not (δ1/2, d)-regular.

We denote by UG−good the set of all good vertices in U1.

Suppose that (d− δ)3 ≥ δ1/4. Then for every vertex u (pair {u, u′}, triple
{u, u′, u′′}, respectively) that satisfies condition (4.1), Fact 4.4 guarantees
the regularity of G[G(u)] (G[G(u, u′)], G[G(u, u′, u′′)], respectively).

It follows from Fact 4.3 that at most 2(s − 1)δ1/2m vertices u, at most
4(s − 1)δ1/2m2 pairs {u, u′}, and at most 6(s − 1)δ1/2m3 triples {u, u′, u′′}
violate condition (4.1). From this we can conclude that almost all vertices
u ∈ U1 are G-good.

Observation 4.8. Let G be a (δ, d)-regular (s, 2)-cylinder with s-partition
U1 ∪ . . . ∪ Us, |U1| = . . . = |Us| = m, and (d− δ)3 ≥ δ1/4. Then∣∣UG−good

∣∣ ≥ (
1− 2(s− 1)δ1/2 − 10(s− 1)δ1/4

)
m ≥

(
1− 12(s− 1)δ1/4

)
m.

We next extend the notion of a good vertex to neighbors and pairs.
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Definition 4.9 (G-good neighbor). Let G be a (δ, d)-regular (s, 2)-cylinder
with s-partition U1 ∪ . . . ∪ Us, |U1| = . . . = |Us| = m, and u ∈ U1 be a G-
good vertex. A vertex v ∈ NG,2(u) is called a G-good neighbor if it is a
G[G(u)]-good vertex. We also denote by N2(u)G−good the set of all G-good
neighbors.

Note that for every G-good neighbor v ∈ N(u)G−good the graph G[G(u, v)]
is (δ1/4, d)-regular and degj(u, v) =

(
d± δ1/2

)2
m holds for j = 3, . . . , s. One

can observe the following:

Observation 4.10. Let G be a (δ, d)-regular (s, 2)-cylinder with s-partition
U1 ∪ . . . ∪ Us, |U1| = . . . = |Us| = m and

(
d − δ1/2

)4 ≥ δ1/4. Then for
every G-good vertex u ∈ U1 all but at most 12(s − 2)δ1/8|NG,2(u)| vertices
v ∈ NG,2(u) are G-good neighbors.

Definition 4.11 (G-good pair). Let G be a (δ, d)-regular (s, 2)-cylinder
with s-partition U1 ∪ . . . ∪ Us, |U1| = . . . = |Us| = m. A pair of G-good
vertices {u, u′} ⊂ U1 is called G-good if it satisfies:

(i) degj(u, u′) = (d± δ)2m for j = 2, . . . , s,

(ii) G[G(u, u′)] is (δ1/2, d)-regular,

(iii) {u, u′} extends to at most δ1/4m sets {u, u′, u′′} ⊂ U1 not satisfying
degj(u, u′, u′′) = (d ± δ)3m for j = 2, . . . , s, or for which (s − 1, 2)-
cylinder G[G(u, u′, u′′)] is not (δ1/2, d)-regular.

Similarly to the G-good vertex case, almost all pairs of G-good vertices
are G-good.

Observation 4.12. Let 0 < δ < d be two real numbers such that (d− δ)3 ≥
δ1/4 and G be a (δ, d)-regular (s, 2)-cylinder with s-partition U1 ∪ . . . ∪ Us,
|U1| = . . . = |Us| = m. Then all but at most (4(s− 1)δ1/2 + 6(s− 1)δ1/4)m2

pairs in [UG−good]2 are G-good.

The proof of this Observation is similar to the proof of Observation 4.8.

5. The `-graphs Lemma

The goal of this section is introduce the `-graphs Lemma which is the
main tool in the proofs of Propositions 2.4 and 2.5. We start with some
definitions and technical observations.

5.1. Definitions and technical observations. It is convenient to intro-
duce the following notation: for a sequence of positive real numbers {di},
we set

Dt =
t∏

i=1

di.

Observe that Dt+1 = dt+1 ×Dt.
The next definition is crucial for this part of the paper.
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Definition 5.1. Let H1, H2 be two (k, k)-cylinders with k-partition U1 ∪
. . . ∪ Uk, and H2 ⊂ H1. We say that H2 is (ε, d, r)-regular with respect to
H1 if the following is true: whenever G1, . . . ,Gr are (k, k− 1)-cylinders with
k-partition U1 ∪ . . . ∪ Uk such that∣∣∣∣H1 ∩

r⋃
j=1

Kk(Gj)
∣∣∣∣ ≥ ε|H1|,

then ∣∣∣∣H2 ∩
r⋃

j=1

Kk(Gj)
∣∣∣∣ = (d± ε)

∣∣∣∣H1 ∩
r⋃

j=1

Kk(Gj)
∣∣∣∣. (5.1)

If H1 is the complete (k, k)-cylinder, then we simply say that H2 is (ε, d, r)-
regular or, if r = 1, (ε, d)-regular.

Note that if H2 is (ε, d, r)-regular with respect to H1, ε′ ≥ ε, and r′ ≤
r, then H2 is also (ε′, d, r′)-regular with respect to H1. We will use this
observation many times without mentioning it explicitly.

From now on we restrict ourselves to the graph case, i.e. k = 2. One
can observe that if H2 is (ε, d, r)-regular with respect to H1, then |H2| =
(d± ε)|H1|, and, more generally, that:

Observation 5.2. Let H1 ⊃ H2 ⊃ . . . ⊃ H` be bipartite graphs such that
Hi is (εi, di, r)-regular with respect to Hi−1 for all i ∈ [`] \ {1}. Then∏̀

j=2

(dj − εj)× |H1| ≤ |H`| ≤
∏̀
j=2

(dj + εj)× |H1|. (5.2)

Moreover, if H1 is (ε1, d1)-regular and |U1| = |U2| = m, then∏̀
j=1

(dj − εj)×m2 ≤ |H`| ≤
∏̀
j=1

(dj + εj)×m2. (5.3)

We remark that the above observation is a density statement, i.e. the
assumptions about regularity are not necessary and the statement remains
true whenever the relative density of Hi with respect to Hi−1 is di ± εi and
the density of H1 is d1 ± ε1. We extend the above definition to the case of
(s, 2)-cylinders.

Definition 5.3. Let r ∈ N and H1 ⊃ H2 be two (s, 2)-cylinders. We say
that H2 is (δ, d, r)-regular with respect to H1 if H2

[
Ui∪Uj ] is (δ, d, r)-regular

with respect to H1[Ui ∪ Uj ] for all 1 ≤ i < j ≤ s.

Having Definitions 5.1 and 5.3, we can present the statement of the `-
graphs Lemma. First, we describe the scenario we are going to work with.

Setup A. Let G1, . . . ,G` be (s, 2)-cylinders with s-partition V = U1∪. . .∪Us,
where |U1| = . . . = |Us| = m, and such that the following conditions are
satisfied:

(i) Gi ⊂ Gi−1 for all i ∈ [`] \ {1},
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(ii) 0 < εi � di < 1 for all i ∈ [`],
(iii) εi−1 < εi for all i ∈ [`] \ {1},
(iv) G1 is (ε1, d1)-regular and Gi is (εi, di, r)-regular with respect to Gi−1

for all i ∈ [`] \ {1},
(v) r ≥ 2ε

1/2
`

∏`
j=1 d−2

j = 2ε
1/2
` D−2

` .

Then the `-graphs Lemma reads as follows.

Lemma 5.4 (`-graphs Lemma). Suppose that s = 3 and let ` ∈ N be given.
Then ∀d` ∈ (0, 1] ∃ε` ∀d`−1 ∈ (0, 1] ∃ε`−1 . . .∀d1 ∈ (0, 1] ∃ε1 ∃r so that if
Setup A holds, then ∣∣K3(G`)

∣∣ =
(
1± ε

1/64
`

)
D3

` m
3.

The proof of this lemma follows from Facts (5.5) and (5.6) by induction
on `. Details are in [Sk00, RS04b] and we omit them here. For ` = 2, this
lemma was proved in a slightly different setting in [FR02].

Fact 5.5. For every i ∈ [`], all but at most 4(s − 1)
(
ε
1/2
1 + . . . + ε

1/2
i

)
m

vertices u ∈ U1 satisfy

degGj ,α(u) =
(
1± ε

1/2
j

)j
Djm (5.4)

for all j ∈ [i] and α ∈ [s] \ {1}.

Fact 5.6. For every i ∈ [`], all but at most (s− 1)
∑i

j=1

(
4ε

1/2
j + 8ε

1/8
j

)
m2

pairs of vertices u, u′ ∈ U1 satisfy
(i) u and u′ satisfy (5.4), and
(ii) degGj ,α(u, u′) =

∣∣NGj (u, u′) ∩ Uα

∣∣ =
(
1 ± ε

1/8
j

)j
D2

j m for all j ∈ [i]
and α ∈ [s] \ {1}.

In the following two sections, we investigate link properties of a regular
(s, 3)-cylinders in two distinct setups. Since these properties are later used
in several different settings, we use a different notation now and later explain
transitions between setups and a particular setting.

6. Properties of links of 3-cylinders

The aim of this section is to present several auxiliary statements regarding
the properties of links in 3-uniform hypergraphs. We state these statements
without a proof since similar facts have already appeared in the literature.
For the full proofs of the claims below the reader is encouraged to see [Sk00]
or cited sources. We consider the following setup:

Setup B. Let 0 < ε2 � d2 ≤ 1 and 0 < ε3 � d3 ≤ 1 be real numbers so
that ε2 � ε3. Let U = U1 ∪ . . . ∪ Us be a partition, where |U1| = . . . =
|Us| = m, G = (U,E(G)) be an (s, 2)-cylinder that is (ε2, d2)-regular, and let
H = (U,E(H)) be an (s, 3)-cylinder which is (ε3, d3, r)-regular with respect
to G.
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The first claim shows that the link H(u) is (2ε
1/2
3 , d3, r)-regular for almost

all good vertices u. A similar fact has been proved in [FR02] (as Claim A)
and in [NR03] (as Fact 4.0.23).

Claim 6.1. The link H(u) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(u)]

(i.e. with respect to the subgraph of G induced on G(u)) for all but at most
4
(
s−1
2

)
ε
1/2
3 m G-good vertices u ∈ U1.

The next claim shows that the restriction of H to the neighborhood G(u)
of u is (2ε

1/4
3 , d3, r

′)-regular (note that r′ < r in this case) for almost all
G-good vertices u. A similar claim has been proved in [PRS04] (as Claim
6.2).

Claim 6.2. Let t = ε
1/2
3 d−3

2 and r′ = r/t. Then (s − 1, 3)-cylinder H is
(2ε

1/4
3 , d3, r

′)-regular with respect to G[G(u)] for all but at most 2
(
s−1
3

)
ε
1/16
2 m

G-good vertices u ∈ U1.

In order to distinguish vertices that satisfy both previous claims, we call
them H-nice.

Definition 6.3 (H-nice vertex). A vertex u ∈ UG−good is called H-nice if
it satisfies:

(i) H(u) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(u)], and

(ii) H is (2ε
1/4
3 , d3, r/

(
ε
1/2
3 d−3

2

)
)-regular with respect to G[G(u)].

We denote by UH−nice the set of all nice vertices in U1.

Claims 6.1 and 6.2 imply the following observation:

Observation 6.4. All but at most 4
(
s−1
3

)
ε
1/2
3 m+2

(
s−1
2

)
ε
1/16
2 m ≤ 6

(
s−1
3

)
ε
1/2
3 m

G-good vertices are H-nice, i.e.

|UH−nice| ≥ |UG−good| − 6
(

s− 1
3

)
ε
1/2
3 m.

The following claim is an extension of Claim 6.1 to pairs of vertices. Note
that a similar claim is proved (as Lemma 3.4) in [DHNR02].

Claim 6.5. Let t =
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−2

2

)
and r′ = r/t. Then for all but

most 2
(
s−1
2

)
ε
1/16
2 m H-nice vertices u ∈ U1 the following statement is true:

The link H(u, u′) is (ε1/32
3 , d2

3, r
′)-regular with respect to G[G(u, u′)] (i.e.

with respect to the subgraph of G induced on G(u, u′)) for all but at most
5
(
s−1
2

)
ε
1/16
3 m G-good pairs {u, u′}, where u′ ∈ UH−nice.

The next claim, that is similar to Claim 6.2 in [PRS04], extends Claim
6.2 to pairs.

Claim 6.6. Let t =
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−2

2

)
and r′ = r/t. Then, for every H-

nice vertex u ∈ U1, the restriction of H to G(u, u′) is (4ε
1/16
3 , d3, r

′)-regular
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with respect to G[G(u, u′)] for all but at most 3
(
s−1
3

)
ε
1/32
2 m G-good vertices

u′ ∈ U1.

We call all pairs of vertices {u, u′} satisfying the above claims H-nice.

Definition 6.7 (H-nice pair). Let t =
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−2

2

)
and r′ = r/t.

A pair of vertices {u, u′} is called H-nice if it satisfies the following condi-
tions:

(i) both u and u′ are H-nice vertices,
(ii) the pair {u, u′} is G-good,

(iii) the linkH(u, u′) is (ε1/32
3 , d2

3, r
′)-regular with respect to the subgraph

of G induced on G(u, u′), and

(iv) the restriction of H to G(u, u′) is (4ε
1/16
3 , d3, r

′)-regular with respect
to the subgraph of G induced on G(u, u′).

Observations 4.8, 4.12, and 6.4, and Claims 6.6 and 6.5 imply the following
observation (we use ε2 � ε3 to simplify this result).

Observation 6.8. All but 3
(
s−1
2

)
ε
1/16
3 m2 pairs in [U1]2 are H-nice.

7. Counting in 3-cylinders

In this section, we are going to work with the following setup:

Setup C. Let 0 < ε2 � d2 ≤ 1, 0 < ε3 � d3 ≤ 1, and 0 < ε3 � d̃3 ≤ 1
be real numbers so that ε2 � ε3. Let U = U1 ∪ . . . ∪ Us be a partition,
where |U1| = . . . = |Us| = m, G2 = (U,E(G2)) be an (s, 2)-cylinder that
is (ε2, d2)-regular, G3 = (U,E(G3)) be an (s, 2)-cylinder that is (ε3, d̃3, r)-
regular with respect to G2, and let H = (U,E(H)) be an (s, 3)-cylinder
which is (ε3, d3, r)-regular with respect to G2.

Our goal is to prove the following counting claim that is later used in the
proof of Proposition 2.4.

Claim 7.1. Let s = 4 and µ > 0 be given. Then for G2, G3, and H as in
Setup C and ε3 � µ, we have∣∣K4(H ∩K3(G3))

∣∣ = (1± µ)d6
2d̃

6
3d

4
3m

4.

In the proof of this claim, we will need the following two claims regarding
the link properties of G2, G3, and H. The first claim shows that H is regular
with respect to G2[G2(u)] for almost all good vertices u.

Claim 7.2. Let t = ε
1/2
3 d−3

2 and r′ = r/t. Then H is (2ε
1/4
3 , d3, r

′)-
regular with respect to G2[G2(u)] for all but at most 2

(
s−1
3

)
ε
1/16
2 m vertices

u ∈ UG2−good.

This claim is an immediate consequence of Claim 6.2.
The next claim shows that the 2-cylinder G3∩H(u) is regular with respect

to G2 for almost all G2-good vertices u.
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Claim 7.3. Let r′ = r/
(
ε
1/2
3 d−2

2

)
. Then,

(a) degG3,j(u) =
(
1± ε

1/2
3

)2
d2d̃3m for every j ∈ [s]\{1},

(b) G2[G3(u)] is (ε1/2
2 , d2)-regular, and

(c) (s− 1, 2)-cylinder G3[G3(u)]∩H(u) is (ε1/8
3 , d3d̃3, r

′)-regular with re-
spect to G2[G3(u)] for all but at most 3

(
s−1
2

)
ε
1/8
3 m G2-good vertices

u ∈ U1.

Part (a) follows from Fact 5.5 and part (b) is a consequence of the defini-
tion of (δ, d)-regularity (cf. Definition 1.9). The proof of (c) is analoguous
to the proof of Claim 6.5 and we omit it here.

Proof of Claim 7.1. Let µ > 0 be given, let r′ = r/
(
ε
1/2
3 d−3

2

)
, and denote by

W the set of all G2-good vertices u ∈ U1 for which

(i) H[G2(u)] is (2ε
1/4
3 , d3, r

′)-regular with respect to G2[G2(u)],
(ii) degG3,j(u) =

(
1± ε

1/2
3

)2
d2d̃3m for j = 2, 3, 4, and

(iii) G3[G3(u)] ∩H(u) is (ε1/8
3 , d3d̃3, r

′)-regular with respect to G2[G3(u)].
Furthermore, the G2-goodness of every vertex u ∈ W implies

(iv) G2[G2(u)] and G2[G3(u)] are (ε1/2
2 , d2)-regular and (d2 ± ε2)m for all

j = 2, 3, 4.

It follows from Claims 7.2 and 7.3 that all but at most 2ε
1/16
2 m vertices

u ∈ UG2−good satisfy (i) (see Claim 7.2 applied with s = 4), and all but
at most 9ε

1/8
3 m vertices x ∈ UG2−good satisfy (ii) and (iii) (see Claim 7.3

applied with s = 4 and r′ < r/
(
ε
1/2
3 d−2

2

)
). We use assumptions ε2 � ε3 � 1

and obtain
|W | ≥ |UG2−good| − 10ε

1/8
3 m.

Moreover, the size of UG2−good is bounded from below by Observation 4.8
applied with s = 4 and δ = ε2:

|UG2−good| ≥
(
1− 36ε

1/4
2

)
m.

We proceed as follows: for every vertex u ∈ W we apply the 2-graphs
Lemma on (3, 2)-cylinders G2[G3(u)] and H(u) ∩ G3[G3(u)]. We will show
that the number of copies of K3 in H(u) ∩ G3[G3(u)] is sufficiently large to
apply the regularity of H[G2(u)] with respect to G2[G2(u)]. This way we will
be able to count the number of edges in H which are also copies of K3 in
H(u) ∩ G3[G3(u)]. Notice that every such an edge together with u form a
copy of K

(3)
4 in H ∩ K3(G3) that uses u as a vertex. Then we add these

numbers through all u ∈ W . Finally, we estimate the number of copies of
K

(3)
4 in H ∩K3(G3) that use vertices not belonging to W .
Consider an arbitrary vertex u ∈ W . We apply the 2-graphs Lemma with

• (3, 2)-cylinder G1 replaced by G2[G3(u)] that is (ε1/2
2 , d2)-regular (see

(iv));
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• (3, 2)-cylinder G2 replaced by G3[G3(u)]∩H(u) that is (ε1/8
3 , d3d̃3, r

′)-
regular with respect to G2[G3(u)] (see (iii));

• Ui replaced by G3(u) ∩ Ui+1 for i = 1, 2, 3;

and obtain
∣∣K3(H(u)∩G3[G3(u)])

∣∣ =
(
1±ε

1/512
3

)
(d2d3d̃3)3

((
1±ε

1/2
3

)2
d2d̃3m

)3
.

This can be further simplified using the assumption ε3 � µ:∣∣K3

(
H(u) ∩ G3[G3(u)]

)∣∣ = (1± µ/4)d6
2d̃

6
3d

3
3m

3. (7.1)

Since G2[G2(u)] is (ε1/2
2 , d2)-regular, by Corollary 4.6,

∣∣K3(G2[G2(u)])
∣∣ ≤

(5/4)d3
2 × (d2 + ε2)3m3 ≤ (3/2)d6

2m
3. As d3, d̃3 � ε3, we obtain

2ε
1/4
3

∣∣K3(G2[G2(u)])
∣∣ ≤ 2ε

1/4
3 × 3

2
d6

2m
3

≤ (1− µ/4)d6
2d̃

6
3d

3
3m

3 ≤
∣∣K3

(
H(u) ∩ G3[G3(u)]

)∣∣.
Thus, we can use the (2ε

1/4
3 , d3, r

′)-regularity of H[G2(u)] with respect to
G2[G2(u)] (cf. (i)) and obtain

∣∣H ∩K3(H(u) ∩ G3[G3(u)])
∣∣ =

(
d3 ± 2ε

1/4
3

)∣∣K3

(
H(u) ∩ G3[G3(u)]

)∣∣. (7.2)

Combining (7.1) and (7.2) yields∣∣H ∩K3(H(u) ∩ G3[G3(u)])
∣∣ = (1± µ/2)d6

2d̃
6
3d

4
3m

3.

As mentioned before, every edge in H which is also a copy of K3 in
H(u) ∩ G3[G3(u)] forms together with u a copy of K

(3)
4 in H ∩ K3(G3) that

uses u as a vertex. Therefore, there is at least |W | × (1 − µ/2)d6
2d̃

6
3d

4
3m

3

copies of K
(3)
4 in H ∩K3(G3).

Since the size of W is at least |UG2−good| − 10ε
1/8
3 m ≥

(
1 − 36ε

1/4
3 −

10ε
1/8
3

)
m ≥

(
1− 11ε

1/8
3

)
m, the following lower bound holds:∣∣K4(H∩K3(G3))

∣∣ ≥ (
1− 11ε

1/8
3

)
m× (1−µ/2)d6

2d̃
6
3d

4
3m

3 ≥ (1−µ)d6
2d̃

6
3d

4
3m

4.

Similarly as above, the contribution of vertices from W is bounded by
(1 + µ/2)d6

2d̃
6
3d

4
3m

4 and a similar calculation shows that vertices in U1 \W

are in at most (µ/2)d6
2d̃

6
3d

4
3m

4 copies of K
(3)
4 . �

8. Proof of Proposition 2.4

Recall that our goal is to prove Proposition 2.4, i.e. we want to bound
the number of copies of K

(3)
4 in H(3) ∩ K3(H(3)(x, x′)) for almost all pairs

of vertices x, x′ ∈ V1. We fix an H(3)-nice pair of vertices x, x′ ∈ V1 (cf.
Definition 6.7 applied with G = H(2), H = H(3), ε2 = δ2, and ε3 = δ3) and
set r′ = r/

(
δ
1/2
3 d−3

2

)(
2δ

1/8
3 d−3

2

)
. Then, (ii), (iii), and (iv) of Definition 6.7

holds:
(ii) {x, x′} is H(2)-good,
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(iii) the link H(3)(x, x′) is (δ1/32
3 , d2

3, r
′)-regular with respect to the graph

H(2)[H(2)(x, x′)],
(iv) H(3)[H(2)(x, x′)] is (4δ

1/16
3 , d3, r

′)-regular with respect to the graph
H(2)[H(2)(x, x′)].

Since {x, x′} is also an H(2)-good pair (by (ii)), we have (see Definition 4.11)
(ii’) degj(x, x′) = (d2 ± δ2)2n for j = 2, . . . , 5, and

(ii”) the (4, 2)-cylinder H(2)[H(2)(x, x′)] is (δ1/2
2 , d2)-regular.

We apply Claim 7.1 with 4-partition U = U1 ∪ U2 ∪ U3 ∪ U4, where
Ui = Vi+1 ∩ H(2)(x, x′) for i ∈ [4], cylinders G2 = H(2)[H(2)(x, x′)], G3 =
H(3)(x, x′), and H = H(3)[H(2)(x, x′)], and parameters µ = 1/2, ε2 = δ

1/2
2 ,

ε3 = 4δ
1/16
3 < δ

1/32
3 , d̃3 = d2

3, m = (d2±δ2)2n, and r replaced by r′. Observe
that (ii’), (ii”), (iii), and (iv) verify conditions of the Setup C. Hence, we
obtain ∣∣K4(H ∩K3(G3))

∣∣ ≤ 3
2
d6

2

(
d2

3

)6
d4

3(d2 + δ2)8n4.

Estimate (2.6) follows from this inequality since d2 � δ2. This is true for
every H(3)-nice pair {x, x′}. By Observation 6.8 applied with s = 5, all but
at most 60δ

1/16
3 n2 pairs {x, x′} are H(3)-nice. Therefore, (2.6) holds for all

but at most 60δ
1/16
3 n2 pairs {x, x′} ⊂ V1.

9. Nice neighbors

The motivation for this subsection is twofold. First, we define the notion
of an H-nice neighbor and prove that almost all neighbors of an H-nice
vertex are H-nice. Second, in the proof of Proposition 2.5, we will need an
upper bound on the number of edges in H that are triangles in the joint
neighborhood of two H-nice neighbors. We provide this estimate at the end
of this section. We start with the definition of an H-nice neighbor.

Suppose that G and H are as in Setup B, i.e. G = (V,E(G)) is an (ε2, d2)-
regular (s, 2)-cylinder andH = (V,E(H)) an (s, 3)-cylinder which is (ε3, d3, r)-
regular with respect to G.

Definition 9.1 (H-nice neighbor). Let u ∈ U1 be an H-nice vertex and

set r′ = r/
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
. A G-good neighbor v ∈ N2(u)G−good is

called H-nice if

(i) degH(u),j(v) =
(
1± 2ε

1/8
3

)2
d2

2d3m for every j = 3, . . . , s;

(ii) the (s−2, 2)-cylinder H(u, v)[H(u)(v)] is (2ε
1/32
3 , d2

3, r
′)-regular with

respect to G[H(u)(v)], and

(iii) the restriction H[G(u, v)] is (4ε
1/16
3 , d3, r

′)-regular with respect to
G[G(u, v)].

We denote by N2(u)H−nice the set of all H-nice neighbors.

Remark. Recall that H(u, v) = H(u) ∩ H(v) stands for the joint link of u
and v, whereas H(u)(v) is the neighborhood of v in the graph H(u).
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The following observation shows that almost all G-good neighbors are
H-nice.

Observation 9.2. Let u ∈ U1 be an H-nice vertex. Then all but at most
4
(
s−2
2

)
ε
1/32
3 d2m G-good neighbors in N2(u)G−good are H-nice neighbors, i.e.

|N2(u)H−nice| ≥ |N2(u)G−good| − 4
(

s− 2
2

)
ε
1/32
3 d2m.

This observation follows from Claims 7.3 and 7.2 applied to cylinders
G′2 = G[G(u)], G′3 = H(u) and H′ = H[G(u)].

Later, we will also need the fact that for every H-nice vertex u we have
control over the number of edges in H that are also triangles in the joint
neighborhood H(u)(v, v′) for almost all pairs of vertices {v, v′} ⊂ NG,2(u).
Recall that H(u)(v, v′) stands for the joint neighborhood of {v, v′} in H(u).

Claim 9.3. Suppose that s = 5. Then for every H-nice vertex u ∈ U1,
the following is true: all but at most 20ε

1/256
3 d2

2m
2 pairs {v, v′} ⊂ NG,2(u)

satisfy
|H ∩ K3(H(u, v, v′)[H(u)(v, v′)])| ≤ 2d12

2 d16
3 m3.

The proof of this claim is given in Appendix A.

10. Regularity of the links of (s, 4)-cylinders

In this section, we derive the two basics properties of the links of an (s, 4)-
cylinder F : the regularity of the link F(u) and the regularity of F(u)(v),
where v is a neighbor of u. First, we describe our setup.

Setup D. Let 0 < ε2 � d2 ≤ 1, 0 < ε3 � d3 ≤ 1, and 0 < ε4 � d4 ≤ 1 be
real numbers so that ε2 � ε3 � ε4. Let U = U1 ∪ . . . ∪ Us be a partition,
where |U1| = . . . = |Us| = m, G = (U,E(G)) be an (s, 2)-cylinder that
is (ε2, d2)-regular, H = (U,E(H)) be an (s, 3)-cylinder which is (ε3, d3, r)-
regular with respect to G, and let F = (U,E(F)) be an (s, 4)-cylinder which
is (ε4, d4, r)-regular with respect to H.

The following claim shows that the link F(u) “inherits” regularity from
F . It can be viewed as an analogy to Claim 6.1.

Claim 10.1. The (s−1, 3)-cylinder F(u) is (2ε
1/2
4 , d4, r)-regular with respect

to H ∩K3(H(u)) for all but at most 4
(
s−1
3

)
ε
1/2
4 m H-nice vertices u ∈ U1.

Proof. Without loss of generality, we may assume s = 4 and U = U1 ∪ U2 ∪
U3 ∪ U4. Let u be any H-nice vertex. By Definition 6.3 we know

(i) the link H(u) is (2ε
1/2
3 , d3, r)-regular with respect to G[G(u)], and

(ii) H[G(u)] is (2ε
1/4
3 , d3, r/

(
ε
1/2
3 d−3

2

)
)-regular with respect to G[G(u)].

Moreover, since u must be also a G-good vertex, we have (cf. Definition 4.7)
(iii) degj(u) = (d2 ± ε2)m for j = 2, 3, 4,

(iv) the (3, 2)-cylinder G[G(u)] is (ε1/2
2 , d2)-regular.
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We apply the 2-graphs Lemma (Lemma 5.4 with ` = 2) with

• (3, 2)-cylinder G1 replaced by G[G(u)] which is (ε1/2
2 , d2)-regular (cf.

(iv));
• (3, 2)-cylinder G2 replaced byH(u) which is (2ε

1/2
3 , d3, r)-regular with

respect to G[G(u)] (cf. (i));
• Ui−1 replaced by G(u) ∩ Ui for i = 2, 3, 4;

and obtain ∣∣K3(H(u))
∣∣ =

(
1±

(
2ε

1/2
3

)1/64)
d3

2d
3
3 ×

(
(d2 ± ε2)m

)3
.

This can be further simplified using ε2 � d2 and ε3 � d3 to

(3/4)d6
2d

3
3m

3 ≤
∣∣K3(H(u))

∣∣ ≤ (5/4)d6
2d

3
3m

3. (10.1)

It follows from Corollary 4.6 applied with s = 3 and ε3 � d3 that
2ε

1/4
3

∣∣K3(G[G(u)])
∣∣ ≤ 2ε

1/4
3 × (5/4)d3

2(d2 + ε2)3m3 ≤ (3/4)d6
2d

3
3m

3. Hence
we have ∣∣K3(H(u))

∣∣ ≥ 2ε
1/4
3

∣∣K3(G[G(u)])
∣∣.

Applying the (2ε
1/4
3 , d3, r/

(
ε
1/2
3 d−3

2

)
)-regularity of H with respect to G[G(u)]

(cf. (ii)) yields ∣∣H ∩K3(H(u))
∣∣ =

(
d3 ± 2ε

1/4
3

)∣∣K3(H(u))
∣∣.

We combine this inequality with (10.1) to conclude that for every H-nice
vertex u we have

(1/2)d6
2d

4
3m

3 ≤
∣∣H ∩K3(H(u))

∣∣ ≤ 2d6
2d

4
3m

3. (10.2)

Suppose that there are t = 2ε
1/2
4 m H-nice vertices x1, . . . , xt ∈ U1 such

that for every α ∈ [t] the link F(uα) is (2ε
1/4
2 , d4, r)-irregular with respect

to H ∩ K3(H(uα)) (cf. Definition 5.1). Moreover, assume that for every
uα the second part of inequality (5.1) does not hold, that is, there exist
(3, 2)-cylinders Bjα ⊂ H(uα), j ∈ [r], such that

∣∣H ∩K3(H(uα)) ∩
r⋃

j=1

K3(Bjα)
∣∣ ≥ 2ε

1/2
4

∣∣H ∩K3(H(uα))
∣∣, (10.3a)

but

∣∣F(uα)∩
r⋃

j=1

K3(Bjα)
∣∣ >

(
d4+2ε

1/2
4

)∣∣H∩K3(H(uα))∩
r⋃

j=1

K3(Bjα)
∣∣. (10.3b)
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For every j ∈ [r], define a (4, 3)-cylinder Qj = ∂1Qj ∪∂2Qj ∪∂3Qj ∪∂4Qj

by

∂1Qj = ∂1H,

∂2Qj =
t⋃

α=1

{
uαvw : vw ∈ Bjα ∩K(U3, U4)

}
,

∂3Qj =
t⋃

α=1

{
uαvw : vw ∈ Bjα ∩K(U2, U4)

}
,

∂4Qj =
t⋃

α=1

{
uαvw : vw ∈ Bjα ∩K(U2, U3)

}
.

We will show using (δ4, d4, r)-regularity of F that

∣∣F ∩
r⋃

j=1

K4(Qj)
∣∣ ≤ (d4 + ε4)

t∑
α=1

∣∣H ∩
r⋃

j=1

K3(Bjα)
∣∣

and then we use assumption (10.3b) to obtain a contradiction to this in-
equality.

Observe that since Bjα ⊂ H(uα) for every j ∈ [r], we have

t∑
α=1

∣∣H ∩K3(H(uα)) ∩
r⋃

j=1

K3(Bjα)
∣∣ =

t∑
α=1

∣∣H ∩
r⋃

j=1

K3(Bjα)
∣∣. (10.4)

We estimate the size of
⋃r

j=1K4(Qj) as follows:

∣∣ r⋃
j=1

K4(Qj)
∣∣ =

t∑
α=1

∣∣H ∩
r⋃

j=1

K3(Bjα)
∣∣

(10.4)
=

t∑
α=1

∣∣H ∩K3(H(uα)) ∩
r⋃

j=1

K3(Bjα)
∣∣

(10.3a)

≥
t∑

α=1

2ε
1/2
4

∣∣H ∩K3(H(uα))
∣∣

(10.2)

≥ t× 2ε
1/2
4 × 1

2
d6

2d
4
3m

3

= 2ε4d
6
2d

4
3m

4 ≥ ε4

∣∣K4(H)
∣∣.

The last inequality follows from the Theorem 1.13: G is a (δ2, d2)-regular
(4, 2)-cylinder, H is a (4, 3)-cylinder that is (δ3, d3, r)-regular with respect
to G, and we can choose ε2 and ε3 so that the assumptions of Theorem 1.13
are satisfied. Thus, ε4

∣∣K4(H)
∣∣ ≤ ε4(1± ν)d6

2d
4
3m

4 ≤ 2ε4d
6
2d

4
3m

4.
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Subsequently, the (ε4, d4, r)-regularity of F with respect to H implies that∣∣∣∣F ∩
r⋃

j=1

K4(Qj)
∣∣∣∣ ≤ (d4 + ε4)

∣∣∣∣ r⋃
j=1

K4(Qj)
∣∣∣∣

= (d4 + ε4)
t∑

α=1

∣∣H ∩
r⋃

j=1

K3(Bjα)
∣∣. (10.5)

On the other hand, every uα is contained in at most
∣∣F(uα)∩

⋃r
j=1K3(Bjα)

∣∣
triples (this follows from the definition of Qj). We use (10.3b) to conclude
that∣∣F ∩

r⋃
j=1

K4(Qj)
∣∣ =

t∑
α=1

∣∣F(uα) ∩
r⋃

j=1

K3(Bjα)
∣∣

(10.3b)
>

(
d4 + 2ε

1/2
4

) t∑
α=1

∣∣H ∩K3(H(uα)) ∩
r⋃

j=1

K3(Bjα)
∣∣. (10.6)

Comparing (10.6) with (10.5) we get a contradiction. Thus, there are at
most 2ε

1/2
4 m vertices satisfying (10.3a) and (10.3b).

The case when the second part of inequality (5.1) is not true, i.e. when
(10.3b) is replaced by∣∣F(uα) ∩

r⋃
j=1

K2(Bjα)
∣∣ <

(
d4 − 2ε

1/2
4

)∣∣H ∩K3(H(uα)) ∩
r⋃

j=1

K3(Bjα)
∣∣,

is handled similarly. �

The next claim shows that a majority of H-nice vertices u ∈ U1 have the
property that the link F(u)(v) is regular for almost all H-nice neighbors v
of u. We recall that F(u)(v) is an (s − 2, 2)-cylinder whose edges together
with u and v form edges in F .

Claim 10.2. For all but at most 2
(
s−2
2

)
ε
1/4
4 m H-nice vertices u ∈ U1 the

following statement is true.
There are at most 2

(
s−2
2

)
ε
1/4
4 d2m H-nice neighbors v ∈ NG,2(u) for which

the link F(u)(v) is not (ε1/4
4 , d4, r)-regular with respect to H(u, v)[H(u)(v)].

It is sufficient to consider the case s = 4 only because we can treat the
case s > 4 by applying the result for s = 4 to

(
s−2
2

)
sets of cylinders induced

on U1 ∪ U2 ∪ Ui ∪ Uj , 2 < i < j ≤ s.

Proof. Set r′ = r/
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
, let u be an arbitrary H-nice vertex,

and v be its H-nice neighbor (cf. Definition 9.1). Then v satisfies the
following conditions:

(i) degH(u),j(v) =
(
1± 2ε

1/8
3

)3
d2

2d3m for j = 3, 4,

(ii) G[H(u)(v)] is (ε1/2
2 , d2)-regular,
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(iii) the link H(u, v)[H(u)(v)] is (2ε
1/32
3 , d2

3, r
′)-regular with respect to

G[H(u)(v)].

Observe that the (2ε
1/32
3 , d2

3, r
′)-regularity of the link H(u, v)[H(u)(v)]

with respect to G[H(u)(v)] is a sufficient condition to apply Observation 5.2.
In a view of (i) and (ii), this observation implies

(1/2)d5
2d

4
3m

2 ≤
∣∣H(u, v)[H(u)(v)]

∣∣ ≤ 2d5
2d

4
3m

2. (10.7)

Suppose there exist t1 = ε
1/4
4 m H-nice vertices u1, . . . , ut1 ∈ U1 so that

for every uα, α ∈ [t1], there are at least t2 = ε
1/4
4 d2m H-nice neighbors

v1α, . . . , vt2α ∈ NG,2(uα) for which the link F(uα)(vβα), β ∈ [t2], is not
(ε1/4

4 , d4, r)-regular with respect to H(uα, vβα)[H(uα)(vβα)].
We further assume that the second part of inequality (5.1) is not satisfied,

that is, for every uα and vβα there exist (2, 1)-cylinders Bjβα = Yjβα∪Wjβα,
j ∈ [r], where Yjβα ⊂ H(uα)(vβα) ∩ U3 and Wjβα ⊂ H(uα)(vβα) ∩ U4, such
that

∣∣H(uα, vβα)[H(uα)(vβα)] ∩
r⋃

j=1

K2(Bjβα)
∣∣

≥ ε
1/4
4

∣∣H(uα, vβα)[H(uα)(vβα)]
∣∣, (10.8a)

but

∣∣F(uα)(vβα) ∩
r⋃

j=1

K2(Bjβα)
∣∣

>
(
d4 + ε

1/4
4

)∣∣H(uα, vβα)[H(uα)(vβα)] ∩
r⋃

j=1

K2(Bjβα)
∣∣. (10.8b)

For every j ∈ [r] define a (4, 3)-cylinder Qj = ∂1Qj ∪ ∂2Qj ∪ ∂3Qj ∪ ∂4Qj by

∂1Qj = ∂1H, ∂2Qj = ∂2H,

∂3Qj =
t1⋃

α=1

t2⋃
β=1

{
uαvβαz : z ∈ Wjβα

}
, ∂4Qj =

t1⋃
α=1

t2⋃
β=1

{
uαvβαz : z ∈ Yjβα

}
.

It follows from the above construction that

∣∣ r⋃
j=1

K4(Qj)
∣∣ =

t1∑
α=1

t2∑
β=1

∣∣H(uα, vβα)[H(uα)(vβα)] ∩
r⋃

j=1

K2(Bjβα)
∣∣. (10.9)
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We use this equation together with the assumption (10.8a) and estimate
(10.7) to conclude that

∣∣ ⋃r
j=1K4(Qj)

∣∣ ≥ ε4

∣∣K4(H)
∣∣. Indeed,

t1∑
α=1

t2∑
β=1

∣∣H(uα, vα)[H(uα)(vβα)] ∩
r⋃

j=1

K2(Bjβα)
∣∣

(10.8a)

≥
t1∑

α=1

t2∑
β=1

ε
1/4
4

∣∣H(uα, vβα)[H(uα)(vβα)]
∣∣

(10.7)

≥ t1 × t2 × ε
1/4
4 × 1

2
d5

2d
4
3m

2 =
1
2
ε
3/4
4 d6

2d
4
3m

4 > 2ε4d
6
2d

4
3m

4.

In the paragraph before equation (10.5), we showed
∣∣K4(H)

∣∣ ≤ 2d6
2d

4
3m

4

and, therefore, ε4

∣∣K4(H)
∣∣ ≤ ε42d6

2d
4
3m

4 ≤
∣∣ ⋃r

j=1K4(Qj)
∣∣. Hence we can

apply the (ε4, d4, r)-regularity of F with respect to H. Then,

∣∣F ∩
r⋃

j=1

K4(Qj)
∣∣ ≤ (d4 + ε4)

∣∣ r⋃
j=1

K4(Qj)
∣∣

(10.9)
= (d4 + ε4)

t1∑
α=1

t2∑
β=1

∣∣∣∣H(uα, vβα)[H(uα)(vβα)] ∩
r⋃

j=1

K2(Bjβα)
∣∣∣∣. (10.10)

On the other hand, assumption (10.8b) yields

∣∣F ∩
r⋃

j=1

K4(Qj)
∣∣ =

t1∑
α=1

t2∑
β=1

∣∣F(uα)(vβα) ∩
r⋃

j=1

K2(Bjβα)
∣∣

(10.8b)
>

(
d4 + ε

1/4
4

) t1∑
α=1

t2∑
β=1

∣∣∣∣H(uα, vβα)[H(uα)(vβα)] ∩
r⋃

j=1

K2(Bjβα)
∣∣∣∣.

(10.11)

Comparing inequalities (10.10) and (10.11) we get a contradiction. Hence
t1 < ε

1/4
4 m. If we assume that the first part of inequality (5.1) is not satisfied,

we obtain contradiction in exactly the same way. Thus, for all but at most
2ε

1/4
4 m H-nice vertices u ∈ U1 there are at most 2ε

1/4
4 d2m H-nice neighbors

v ∈ N2(u)H−nice such that the link F(u)(v) is not (ε1/4
4 , d4, r)-regular with

respect to H(u, v)[H(u)(v)]. �

Definition 10.3 (fine vertex). An H-nice vertex u ∈ U1 is called F-fine
if it satisfies the following conditions:

(i) F(u) is (2ε
1/2
4 , d4, r)-regular with respect to H ∩K3([H(u)]), and

(ii) F(u)(v) is not (ε1/4
4 , d4, r)-regular with respect to H(u, v)[H(u)(v)]

for at most 2
(
s−2
2

)
ε
1/4
4 d2m H-nice neighbors v ∈ N2(u)H−nice.

We denote by UF−fine the set of all F-fine vertices in U1.
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Definition 10.4 (fine neighbor). Let u ∈ U1 be an F-fine vertex. A H-

nice neighbor v ∈ NG,2(u) is called F-fine if the link F(u)(v) is (ε1/4
4 , d4, r)-

regular with respect to H(u, v)[H(u)(v)]. We denote by N2(u)F−fine the set
of all F-fine neighbors in NG,2(u).

Observe that UF−fine ⊂ UH−nice ⊂ UG−good ⊂ U1 and N2(u)F−fine ⊂
N2(u)H−nice ⊂ N2(u)G−good ⊂ NG,2(u) for every (fine) vertex u ∈ U1. More-
over, the following two observations are an easy consequence of Claims 10.2
and 10.1.

Observation 10.5. All but at most 4
(
s−1
3

)
ε
1/2
4 m+2

(
s−2
2

)
ε
1/4
4 m ≤ 6

(
s−2
2

)
ε
1/4
4 m

H-nice vertices are F-fine, that is

|UF−fine| ≥ |UH−nice| − 6
(

s− 2
2

)
ε
1/4
4 m.

Observation 10.6. Let u ∈ U1 be an F-fine vertex. Then all but at most
2
(
s−2
2

)
ε
1/4
4 d2m H-nice neighbors of u are F-fine, that is

|N2(u)F−fine| ≥ |N2(u)H−nice| − 2
(

s− 2
2

)
ε
1/4
4 d2m.

11. Proof of Proposition 2.5

Recall that our goal is to show that the number of copies of K
(3)
4 inH(4)(x)

satisfies ∣∣K4(H(4)(x))
∣∣ = (1± ν/2)d4

4d
(5
3)

3 d
(5
2)

2 n4. (11.12)

for almost all vertices x ∈ V1.
We are going to show that (11.12) is true for every H(4)-fine vertex x ∈ V1

(cf. Definition 10.3 applied with G = H(2), H = H(3), F = H(4), m = n,
ε2 = δ2, ε3 = δ3, and ε4 = δ4). It follows from Observation 10.5 (applied
with s = 5) that all but at most 18δ

1/4
4 n H(3)-nice vertices are H(4)-fine.

Moreover, Observation 6.4 gives that all but at most 24δ
1/2
3 n H(2)-good

vertices are H(3)-nice. Finally, from Observation 4.8 we have that all but
at most 48δ

1/4
2 n vertices in V1 are H(2)-good. Altogether we obtain that all

but at most 100δ
1/4
4 n vertices x ∈ V1 are H(4)-fine and, therefore, (11.12)

holds.
Let x ∈ V1 be a fixed H(4)-fine vertex. We divide the proof of (11.12) into

five statements. Note that combining statements D and F yields (11.12).

A: (a)
∣∣K3(H(4)(x)(y))

∣∣ = (1 ± ν/6)d9
2d

9
3d

3
4n

3 for every vertex y ∈
N2(x)H(4)−fine, and

(b) (1/2)d9
2d

9
3n

3 ≤ |K3(H(3)(x, y)[H(3)(x)(y)])| ≤ 2d9
2d

9
3n

3 for every
vertex y ∈ N2(x)H(3)−nice.

B: (a)
∣∣H(3) ∩ K3(H(4)(x)(y))

∣∣ = (1 ± ν/5)d9
2d

10
3 d3

4n
3 for every vertex

y ∈ N2(x)H(4)−fine, and
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(b)
∣∣H(3) ∩ K3(H(3)(x, y)H(3)(x, y))

∣∣ ≤ 3d9
2d

10
3 n3 for every vertex

y ∈ N2(x)H(3)−nice.

C: For every subset W of N2(x)H(4)−fine such that |W | ≥ 2δ
1/4
4 d2n,

there exist t = δ
1/4
4 /(d3

2d
6
3) H(4)-fine neighbors y1, . . . , yt ∈ W

of x such that∣∣∣∣H(4)(x) ∩
t⋃

j=1

K3(H(4)(x)(yj))
∣∣∣∣ =

(
d4 ± 2δ

1/2
4

)∣∣∣∣H(3) ∩
t⋃

j=1

K3(H(4)(x)(yj))
∣∣∣∣.

D:
∣∣K4(H(4)(x))

∣∣ ≥ (1− ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4.

E:
∣∣K4(H(4)(x))

∣∣ ≤ (1 + ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4.

Now we show statements A-E.
For the proofs of A and B, let r′ = r/

(
δ
1/2
3 d−3

2

)(
2δ

1/8
3 d−3

2

)
. Recall that an

arbitrary H(4)-fine neighbor y of x satisfies the following conditions (cf. Def-
inition 10.4)

A(i) the linkH(4)(x)(y) is (δ1/4
4 , d4, r)-regular with respect toH(3)(x, y)[H(3)(x)(y)].

Since y is also a H(3)-nice neighbor of x, it satisfies (cf. Definition 9.1)

A(ii) degH(3)(x),j(y) =
(
1± 2δ

1/8
3

)2
d2

2d3n for every j = 3, 4, 5;

A(iii) H(3)(x, y)[H(3)(x)(y)] is (2δ
1/32
3 , d2

3, r
′)-regular with respect toH(2)[H(3)(x)(y)],

and
A(iv) H(3)[H(2)(x, y)] is (4δ

1/16
3 , d3, r

′)-regular with respect toH(2)[H(2)(x, y)].

Moreover, y is also an H(2)-good neighbor of x, thus we have (cf. Defini-
tion 4.9)

A(v) the link H(2)[H(2)(x, y)] is (δ1/2
2 , d2)-regular, and

A(vi) degj(x, y) =
(
d2 ± δ

1/2
2

)2
n holds for j = 3, 4, 5.

Proof of A(a): Fix any H(4)-fine neighbor y of x, then A(i)-A(vi) hold.
We set

• G′1 = H(2)[H(3)(x)(y)], ε′1 = δ
1/2
2 , d′1 = d2,

• G′2 = H(3)(x, y)[H(3)(x)(y)], ε′1 = 2δ
1/32
3 , d′2 = d2

3,
• G′3 = H(4)(x)(y), ε′3 = δ

1/4
4 , d′3 = d4, and

• V ′
i = Vi+2 ∩H(3)(x)(y), i = 1, 2, 3, and

• m′ =
(
1± 2δ

1/8
3

)2
d2

2d3n.
Observe that due to A(i)-A(v) G′1, G′2, and G′3 are (3, 2)-cylinders which
satisfy Setup A. Thus, we can apply the 3-graphs Lemma and obtain that∣∣K3(G′3)

∣∣ =
(
1± ε′3

1/64)3(d′1d
′
2d
′
3)

3(m′)3.

We use the definition of d′1, d′2, d′3, ε′3, m′, and G′3, and the fact that δ3 �
δ4 � ν to conclude that∣∣K3(H(4)(x)(y))

∣∣ = (1± ν/6)d9
2d

9
3d

3
4n

3.
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Proof of A(b): Fix any H(3)-nice neighbor y of x. Then y satisfies condi-
tions A(ii)-A(vi). We set

• G′1 = H(2)[H(3)(x)(y)], ε′1 = δ
1/2
2 , d′1 = d2,

• G′2 = H(3)(x, y)[H(3)(x)(y)], ε′2 = 2δ
1/32
3 , d′2 = d2

3.
Conditions A(ii)-A(v) guarantee that G′1 and G′2 are (3, 2)-cylinders satisfying
Setup A. We apply the 2-graphs Lemma on G′1 and G′2 and obtain∣∣K3(G′2)

∣∣ =
(
1± ε′2

1/64)2(d′1d
′
2)

3(m′)3.

We use the definition of d′1, d′2, ε′2, m′, and G′2 together with the fact that
δ3 � δ4 � ν to get

1
2
d9

2d
9
3n

3 ≤
∣∣K3(H(3)(x, y)[H(3)(x)(y)])

∣∣ ≤ 2d9
2d

9
3n

3.

Proof of B(a): Fix any H(4)-fine neighbor y of x. Then y satisfies con-
ditions A(i)-A(vi). For the proof of this part, we use the estimate from
Part A(a) and the (4δ

1/16
3 , d3, r

′)-regularity of H(3)[H(2)(x, y)] with respect
to H(2)[H(2)(x, y)] (cf. A(iv)). It follows from part A(a) that∣∣K3(H(4)(x)(y))

∣∣ = (1± ν/6)d9
2d

9
3d

3
4n

3. (11.13)

Since y satisfies A(v) and A(vi), we know thatH(2)[H(2)(x, y)] is (δ1/2
2 , d2)-

regular and degj(x, y) =
(
d2 ± δ

1/2
2

)2
n holds for j = 3, 4, 5. We apply

Corollary 4.6 and obtain
∣∣K3(H(2)[H(2)(x, y)])

∣∣ ≤ (5/4)d3
2

(
d2 + δ

1/2
2

)6
n3 ≤

(3/2)d9
2n

3 (we used δ2 � d2). Furthermore, since δ3 � d3, d4, ν, we have

4δ
1/16
3

∣∣K3(H(2)[H(2)(x, y)])
∣∣ ≤ 6δ

1/16
3 d9

2n
3

≤ (1− ν/6)d9
2d

9
3d

3
4n

3 ≤
∣∣K3(H(4)(x)(y))

∣∣.
Then we use the (4δ

1/16
3 , d3, r

′)-regularity of H(3)[H(2)(x, y)] with respect
to H(2)[H(2)(x, y)] (cf. A(iv)), and obtain∣∣H(3) ∩ K3(H(4)(x)(y))

∣∣ =
(
d3 ± 4δ

1/16
3

)∣∣K3(H(4)(x)(y))
∣∣. (11.14)

We combine (11.13), (11.14), and assumption δ3 � d3 � ν to get∣∣H(3) ∩ K3(H(4)(x)(y))
∣∣ = (1± ν/5)d9

2d
10
3 d3

4n
3. (11.15)

Proof B(b): Now y is an H(3)-nice neighbor of an H(4)-fine vertex x, that
is, a vertex satisfying A(ii)-A(vi). Then, from Part A(b), we have

1
2
d9

2d
9
3n

3 ≤
∣∣K3(H(3)(x, y)[H(3)(x)(y)])

∣∣ ≤ 2d9
2d

9
3n

3. (11.16)

Similarly to Part B(a), since δ3 � d3, we have

4δ
1/16
3 |K3(H(2)[H(2)(x, y)])| ≤ 6δ

1/16
3 d9

2n
3

≤ 1
2
d9

2d
9
3n

3 ≤
∣∣K3(H(3)(x, y)[H(3)(x)(y)])

∣∣.
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We apply the (4δ
1/16
3 , d3, r

′)-regularity of H(3)[H(2)(x, y)] with respect to
H(2)[H(2)(x, y)] (cf. A(iv)) and obtain∣∣H(3) ∩ K3(H(3)(x, y)[H(3)(x)(y)])

∣∣
≤

(
d3 + 4δ

1/16
3

)∣∣K3(H(3)(x, y)[H(3)(x)(y)])
∣∣ (11.16)

≤ 3d9
2d

10
3 n3.

Proof of C: Let W be a subset of N2(x)H(4)−fine such that |W | ≥ 2δ
1/4
4 d2n.

We define two graphs P1 and P2, both with vertex set NH(2),2(x) = H(2)(x)∩
V2 and edge sets defined by:

E(P1) =
{
yy′ :

∣∣K3(H(2)[H(2)(x, y, y′)])
∣∣ > 2d12

2 n3
}
,

E(P2) =
{
yy′ :

∣∣H(3) ∩ K3(H(3)(x, y, y′)[H(3)(x)(y, y′)])
∣∣ > 2d16

3 d12
2 n3

}
.

Now we estimate the sizes of E(P1) and E(P2). We start with E(P1).
Since x is also anH(2)-good vertex (recall VH(4)−fine ⊂VH(3)−nice ⊂ VH(2)−good ⊂
V1), the (4, 2)-cylinder H(2)[H(2)(x)] is (δ1/2

2 , d2)-regular.
If {y, y′} ⊂ NH(2),2(x) is H(2)[H(2)(x)]-good, then H(2)[H(2)(x, y, y′)] is

(δ1/4
2 , d2)-regular and

degj(x, y, y′) =
(
d2 ± δ

1/4
2

)2|NH(2),j(x)|

for j = 3, 4, 5 (cf. Definition 4.11(i) applied with G = H(2)[H(2)(x)]). Since
x is H(2)-good, we have |NH(2),j(x)| =

(
d2 ± δ2

)
n and

degj(x, y, y′) =
(
d2 ± δ

1/4
2

)3
n,

j = 3, 4, 5.
Applying Corollary 4.6 with G = H(2)[H(2)(x, y, y′)] yields∣∣K3(H(2)[H(2)(x, y, y′)])

∣∣ ≤ (5/4)d3
2

(
d2 + δ

1/4
2

)9
n3 ≤ 2d12

2 n3

(we used δ2 � d2).
Thus, yy′ 6∈ E(P1) and |E(P1)| is bounded by the number of pairs {y, y′}

that are not H(2)[H(2)(x)]-good.
We apply Observations 4.8 and 4.12 on G = H(2)[H(2)(x)] and obtain that

all but at most 66δ
1/8
2 |NH(2),2(x)|2 pairs {y, y′} ∈ NH(2),2(x) areH(2)[H(2)(x)]-

good. Consequently,

|E(P1)| ≤ 66δ
1/8
2 |NH(2),2(x)|2.

Now we estimate the size of E(P2). It follows from Claim 9.3 (used
with G = H(2) and H = H(3)) that for all but at most 20δ

1/256
3 d2

2n
2 pairs

{y, y′} ⊂ NH(2),2(x) we have∣∣H(3) ∩ K3(H(3)(x, y, y′)[H(3)(x)(y, y′)])
∣∣ ≤ 2d16

3 d12
2 n3.

Therefore,

|E(P2)| ≤ 20δ
1/256
3 d2

2n
2 ≤ 21δ

1/256
3 |NH(2),2(x)|2.
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We apply the Picking Lemma on W with parameters σ1 = 66δ
1/8
2 , σ2 =

21δ
1/256
3 , t = δ

1/4
4 /(d3

2d
6
3), c = δ

1/4
4 , and obtain t H(4)-fine neighbors y1, . . .,

yt ∈ W such that all pairs {yi, yj} satisfy∣∣K3(H(2)[H(2)(x, yi, yj)])
∣∣ ≤ 2d12

2 n3, (11.17)

and all but at most
(
2× 2× 21δ

1/256
3 /δ

1/2
4

)
t2 ≤ δ

1/512
3 t2 pairs {yi, yj} satisfy∣∣H(3) ∩ K3(H(3)(x, yi, yj)[H(3)(x)(yi, yj)])

∣∣ ≤ 2d16
3 d12

2 n3. (11.18)

This is possible as long as |W | ≥ 2δ
1/4
4 d2n ≥ c× |NH(2),2(x)| and condition

(2.8) is satisfied.
Now we estimate the size of H(3) ∩

⋃t
j=1K3(H(4)(x)(yj)). We first apply

the Inclusion-Exclusion Principle:

∣∣ t⋃
j=1

H(3) ∩ K3(H(4)(x)(yj))
∣∣ ≥ t∑

j=1

∣∣H(3) ∩ K3(H(4)(x)(yj))
∣∣

−
∑

1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x)(yi)) ∩ K3(H(4)(x)(yj))
∣∣.

The next step is to estimate both terms on the right-hand side. The first
term is easier to handle. We use (11.15) to conclude that:

t∑
j=1

∣∣H(3) ∩ K3(H(4)(x)(yj))
∣∣ ≥ t× (1− ν/5)d9

2d
10
3 d3

4n
3. (11.19)

To get an estimate for the second term, we must observe two facts:

• K3(H(4)(x)(yi)) ∩ K3(H(4)(x)(yj)) = K3(H(4)(x)(yi, yj)), and
• K3

(
H(4)(x)(yi, yj)

)
⊂ K3(H(3)(x, yi, yj)) ⊂ K3

(
H(2)[H(2)(x, yi, yj)]

)
.

Since we know that all but at most δ
1/512
3 t2 pairs {yi, yj} satisfy (11.18), for

these pairs we use the estimate∣∣H(3) ∩ K3(H(4)(x)(yi, yj))
∣∣

≤
∣∣H(3) ∩ K3(H(3)(x, yi, yj)[(H(3)(x)(yi, yj)])

∣∣
(11.18)

≤ 2d16
3 d12

2 n3. (11.20)

Remaining δ
1/512
3 t2 pairs {yi, yj} satisfy (11.17). For these pairs we use

the following estimate∣∣H(3) ∩ K3(H(4)(x)(yi, yj))
∣∣

≤
∣∣K3(H(2)[H(2)(x, yi, yj)])

∣∣ (11.17)

≤ 2d12
2 n3. (11.21)
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Now we combine (11.20) and (11.21) to obtain∑
1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x)(yi) ∩ K3(H(4)(x)(yj))
∣∣

≤
(

t

2

)
× 2d16

3 d12
2 n3 + δ

1/512
3 t2 × 2d12

2 n3.

We use the assumption δ3 � d3 and conclude that δ
1/512
3 t2 × 2d12

2 n3 ≤
t2 × d16

3 d12
2 n3. Then,∑

1≤i<j≤t

∣∣H(3) ∩ K3(H(4)(x)(yi)) ∩ K3(H(4)(x)(yj))
∣∣ ≤ 2t2d16

3 d12
2 n3. (11.22)

Using (11.19), (11.22), and the definition of t (recall t = δ
1/4
4 /(d3

2d
6
3)) yields

∣∣ t⋃
j=1

H(3) ∩ K3(H(4)(x)(yj))
∣∣ ≥ t× (1− ν/5)d9

2d
10
3 d3

4n
3 − 2t2d16

3 d12
2 n3

(2.3a)

≥ 2δ
1/2
4 × 2d4

3d
6
2n

3. (11.23)

Since x is an H(4)-fine vertex, the link H(4)(x) is (2δ
1/2
4 , d4, r)-regular with

respect to H(3)∩K3(H(3)(x)) (cf. Definition 10.3). Moreover, we know from
(10.2)

1
2
d6

2d
4
3n

3 ≤
∣∣H(3) ∩ K3(H(3)(x))

∣∣ ≤ 2d6
2d

4
3n

3. (11.24)

We combine (11.23) and (11.24) and obtain

∣∣ t⋃
j=1

H(3) ∩ K3(H(4)(x)(yj))
∣∣ ≥ 2δ

1/2
4

∣∣H(3) ∩ K3(H(3)(x))
∣∣.

The (2δ
1/2
4 , d4, r)-regularity of H(4)(x) with respect to H(3) ∩ K3(H(3)(x))

yields (note that we can choose r ≥ t up-front (cf. (2.2))

∣∣H(4)(x) ∩
t⋃

j=1

K3(H(4)(x)(yj))
∣∣ =

(
d4 ± 2δ

1/2
4

)∣∣H(3) ∩
t⋃

j=1

K3(H(4)(x)(yj))
∣∣,

which is what we intended to show.
Proof of D: In Part C, we proved that whenever W is a subset of N2(x)H(4)−fine

such that |W | ≥ 2δ
1/4
4 d2n, we can choose t = δ

1/4
4 /(d3

2d
6
3) H(4)-fine neighbors

y1, . . . , yt ∈ W such that

∣∣H(4)(x) ∩
t⋃

j=1

K3(H(4)(x)(yj))
∣∣ =

(
d4 ± 2δ

1/2
4

)∣∣H(3) ∩
t⋃

j=1

K3(H(4)(x)(yj))
∣∣,

(11.25)
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Moreover, y1, . . . , yt also satisfy (11.19) and (11.22). Using these two equa-
tions and t = δ

1/4
4 /(d3

2d
6
3), we obtain

δ
1/8
4

t∑
j=1

∣∣H(3)∩K3(H(4)(x)(yj))
∣∣− ∑

1≤i<j≤t

∣∣H(3)∩K3(H(4)(x)(yi))∩K3(H(4)(x)(yj))
∣∣

≥ δ
1/8
4 × t× (1− ν/5)d9

2d
10
3 d3

4n
3 − 2t2d16

3 d12
2 n3 ≥ 0.

We apply the second part of Observation 2.7:∣∣ t⋃
j=1

H(3) ∩ K3(H(4)(x)(yj))
∣∣ ≥ (

1− δ
1/8
4

) t∑
j=1

∣∣H(3) ∩ K3(H(4)(x)(yj))
∣∣.

(11.26)
We combine (11.25), (11.26), and (11.19) and get∣∣H(4)(x)∩

t⋃
j=1

K3(H(4)(x)(yj))
∣∣ ≥ (

d4−2δ
1/2
4

)(
1−δ

1/8
4

)
t×(1−ν/5)d9

2d
10
3 d3

4n
3.

(11.27)
We set W = N2(x)H(4)−fine and find vertices y1, . . . , yt as described above.

Then we remove y1, . . . , yt from W and iterate the whole process again. We
can repeat this process as long as (cf. Part C)

|W | ≥ 2δ
1/4
4 d2n. (11.28)

This way we produce a sequence of at least
(∣∣N2(x)H(4)−fine

∣∣−2δ
1/4
4 d2n

)
/t

t-tuples Y (1) = {y1, . . . , yt} =
{
y

(1)
1 , . . . , y

(1)
t

}
, Y (2) =

{
y

(2)
1 , . . . , y

(2)
t

}
, etc.

Analogously to (11.27), each iteration produces at least(
d4 − 2δ

1/2
4

)(
1− δ

1/8
4

)
t× (1− ν/5)d9

2d
10
3 d3

4n
3 ≥ (1− ν/4)d9

2d
10
3 d4

4tn
3

copies of K
(3)
4 in H(4)(x). Each such a copy uses exactly one vertex from

Y (i) =
{
y

(i)
1 , . . . , y

(i)
t

}
. Notice that since x is an H(4)-fine vertex,

• |N2(x)H(4)−fine| ≥ |N2(x)H(3)−nice|−6δ
1/4
4 d2n (cf. Observation 10.6),

• |N2(x)H(3)−nice| ≥ |N2(x)H(2)−good|−12δ
1/32
3 d2n (cf. Observation 9.2),

• |N2(x)H(2)−good| ≥ |NH(2),2(x)| − 36δ
1/8
2 |NH(2),2(x)| (cf. Observa-

tion 4.10), and
• |NH(2),2(x)| ≥ (d2 − δ2)n (cf. Definition 4.7).

Consequently,
(
|N2(x)H(4)−fine| − 2δ

1/4
4 d2n

)
/t ≥

(
1 − 9δ

1/4
4

)
d2n/t. There-

fore, the sequence of t-tuples X(i) produces at least
(
1− 9δ

1/4
4

)
d2n/t× (1−

ν/4)d9
2d

10
3 d4

4tn
3 copies of K

(3)
4 in H(4)(x). Hence∣∣K4(H(4)(x))

∣∣ ≥ (
1− 7δ

1/4
4

)
d2n/t× (1− ν/4)d9

2d
10
3 d4

4tn
3

(2.3a)

≥ (1− ν/2)d(5
3)

2 d
(5
2)

3 d4
4n

4.
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Proof of E: Similarly to statement D, we set W = N2(x)H(4)−fine and
iteratively produce t-tuples of vertices Y (1), Y (2), . . . , Y (last), so that every
t-tuple Y (i) is in at most

(
d4 + 2δ

1/2
4

)
× t(1 + ν/5)d3

4d
10
3 d9

2n
3 copies of K

(3)
4

in H(4)(x).
However, to prove the upper bound we must count not only
(i) the contribution of t-tuples Y (1), Y (2), . . . , Y (last),

but also
(ii) contribution of fine neighbors left in N2(x)H(4)−fine \

⋃last
i=1 Y (i), and

(iii) contribution of y 6∈ N2(x)H(4)−fine.
We will handle each of these categories of vertices separately:
(i) An upper bound on number of copies of K

(3)
4 produced by taking t-tuples

Y (i) can be obtained in a way similar to the lower bound in Part D: There
are at most

∣∣N2(x)H(4)−fine

∣∣/t ≤ |NH(2),2(x)|/t ≤ (d2 + δ2)n/t such t-tuples,
together producing at most(
d4 + 2δ

1/2
4

)
× t(1 + ν/5)d3

4d
10
3 d9

2n
3 × (d2 + δ2)n/t ≤ (1 + ν/4)d(5

3)
2 d

(5
2)

3 d4
4n

4

copies of K
(3)
4 .

(ii) The number of fine neighbors left in N2(x)H(4)−fine \
⋃last

i=1 Y (i) is at most

2δ
1/4
4 d2n (cf. (11.28)). Each such vertex satisfies B(a) and, consequently, is

involved in not more than (1+ν/5)d9
2d

10
3 d3

4n
3 copies of K

(3)
4 . Therefore, this

group of vertices contributes at most

2δ
1/4
4 d2n× (1 + ν/5)d9

2d
10
3 d3

4n
3 < δ

1/8
4 d

(5
2)

2 d
(5
3)

3 d4
4n

4

copies of K
(3)
4 . We used again the assumption δ4 � d4.

(iii) Now we must estimate the contribution of neighbors y which are not
H(4)-fine, that is, y ∈ NH(2),2(x) \N2(x)H(4)−fine. Since

NH(2),2(x) \N2(x)H(4)−fine =
(
N2(x)H(3)−nice \N2(x)H(4)−fine

)
∪(

N2(x)H(2)−good \N2(x)H(3)−nice

)
∪

(
NH(2),2(x) \N2(x)H(2)−good

)
,

we distinguish three categories of these neighbors.
1) we consider vertices y ∈ N2(x)H(3)−nice \ N2(x)H(4)−fine. We know from

Observation 10.6 that |N2(x)H(3)−nice \N2(x)H(4)−fine| ≤ 6δ
1/4
4 d2n. We esti-

mate contribution of every such vertex y by∣∣H(3) ∩ K3(H(4)(x)(y))
∣∣ ≤ ∣∣H(3) ∩ K3(H(3)(x, y)[H(3)(x)(y)])

∣∣ ≤ 3d9
2d

10
3 n3

(cf. B(b)). Therefore, neighbors from N2(x)H(3)−nice \ N2(x)H(4)−fine con-
tribute by at most

6δ
1/4
4 d2n× 3d10

3 d9
2n

3 ≤ δ
1/8
4 d4

4d
(5
3)

3 d
(5
2)

2 n4

copies of K
(3)
4 .
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2) for vertices y ∈ N2(x)H(2)−good \ N2(x)H(3)−nice, Observation 9.2 im-

plies that |N2(x)H(2)−good \ N2(x)H(3)−nice| ≤ 12δ
1/32
3 d2n. Then, each such

neighbor y is in at most
∣∣K3(H(2)[H(2)(x, y))]

∣∣ copies of K
(3)
4 . Since y ∈

N2(x)H(2)−good, H(2)[H(2)(x, y))] is (δ1/4
2 , d2)-regular (cf. Definition 9.1).

Consequently, ∣∣K3(H(2)[H(2)(x, y))]
∣∣ ≤ 2d9

2n
3

(cf. Corollary 4.6). The total contribution of these vertices is then bounded
by

12δ
1/32
3 d2n×2d9

2n
3 ≤ δ

1/64
3 d

(5
3)

3 d
(5
2)

2 n4 ≤ δ4d
(5
3)

3 d
(5
2)

2 n4 ≤ δ
1/2
4 d4

4d
(5
3)

3 d
(5
2)

2 n4.

Here we used assumptions (2.3a) and (2.3b).
3) The remaining neighbors y belongs to NH(2),2(x) \N2(x)H(2)−good. It fol-

lows from Observation 4.10 that |NH(2),2(x) \N2(x)H(2)−good| ≤ 36δ
1/8
2 (d2 +

δ2)n ≤ 37δ
1/8
2 d2n. In this case, we use a rough estimate that every vertex is

in at most n3 copies of K
(3)
4 and, thus, the contribution of these vertices is

at most

37δ
1/8
2 d2n× n3 ≤ δ

1/16
2 d

(5
2)

2 n4 ≤ δ3d
(5
2)

2 n4

≤ δ
1/2
3 d

(5
3)

3 d
(5
2)

2 n4 ≤ δ4d
(5
3)

3 d
(5
2)

2 n4 ≤ δ
1/2
4 d4

4d
(5
3)

3 d
(5
2)

2 n4.

At this point we are ready to derive the upper bound. We add the con-
tributions of all vertices above and obtain∣∣K4(H(4)(x))

∣∣ ≤ (
1+ν/4+2δ

1/8
4 +2δ

1/2
4

)
d4

4d
(5
3)

3 d
(5
2)

2 n4 ≤ (1+ν/2)d4
4d

(5
3)

3 d
(5
2)

2 n4.
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Appendix A. Counting II

In this section, we will expand statements for a single vertex from Sec-
tion 8 to pairs. We consider the scenario given by Setup C:

Setup C. Let 0 < ε2 � d2 ≤ 1, 0 < ε3 � d3 ≤ 1, and 0 < ε3 � d̃3 ≤ 1
be real numbers so that ε2 � ε3. Let U = U1 ∪ . . . ∪ Us be a partition,
where |U1| = . . . = |Us| = m, G2 = (U,E(G2)) be an (s, 2)-cylinder that
is (ε2, d2)-regular, G3 = (U,E(G3)) be an (s, 2)-cylinder that is (ε3, d̃3, r)-
regular with respect to G2, and let H = (U,E(H)) be an (s, 3)-cylinder
which is (ε3, d3, r)-regular with respect to G2.

Our objective is to prove the following technical claim.

Claim A.1. Let s = 4 and G2, G3, and H are as in Setup C. Then, for all
but at most 10ε

1/64
3 m2 pairs {u, u′} ⊂ U1, the following is true:

|H ∩ K3(H(u, u′)[G3(u, u′)])| ≤ 3
2
d9

2d̃
9
3d

7
3m

3.
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From this claim we deduce Claim 9.3 in Section 9 as follows.

Proof. Let u ∈ U1 be anH-nice vertex (cf. Definition 6.3), that is an G2-good
vertex for which we have

(i) the link H(u) is (2ε
1/2
3 , d3, r)-regular with respect to G2[G2(u)],

(ii) H[G2(u)] is (2ε
1/4
3 , d3, r/

(
ε
1/2
3 d−3

2

)
)-regular with respect to G2[G2(u)],

Also remind that the G2-goodness of u implies
(iii) degj(u) = (d2 ± ε2)m for j = 2, . . . , 5,

(iv) the (4, 2)-cylinder G2[G2(u)] is (ε1/2
2 , d2)-regular.

We apply Claim A.1 with G′2 = G2[G2(u)], G′3 = H(u), and H′ = H[G2(u)].
Observe that if we set ε′2 = ε

1/2
2 , ε′3 = 2ε

1/4
3 , m′ = (d2 ± ε2)m, d′2 = d2,

d̃′3 = d′3 = d3, and r′ = r/
(
δ
1/2
3 d−3

2

)
, then (i)-(iv) verify conditions of the

Setup C. More precisely,
• (iv) verifies that G′2 is (ε′2, d

′
2)-regular,

• (i) verifies that G′3 is (ε′3, d̃
′
3, r

′)-regular with respect to G′2, and
• (ii) verifies that H′ is (ε′3, d

′
3, r

′)-regular with respect to G′2.
By Claim A.1, all but 10(ε′3)

1/64(m′)2 pairs {v, v′} ⊂ NG2,2(u) satisfy

|H′ ∩ K3(H′(v, v′)[G′3(v, v′)])| ≤ 3
2
(d′2)

9(d̃′3)
9(d′3)

7(m′)3.

This concludes the proof because
• H′ ∩ K3(H′(v, v′)[G′3(v, v′)]) = H ∩K3(H(u, v, v′)[H(u)(v, v′)]),
• 10(ε′3)

1/64(m′)2 ≤ 20ε
1/256
3 d2

2m
2, and

• (3/2)(d′2)
9(d̃′3)

9(d′3)
7(m′)3 ≤ 2d12

2 d16
3 m3.

Here we used the definitions of ε′2, ε′3, m′, and ε2 � d2. �

To prove Claim A.1, we start with some technical observations. The
first one is a consequence of Fact 5.6 and shows that almost all pairs have
approximately the same joint degree in G3.

Fact A.2. For all but at most 10(s− 1)ε1/8
3 m2 pairs {u, u′} ⊂ U1 we have:

degG3,j(u, u′) =
(
1± ε

1/8
3

)2
d2

2d̃
2
3m (A.1)

for every j ∈ [s] \ {1}. Consequently, G2[G3(u, u′)] is (ε1/2
2 , d2)-regular.

The second fact follows from Claim 6.6 and shows that the restriction of
H to the joint neighborhood of almost all pairs of vertices inherits regularity.

Fact A.3. Set r′ = r/
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
. Then,

(i) the pair {u, u′} is good, and
(ii) the restriction H[G2(u, u′)] is (4ε

1/16
3 , d3, r

′)-regular with respect to
G2[G2(u, u′)]

for all but at most 5
(
s−1
3

)
ε
1/2
3 m2 pairs {u, u′} ⊂ U1.
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The last fact shows that the (s − 1, 2)-cylinder G3[G3(u, u′)] ∩ H(u, u′) is
regular with respect to G2[G3(u, u′)] for almost all pairs {u, u′} ⊂ U1.

Fact A.4. For all but at most 3
(
s−1
2

)
ε
1/64
3 m2 pairs of G2-good vertices {u, u′} ⊂

U1 the following statements hold.
(a)

degG3,j(u, u′) =
(
1± ε

1/8
3

)2
d2

2d̃
2
3m, (A.2)

for every j ∈ [s] \ {1},
(b) G2[G3(u, u′)] is (ε1/2

2 , d2)-regular, and
(c) G3[G3(u, u′)]∩H(u, u′) is (ε1/64

3 , d̃3d
2
3, r

′)-regular with respect to G2[G3(u, u′)],
where r′ = r/

(
ε
1/2
3 d−2

2

)(
ε
1/16
3 d−2

2

)
.

Parts (a) and (b) follows from Facts A.2. The proof of (c) is analogous
to the proof of Claim 6.5 and consist of three steps.

i) the (s−1, 2)-cylinder G3[G3(u)]∩H(u) is (ε1/8
3 , d3d̃3, r

′)-regular with
respect to G2[G3(u)] for almost all G2-good vertices u ∈ U1 (cf. Claim
7.3).

ii) the (s − 1, 2)-cylinder G3[G3(u) ∩ G2(u′)] ∩ H(u) is (2ε
1/32
3 , d3d̃3, r

′)-
regular with respect to G2[G3(u) ∩ G2(u′)] for almost all pairs of G2-
good vertices {u, u′} ⊂ U1.

iii) G3[G3(u, u′)]∩H(u, u′) is (ε1/64
3 , d̃3d

2
3, r

′)-regular with respect to G2[G3(u, u′)]
for almost all pairs of G2-good vertices {u, u′} ⊂ U1.

A counterexample to step ii) (step iii), respectively) would yield an coun-
terexample to step i) (regularity of H with respect to G2, respectively). For
details we refer the interested reader to [Sk00]. Now we are ready to prove
Claim A.1.

Proof of Claim A.1. Set r′ = r/
(
ε
1/2
3 d−3

2

)(
ε
1/16
3 d−3

2

)
and let {u, u′} be a pair

of vertices such that
(i) {u, u′} is a good pair,
(ii) the restriction of H to G2(u, u′) is (2ε

1/16
3 , d3, r

′)-regular with respect
to G2[G2(u, u′)],

(iii) degG3,j(u, u′) =
(
1± ε

1/8
3

)2
d2

2d̃
2
3m for every j ∈ [s]\{1}, G2[G3(u, u′)]

is (ε1/2
2 , d2)-regular, and

(iv) G3[G3(u, u′)]∩H(u, u′) is (ε1/64
3 , d̃3d

2
3, r

′)-regular with respect to G2[G3(u, u′)].

It follows from Fact A.3 that all but at most 5ε
1/2
3 m2 pairs {u, u′} satisfy

(i) and (ii) (note that r′ ≤ r/
(
ε
1/2
3 d−3

2

)(
2ε

1/8
3 d−3

2

)
).

Furthermore, Fact A.4 impies that all but at most 9ε
1/64
3 m2 good pairs

{u, u′} satisfy (iii) and (iv) (note that in this case r′ ≤ r/
(
ε
1/2
3 d−2

2

)(
ε
1/16
3 d−2

2

)
).

We define two (3, 2)-cylinders G′1, G′2 by G′1 = G2[G3(u, u′)] and G′2 =
G3[G3(u, u′)] ∩H(u, u′).
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Then, G′1 and G′2 satisfy the assumptions of the 2-graphs Lemma. More
precisely, setting ε′1 = ε

1/2
2 , ε′2 = ε

1/64
3 , d′1 = d2, d′2 = d̃3d

2
3, and m′ =(

1 ± ε
1/8
3

)2
d2

2d̃
2
3m, we have that G′1 is (ε′1, d

′
1)-regular and G′2 is (ε′2, d

′
2, r

′)-
regular with respect to G′1 (cf. (iii) and (iv)).

We apply the 2-graphs Lemma and obtain the following

|K3(G3[G3(u, u′)] ∩H(u, u′))| = |K3(G′2)| ≥
(
1− ε′2

1/64)2(d′1d
′
2)

3(m′)3

Then we use the definitions of ε′1, ε′2 and m′ and assumption ε2 � ε3 �
d3 ≤ 1 to obtain

|K3(G3[G3(u, u′)] ∩H(u, u′))|

≥
(
1− ε

1/4096
2

)
d3

2d̃
3
3d

6
3

((
1− ε

1/8
3

)2
d2

2d̃
2
3m

)3 ≥ 3
4
d9

2d̃
9
3d

6
3m

3.

In a similar fashion we get

|K3(G3[G3(u, u′)] ∩H(u, u′))| ≤ 5
4
d9

2d̃
9
3d

6
3m

3. (A.3)

Since the pair {u, u′} is G2-good (cf. (i)), the (3, 2)-cylinder G2[G2(u, u′)] is
(ε1/2

2 , d2)-regular. It follows from Corollary 4.6 that

|K3(G2[G2(u, u′)])| ≤ (5/4)d3
2

(
d2 + ε

1/2
2

)6
m3 ≤ 2d9

2m
3.

Since 4ε
1/16
3 × 2d9

2 ≤ (3/4)d9
2d̃

9
3d

6
3 (because of ε3 � d3 and ε3 � d̃3), we

obtain

|K3(G3[G3(u, u′)] ∩H(u, u′))| ≥ 4ε
1/16
3 |K3(G2[G2(u, u′)])|.

We apply the (4ε
1/16
3 , d3, r

′)-regularity ofH[G2(u, u′)] with respect to G2[G2(u, u′)]
and obtain

|H ∩ K3(H(u, u′)[G3(u, u′)])|
≤ |H ∩ K3(G3[G3(u, u′)] ∩H(u, u′))|

≤
(
d3 + 2ε

1/16
3

)
|K3(G3[G3(u, u′)] ∩H(u, u′))|

(A.3)

≤
(
d3 + 4ε

1/16
3

)5
4
d9

2d̃
9
3d

6
3m

3 ≤ 3
2
d9

2d̃
9
3d

7
3m

3.
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